Mineralogy and Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Mineralogy and Chemistry State of Oregon Department of Geology and Mi neraf Industries 910 State Office Building 1400 SW Fifth Avenue Port1 and, Oregon 97201 OPEN-FILE REPORT 0-89-09 MINERAL DEPOSITS RECOVERED FROM NORTHERN GORDA RIDGE: MINERALOGY AND CHEMISTRY Martin R. Fi sk and Katherine J. Howard CoI1 ege of Oceanography Oregon State Uni versi ty, Corval 1 i s , Oregon 97331 Final Report for Contract No. 63-630-8803 Submi tted to: Oregon Department of Geology and Mineral Industries and the Gorda Ridge Technical Task Force Released June 1989 This report is based on results of a research progrm directed by the joint federal-state Gorda Ridge Technical Task Force, managed by the Oregon Department of Geology and Hineral Industries, and funded by the Minerals Pbnagement Service, U.S. Deparbmt of the Interior, thtough Cooperative Agremmt. Opinions expressed are those of the authors and do not constitute endarsement by the qwtsoring agencies or the Task Force. Ple Oregon Departmmt of Geology and Mineral Industries is publishing this paper because the subject matter is consistent with the mission of the -t. To facilitate thly distribution of information, ame era-ready cqy submitted by the authors has not h edited by the staff of the -on Wpmtwnt of Geology and nineral Industries. TABLE OF CONTENTS List of Fig- ........................................................................................... 3 ListofTables ............................................................................................. 3 Absbact. ..................................................................................................... 4 Induction........................ .. ................................................................. 4 Gorda Ridge.............................................................................. 4 Dive Imations............ *... ............................................................... 7 Samples....................................................................................... 9 Methods ..................................................................................................... 1 3 X-ray diffraction........................................................................ 1 3 Atomic absorption..................................................................... 1 3 Results........................................................................................................ 1 3 Discussion ................................................................................................ 1 7 SummaIy ................................................................................................. 2 2 Acknow1edgement.s.............................................................................. 2 3 References................................................................................................ 2 4 ABSTRACT The Gorda Ridge is the only submarine volcanic ridge within the newly proclaimed Exclusive Economic Zone of the United States. In 1988 a team of divers discovered hot springs on the northern segment of Gorda Ridge and recovered rock and mineral samples from this hydrothemat field. Here we report the mineral and chemical composition of these samples. INTRODUCTION Gorda Ridge Gorda Ridge is a reIatively short (300 km) segment of volcanic, ocean ridge that extends from the Mendocino Fracture Zone (40' 20' N) to the Blanco Fracture Zone (43' 00' N) off the coast of Oregon and California (Figure 1). The whole length of the ridge is within 200 nautical miles of the United States. The shape and average depth of the ridge is similar to slowly spreading ridges in other oceans, such as the Mid-Atlantic Ridge. The Gorda Ridge axial valley is more than 3,000 m deep and same depressions are as deep as 3,800 rn (Clague and Wolrnes, 1987). As seen in Figure 1, the Gorda Ridge is divided into three segments by two short offsets, and the northern segment extends from 42' 26' to 43' 00' N. This northern segment of Gorda Ridge has been the center of extensive study for the past nine years. Cruises there in 1980, 1981, 1983, 1985, and 1986 mapped the ocean floor with SEABEAM and SeaMARC II sidescan sonar, dredged basalts from the axial valley of Gorda Ridge and from the Blanco Fracture Zone, collected sediment cores and water samples, and measured watet temperature. One dive with the submersible ALVIN was made to the sea-floor (Malahoff, 1985). These studies Ied to five dives with the submersible SEA CLIFF in 1988, and the discovery of a new hydro- thermal vent field (Rona et al., 1988). The northern Gorda Ridge appears to 'be a single rift volcano that has its highest elevation (3,000 rn water depth) at 42' 47' N (Figure 2). At this location the rift valley is narrowest (about 7 km) and axial valley walls are only about 500 rn high (CIague and Holmes, 1987). Both to the north and south, from 42' 47' N, the va1Iey gets wider and deeper and the walls of the axial valley are higher. At the intersection of the ridge and the Blanco Fracture Zone the axial valley is more than 15 km wide and has a depth of 3,500 rn. South of the saddle the axial valley descends to its greatest depth of 3,800 rn (Clague and Holmes, 1987) which suggests that the magma supply is Iow in this area. WASHINGTON FUCA PLATE .-.-.-.-.-.-I-.--- CALIFORNIA Figure 1 Features of the northeastern Pacific Ocean basin near Gorda Ridge. The rates of motion in mmlyr are given for the Pacific Plate and the Juan de Fuca Plate south of the BZanco Fracture Zone. The northern section of the Gorda Ridge (labeled N) is shown in detail in Figure 2. The approximate location of the Cascadia subduction zone is indicated by the solid line with triangles. Cascade volcanos are indicate by isolated triangles. Figure from Fisk and Howard (1989). Figure 2 Topographic features of the northern segment of Gorda Ridge. Sites that were suspected to have hydrothema1 activity based on studies in 1985 are indicated by squares and labeled GR-14 and GR-15 after Collier et a!. (1986). Locations of dredged rocks are indicated by circles. The locations of two dives by MaIahoff (1985) are indicated by triangles and labeled A1406 and A1407. GR-14 was the site of SEA CLIFF dives 767 to 771 that coIIected the samples discussed in this report. Contour interval is in meters. Figure from Fisk and Howard (1989). Basalts were initially collected from this segment of the ridge in 1968 and 1976 by Oregon State University and their chemistry and mineralogy were reported by Kay et al. (1970) and Wakeham (1978). The first indication of hydro-thermal activity on the northern Gorda was the presence of slightly elevated temperatures, high manganese concentrations, and increased particle concentrations in the water within 400 m of the sea-floor at 42" 44.7' N, 126" 43.7" and ad 42O 57.1' N, 126" 35.0' W (Collier et al., 1986, Baker et al., 1987). These were designated Site GR-14 and Site GR-15, respectively, (Figure 2) and both sites continued to exhibit these anomalous signals later the same year (Collier and Baker, 1989), Another indication of hydrothermal activity on the northern Gorda was the presence of barite and pyrite on basalts dredged from 5,775 m at the south end of this segment (Clague et al, 1984). Both of these minerals ate associated with hydrothermal activity on other oceanic ridges, In 1985 photographs of the axial valley near hydrothermal site GR-14 showed that some rocks appeared to be covered with bacterial mats that often grow near areas of hydrothermal activity (Clague and Rona, 1989). Changes in sediment color and texture were also observed in the photographs which suggested the presence of hydrothermal precipitates. One sediment core from the area also contained high copper content, another indication of hydrothermal action (Nelson 1987, personal communication). Thin, black to brightly colored Iayers of minerals were removed from rocks colIected from the axial valley near Site GR-14 in 1985 (Clague and Holmes, 1987) and from rocks that had previously been collected from this area (Howard, 1989). These Iayers proved to contain minerals and chemical indicators that 'suggested the presence of hydrothermal activity in two areas neat GR-14. This wen was again dredged in 1986 and basalts were recovered with a 1 to 3 mm-thick coating of boehmite. Boehmite had previously been reported on the Middle Gorda (Clague et al., 1984; Clague and Holmes, 1987) but it was not known whether it was a hydrothermal precipitate or a weathering product of the basalt. Close examination of the sample indicated that the boehmite was a product of weathering of the basalt by reaction with silica-poor water that was 200' to 300°C (Howard and Fisk, 1988). Dive locations Five dives were made in the vicinity of Site GR-14 (Figure 2). Three of these (767, 768, and 769) were on a long hill with its axis parallel to the ridge and two dives were in the deepest part of the valley near Alvin dive 1407. The tracks of dives 767 and 768 are shown in Figure 3 and dive Figure 3 Schematic diagram of the eastern side of the axial vaIley at GR-14. The long hill is indicated with the light stipple. The approximate path and end points (x) of SEA CLIFF dives 767 and 768 are shown. The hydrothermal field from which samples from dives 767, 768, and 769 were colIected is shown with the dense stipple. Contour interval Is in meters. 769 traversed the southern end of the hydrothermal field. The first dive traversed eastward from east side of the axial valley until reaching the long hill and then turned south and maintained a depth of about 2750 rn.
Recommended publications
  • This Report Is Preliminary and Has Not Bee Reviewed for Conformity with US
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Northeast-trending subcrustal fault transects western Washington by Kenneth F. Fox, Jr.* Open-File Report 83-398 This report is preliminary and has not bee reviewed for conformity with U.S Geological Survey editorial standards and stratigraphic nomenclature. *U.S. Geological Survey 3^5 Middlefield Road Menlo Park, California 9^025 Page Table of Contents Tectonic setting......................................................... 1 Seisraicity............................................................... 4 Discussion............................................................... 4 References cited......................................................... 6 Figures Figure 1. Magnetic anomalies in the northeastern Pacific................ 8 Figure 2. Bathymetry at intersection of Columbia lineament and Blanco fracture zone................................................. 9 Figure 3. Plane vector representation of movement of Gorda plate........ 10 Figure 4. Reconstruction of Pacific-Juan de Fuca plate geometry 2 m.y. before present................................................ 11 Figure 5. Epicenters of historical earthquakes with intensity greater than V........................................................ 12 TECTONIC SETTING The north-trending magnetic anomalies of the Juan de Fuca plate are off­ set along two conspicuous northeast-trending lineaments (fig. 1), named the Columbia offset and the Destruction offset by Carlson (1981). The northeast­ ward projections of these lineaments intersect the continental area of western Washington, hence are of potential significance to the tectonics of the Pacific Northwest region. Pavoni (1966) suggested that these lineaments were left-lateral faults, and that the Columbia, 280 km in length, had 52 km of offset, and the Destruction, with a length of 370 km, had 75 km of offset. Based on Vine's (1968) correlation of the magnetic anomalies mapped in this area by Raff and Mason (1961), with the magnetic reversal time scale, Silver (1971b, p.
    [Show full text]
  • On the Dynamics of the Juan De Fuca Plate
    Earth and Planetary Science Letters 189 (2001) 115^131 www.elsevier.com/locate/epsl On the dynamics of the Juan de Fuca plate Rob Govers *, Paul Th. Meijer Faculty of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands Received 11 October 2000; received in revised form 17 April 2001; accepted 27 April 2001 Abstract The Juan de Fuca plate is currently fragmenting along the Nootka fault zone in the north, while the Gorda region in the south shows no evidence of fragmentation. This difference is surprising, as both the northern and southern regions are young relative to the central Juan de Fuca plate. We develop stress models for the Juan de Fuca plate to understand this pattern of breakup. Another objective of our study follows from our hypothesis that small plates are partially driven by larger neighbor plates. The transform push force has been proposed to be such a dynamic interaction between the small Juan de Fuca plate and the Pacific plate. We aim to establish the relative importance of transform push for Juan de Fuca dynamics. Balancing torques from plate tectonic forces like slab pull, ridge push and various resistive forces, we first derive two groups of force models: models which require transform push across the Mendocino Transform fault and models which do not. Intraplate stress orientations computed on the basis of the force models are all close to identical. Orientations of predicted stresses are in agreement with observations. Stress magnitudes are sensitive to the force model we use, but as we have no stress magnitude observations we have no means of discriminating between force models.
    [Show full text]
  • Recent Tectonics of the Blanco Ridge, Eastern Blanco Transform Fault Zone
    Marine Geophysical Researches 21: 423–450, 2000. 423 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Recent tectonics of the Blanco Ridge, eastern blanco transform fault zone Robert P. Dziak1, Christopher G. Fox2, Robert W. Embley2, John L. Nabelek3, Jochen Braunmiller3 & Randolph A. Koski4 1Cooperative Institute for Marine Resources Studies, Oregon State University, Hatfield Marine Science Center, Newport, OR 97365, USA 2National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Hatfield Marine Science Center, Newport, OR 97365, USA 3College of Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA 4United States Geological Survey, MS999 345 Middlefield Rd, Menlo Park, CA 94025, USA Received 25 August 1998; accepted 23 May 2000 Key words: Blanco transform fault zone, earthquakes, ridge formation, submersible Abstract Bathymetric, hydro-acoustic, seismic, submersible, and gravity data are used to investigate the active tectonics of the eastern Blanco Transform Fault Zone (BTFZ). The eastern BTFZ is dominated by the ∼150 km long transform-parallel Blanco Ridge (BR) which is a right-lateral strike- slip fault bordered to the east and west by the Gorda and Cascadia Depressions. Acoustic locations, fault-parameter information, and slip vector estimates of 43 earthquakes (Mw ≥ 3:8) that occurred along the eastern BTFZ over the last 5 years reveal that the Blanco Ridge is a high-angle right-lateral strike-slip fault, with a small component of dip-slip motion, where the Juan de Fuca plate is the hanging wall relative to the Pacific plate. Furthermore, the Cascadia and Gorda basins are undergoing normal faulting with extension predominantly oblique to the transform trend.
    [Show full text]
  • Internal Deformation of the Southern Gorda Plate: Fragmentation of a Weak Plate Near the Mendocino Triple Junction
    Internal deformation of the southern Gorda plate: Fragmentation of a weak plate near the Mendocino triple junction Sean P.S. Gulick* Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, Anne S. Meltzer USA Timothy J. Henstock* Department of Geology and Geophysics, Rice University, Houston, Texas 77005, USA Alan Levander ABSTRACT Gorda plate that may serve as the northern North-south compression across the Gorda-Paci®c plate boundary caused by the north- limit of in¯uence of the triple junction on the ward-migrating Mendocino triple junction appears to reactivate Gorda plate normal Juan de Fuca±Gorda plate system. Near the faults, originally formed at the spreading ridge, as left-lateral strike-slip faults. Both seis- triple junction, the plate shows evidence of mically imaged faults and magnetic anomalies fan eastward from ;N208E near the Gorda fragmenting (Fig. 1B). ridge to ;N758E near the triple junction. Near the triple junction, the Gorda plate is faulted pervasively and appears to be extending east-southeast as it subducts beneath GORDA PLATE DEFORMATION North America. Continuation of northeast-southwest±oriented deformation in the southern Oceanic crust imaged on seismic lines Gorda plate beneath the continental margin contrasts with the northwest-southeast±trend- MTJ-3, MTJ-5, and MTJ-6 is rough and per- ing structures in the overlying accretionary prism, suggesting partial Gorda±North Amer- vasively faulted (Fig. 3). The crust appears in ican plate decoupling. Southeast of the triple junction, a slabless window is generated by places to be broken into crustal blocks bound- removal of the subducting Gorda plate.
    [Show full text]
  • Topographic Form of the Coast Ranges of the Cascadia Margin in Relation to Coastal Uplift Rates and Plate Subduction
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. B6, PAGES 12,245-12,255, JUNE 10, 1994 Topographic form of the Coast Ranges of the Cascadia Margin in relation to coastal uplift rates and plate subduction Harvey M. Kelsey,• David C. Engebretson,'•Clifton E. Mitchell,3 and Robert L.Ticknor'• Abstract. The CoastRanges of theCascadia margin are overriding the subductedJuan de Fuca/Gordaplate. We investigatethe extent to whichthe latitudinal trend in averagetopography of the CoastRanges is a functionof the latitudinalchange in attributesrelated to the subduction process.These attributes include the variableage of the subductedslab that underlies the Coast Rangesand average vertical crustal velocities of thewestern margin of theCoast Ranges for two markedlydifferent time periods, the last 45 yearsand the last 100kyr. Thesevertical crustal velocitiesare computedfrom the resurveying of highwaybench marks and from thepresent elevationof shoreplatforms that have been uplifted in thelate Quaternary, respectively. Topographyof theCoast Ranges is in parta functionof theage and bouyancy of theunderlying subductedplate. This is evidentin the fact that the two highesttopographic elements of the CoastRanges, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subductedoceanic crust. The subductedBlanco Fracture Zone in southernmostOregon is responsiblefor an age discontinuityof subductedcrust under the KlamathMountains. The northernterminus of the topographicallyhigher Klamaths is offsetto the northrelative to the positionof the underlyingBlanco
    [Show full text]
  • Rethinking Turbidite Paleoseismology Along the Cascadia Subduction Zone
    Rethinking turbidite paleoseismology along the Cascadia subduction zone Brian F. Atwater1, Bobb Carson2, Gary B. Griggs3, H. Paul Johnson4, and Marie S. Salmi4 1U.S. Geological Survey at University of Washington, Seattle, Washington 98195-1310, USA 2Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3001, USA 3Earth & Planetary Sciences Department, University of California–Santa Cruz, Santa Cruz, California 95064, USA 4School of Oceanography, University of Washington, Seattle, Washington 98195-7940, USA ABSTRACT A 130ºW 120º A stratigraphic synthesis of dozens of deep-sea cores, most of British them overlooked in recent decades, provides new insights into deep- Southern Columbia limit of 50º Fraser R. sea turbidites as guides to earthquake and tsunami hazards along the ice sheet B Cascadia subduction zone, which extends 1100 km along the Pacific Full-length coast of North America. The synthesis shows greater variability ruptures in Holocene stratigraphy and facies off the Washington coast than Waashingtonshington was recognized a quarter century ago in a confluence test for seismic Fig. triggering of sediment gravity flows. That test compared counts of 3A Holocene turbidites upstream and downstream of a deep-sea channel Columbia R. Partial junction. Similarity in the turbidite counts among seven core sites pro- BFZ Cascadia ruptures vided evidence that turbidity currents from different submarine can- Channel Oregon yons usually reached the junction around the same time, as expected Seaward of widespread seismic triggering. The fuller synthesis, however, shows edge of distinct differences between tributaries, and these differences suggest megathrust California sediment routing for which the confluence test was not designed. The 40ºN synthesis also bears on recent estimates of Cascadia earthquake mag- PACIFIC OCEAN 19 4 10 10 nitudes and recurrence intervals.
    [Show full text]
  • The Gorda Deformation Zone
    The Gorda Deformation Zone Miles Bodmer University of Oregon Goals • Better understand deformation of the Gorda Plate • Look at deformation at a range of depths (crust – lithosphere - asthenosphere) • Highlight some of my research What Makes The Gorda Interesting? • The Gorda is the oceanic plate outboard of southern Cascadia subduction zone • Southern Cascadia is where large megathrust earthquakes are thought to nucleate • 1/3 of the plate configuration that makes up the Mendocino triple junction • Seismically active Modified from Byrnes et al. (2017) Tectonic History • ~10 Ma Pacific plate motion changes • Ridges begin to reorganize • ~5 Ma the Blanco transform develops • ~4 MA Explorer plate breaks off • The Mendocino transform and Gorda ridge fail to reorient Atwater and Stock, 1998 Magnetic Anomalies • Clear bending of anomalies in Gorda • Juan de Fuca shows signs of reorganization • Formation of new segments • Ridge rotation • Pacific side near Gorda does not show similar signs of reorganization • Variable spreading rates Wilson (2002) Gorda Is Stagnating • Gorda motion becomes increasingly independent in the last 3 Ma • At 0.5 Ma the Pacific controls Gorda motion Riddihough (1984) Seismicity Throughout The Plate 1964 – 1980 Star: M 5.7 (Jay Patton http://earthjay.com/) Wilson (1989) Historic seismicity (USGS www.earthquake.usgs.gov) Large Events In The Plate Correlate With Bathymetry Chaytor (http://activetectonics.coas.oregonstate.edu/gorda.htm) Deformation Accommodated By Left-lateral Faults • Bathymetry clearly shows ridges associated with faulting • Ridges appear smoothly deformed, kinked, or undeformed depending on the region • Moment tensors show dominantly left-lateral strike-slip motion with some normal faulting • Faults show clear regions of deformation Chaytor et al.
    [Show full text]
  • Geochemical and Age Constraints on the Formation of the Gorda Escarpment and Mendocino Ridge of the Mendocino Transform Fault in the NE Pacifi C
    Geochemical and age constraints on the formation of the Gorda Escarpment and Mendocino Ridge of the Mendocino transform fault in the NE Pacifi c J.M. Kela† D.S. Stakes‡ Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California 95039, USA R.A. Duncan College of Oceanic and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA ABSTRACT southernmost Gorda Ridge, or on a series of period of the breakup of the Juan de Fuca plate short intratransform spreading-center seg- and development of the San Andreas fault zone, The Mendocino transform fault is an ments during plate reorganization. Thus, the forming the boundary of the transform regime active, dextral strike-slip zone that separates Mendocino transform fault provides a record to the south and subduction regime to the north the Gorda plate from the Pacifi c plate in the of ridge migration, abandonment, and resid- along the North American plate margin. NE Pacifi c Ocean. The compositions of the ual volcanism of the southern Gorda Ridge Prior to this study, the Gorda Escarpment igneous rocks exposed along the southern spreading system from 23 to 11 Ma. section of the Mendocino transform fault margin of the Mendocino transform fault has not been systematically sampled beyond include tholeiitic and alkaline basalts. Major- Keywords: transform faults, geochemistry, dredge samples collected in 1964 by Krause et element, trace-element, and radiometric mid-ocean ridges, NE Pacifi c, 40Ar-39Ar dating. al. (1964). For this study, basement exposures data suggest that the rocks were generated along the entire Gorda Escarpment and eastern through fractionation of different parental INTRODUCTION part of Mendocino Ridge were examined and melts, derived by varying degrees of partial sampled during a series of remotely operated melting from different depths, at or near the Transform faults have an important role in the vehicle (ROV) dives to determine the lithol- intersection of the Mendocino transform dynamics of the global mid-ocean-ridge system.
    [Show full text]
  • Oceanographyra Spocietyhy
    OceThe OfficiaaL MaganZineog of the Oceanographyra Spocietyhy CITATION Rubin, K.H., S.A. Soule, W.W. Chadwick Jr., D.J. Fornari, D.A. Clague, R.W. Embley, E.T. Baker, M.R. Perfit, D.W. Caress, and R.P. Dziak. 2012. Volcanic eruptions in the deep sea. Oceanography 25(1):142–157, http://dx.doi.org/10.5670/oceanog.2012.12. DOI http://dx.doi.org/10.5670/oceanog.2012.12 COPYRIGHT This article has been published inOceanography , Volume 25, Number 1, a quarterly journal of The Oceanography Society. Copyright 2012 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. downLoaded from http://www.tos.org/oceanography OCEANIC SPREADING CENTER PROCESSES | Ridge 2000 PROGRAM RESEARCH Volcanic Eruptions in the Deep Sea BY KEnnETH H. RUBIN, S. ADAM SOULE, WILLIAM W. CHADWICK JR., DANIEL J. FORNARI, DAVID A. CLAGUE, RobERT W. EMBLEY, EDWARD T. BAKER, MICHAEL R. PERFIT, DAVID W. CAREss, AND RobERT P. DZIAK Eruption of molten lapilli, ash, and sulfur-rich fumes at Hades vent, West Mata Volcano. 142 Oceanography | Vol. 25, No. 1 AbsTRACT. Volcanic eruptions are important events in Earth’s cycle of magma eruptions, we also discuss submarine generation and crustal construction. Over durations of hours to years, eruptions eruptions in other settings because produce new deposits of lava and/or fragmentary ejecta, transfer heat and magmatic volcanism is a continuum of conditions volatiles from Earth’s interior to the overlying air or seawater, and significantly and processes across the full range of modify the landscape and perturb local ecosystems.
    [Show full text]
  • Structure and Tectonics of Cascadia Segment. Central Blanco Transform Fault Zone Abstract Approved
    AN ABSTRACT OF THE THESIS OF Annette V. deCharon for the degree of Master of Science in Oceanography presented on October 14. 1988. Title: Structure and Tectonics of Cascadia Segment. Central Blanco Transform Fault Zone Redacted for Privacy Abstract approved: Robert W. Embley Seismic-reflection profiles and SeaBeam bathymetry are used to examine the structural development of the Cascadia Segment, a region of back-tilted blocks flanking a central depression within the Blanco transform fault zone. The depressed position of the Cascadia Segment has caused this area to act as a sediment trap for bottom transported material moving through Cascadia Channel (Duncan, 1968; Griggs & Kulm, 1970). The existence of thick turbidite sequences atop tectonic blocks this an ideal place for seismic-reflection imaging. Escarpment slopes and fault dip angles in Cascadia Segment range between 110 and 31°, which are, on average, shallower than values reported from slow-to-intermediate-rate spreading centers. The perched turbidite sequences are assumed to have originated within a central rifting basin. The lack of unconformable sequences within the back-tilted turbidites indicates that the tectonic blocks of Cascadia Segment have been uplifted in a continuous manner. Thus, a quantitative analysis of tilt of turbidite sequences versus distance from the present central rifting basin, Cascadia Depression, is used to understand the structural development of the Cascadia Segment. The high degree of tilt seen in turbidite sequences proximal to the present central rifting basin is consistent with a model in which turbidite flows are deposited within a basin that is being uplifted and spreading away from a narrow extensional zone.
    [Show full text]
  • Duncanjohnrussell1968
    AN ABSTRACT OF THE THESIS OF John Russell Duncan, Jr. for the Ph. D. (Name of student) (Degree) in Oceanography presented on(.\.çc'\y (Major) (Date) Title: LATE PLEISTOCENE AND POSTGLACIAL SEDIMENTATION AND STRATIGRAPHY OF DEEP-SEA ENVIRONMENTS OFF OREGON Abstract approved Redacted for Privacy LaVerne Duane Kuim Sediments deposited during the last 35, 000 or 40, 000 years BP (Before the Present) were analyzed in 53 piston cores from deep-sea environments within southern Cascadia Basin and the adjoining Blanco Fracture Zone off Oregon. The analyses reveal that mechanisms of sediment transport, proximity to sediment sources, and influx of debris from different sources has influenced the sedimentation regime. However, sedimentation during the time interval under study has been controlled most notably by paleo- climatic conditions, eustatic sea level fluctuations, and submarine physiography. Changes in paleoclimatic conditions can be detected from the relative abundances of radiolarians and planktonic foraminiferans produced in the surface marine waters and subsequently deposited in the deep-sea sediments.Greater productivity of planktonic fora- miniferans compared to radiolarians seems to have occurred during glacial advances, while radiolarians are relatively more abundant during times of glacial retreat.Radiocarbon age determinations verify that an abrupt change in the faunal stratigraphy, from an older planktonic foraminiferan-dominant interval to a younger radio- larian-dominant interval, occurred about 12, 500 years BP. The stratigraphic position of the abrupt change is believed to be the boundary between late Pleistocene and postglacial deep-sea sedimen- tation. The overall marine sedimentation rate in the late Pleistocene interval is approximately six times higher than that of postglacial time.In addition, proportionately less coarse sediment reached the deep-sea area during the postglacial interval.
    [Show full text]
  • Tectonic Setting Seismic Hazard Epicentral Region
    e g n a R e d a JUAN c U.S. DEPARTMENT OF THE INTERIOR EARTHQUAKE SUMMARY MAP XXX U.S. GEOLOGICAL SURVEY s Prepared in DE cooperation with the Global a Seismographic FUCA Network M6.5 Offshore NortheC rn California Earthquake of 10 January 2010 PLATE Tectonic Setting 128° 126° 124° 122° 120° Juan de Fuca Plate Ferndale, California Oregon 10 January 2010 0:27:38 UTC 9 January 2010 4:27:38 PM Local Time Epicentral Region 124°45' 124°30' 124°15' 40.645° N., 124.763° W. Depth 21.7 km Mw = 6.5 (USGS) Samoa 43 km (E2u7 rmekilaes) W (280°) from Ferndale, CA 42° 42° 48 km (30 miles) W (259°) from Humboldt Hill, CA 1991 51 km (32 miles) WSW (255°) from Bayview, CA 53 km (33 miles) WSW (252°) from Eureka, CA . 40°45' 40°45' Fields Landing Gorda Plate 2005 NORTH AMERICA PLATE 1980 EXPLANATION Main Shock Loleta 1922 Douglas M 2.3 - 4.4 Fortuna 1923 City 1994 1992 Earthquake Magnitude Ferndale Rohnerville 5.50 - 5.99 Nevada EPICENTRAL REGION 6.00 - 6.99 1890 40° 40° 7.00 - 7.99 40°30' Rio Dell 40°30' Scotia California 8.00 - 8.99 Reno 9.00 - 9.99 1992 1987 Carson Earthquake Depth 1992 PACIFIC PLATE City 1992 0 - 69 70 - 299 S a Citrus n Heights 300 - 700 Petrolia Arden A Town Sacramento n Sacramento US Quaternary Faults d Santa r e Rosa Age of Last Motion RELATIVE PLATE MOTIONS a s 40°15' 40°15' <150 F 124°45' 124°30' 124°15' In the area of this earthquake, the Pacific pate a Vallejo 0 10 20 30 38° moves northward with respect to the North u Richmond 38° <15,000 l Stockton t Concord Km America plate at about 40 mm/yr, and the Oakland Berkeley southern part of the Juan de Fuca Plate (Gorda <130,000 1906 Oakland Plate) is being subucted beneath the North Daly San Hayward Modesto <750,000 America plate at about 250 mm/yr.
    [Show full text]