Portfolio of Ameloblasts

Total Page:16

File Type:pdf, Size:1020Kb

Portfolio of Ameloblasts Sanjay Madhavan /J. Pharm. Sci. & Res. Vol. 6(12), 2014, 392-395 Portfolio of Ameloblasts Sanjay Madhavan Student, Saveetha Dental College Chennai Abstract-Ameloblasts are cells present only during tooth development that deposit tooth enamel, which is the hard outermost layer of the tooth forming the surface of the crown. In the developing tooth the functioning ameloblast is a tall, narrow cell, with its base attached to the cells of the stratum intermedium. The nucleus is located basally and basal cytoplasm contains abundant mitochondria. The supranuclear cytoplasm contains a large, active Golgi complex and abundant rough endoplasmic reticulum, together with microtubules, which are predominantly longitudinally arranged, and secretory vacuoles which become larger and more numerous near the upper pole. At the upper pole the cell elongates into a single large Tomes’ process, and forms a fringe of smaller processes around its neck. The Tomes’ process contains numerous microtubules and large numbers of secretory vacuoles. The rough endoplasmic reticulum synthesizes various proteins and glycoproteins (including amelogenin and enamelin), which form the organic matrix of enamel (pre-enamel) and are packaged by the Golgi complex into secretory vacuoles. These then move into the Tomes’ process and the small neck processes, discharging their contents on to the surface. Mineralization of the matrix proteins by hydroxyapatite occurs almost instantaneously, producing small enamel crystallites and, with progressive mineralization, the enamel rods or prisms. Ameloblasts are derived from oral epithelium tissue The outer dental epithelium consisted of short flattened of ectodermal origin. Their differentiation from cells arranged as a multiple layer of cells on the labial preameloblasts is a result of signalling from surface of the apical loop. The cells contained a small, oval the ectomesenchymal cells of the dental papilla. The nucleus which was oriented perpendicular to the surface of ameloblasts will only become fully functional after the first the odontogenic organ. Outside the odontogenic organ were layer of dentin has been formed by odontoblasts. The cells cells and extracellular connective tissue elements. Near the are part of the reduced enamel epithelium after enamel outer dental epithelium several layers of fibroblast-like maturation and then are subsequently lost during tooth cells formed an investing sheath similar to the dental eruption[1,2] sac.The undifferentiated mesenchymal cells of the pulp facing the ameloblasts in this region were heterogeneous in ZONES OF AMELOGENESIS appearance. (1) Presecretory Zone (a) Region of Ameloblasts facing pulp,(ii) anterior portion The entire layer of ameloblasts from the point of greatest (odontogenic organ). convexity of the apical loop until a discrete layer of enamel There was an increased regularity of the junction between was present, was classified into various regions ameloblasts and provisional stratum intermedium. The cells prior to the zone of enamel secretion. of the provisional stratum intermedium were a mixture of (a) Region of Ameloblasts facing pulp,(i) posterior portion squamous and cuboidal shapes, but the latter, containing (odontogenic organ). large irregularly shaped nuclei, predominated. Outside the The apex of the ameloblast faced the the undifferentiated outer dental epithelium, small capillaries came into closer cells of the pulp and the base was adjacent to equally association with the odontogenic organ and disrupted the undifferentiated cells of the provisional stratum investing appearance previously shown by the cells of the intermedium. The stellate reticulum and outer dental dental sac. In the pulp, three changes were noted. epithelium were also undifferentiated. The ameloblasts at First, the cells adjacent to the ameloblasts became this stage were organized into an apparently stratified low progressively organized into cuboidal, then low columnar columnar epithelium with two or three staggered levels of and finally, in the region of ameloblasts facing dentin, into nuclei. The nuclei were large, oval and elongated in the a single layer of differentiated columnar odontoblasts. long axis of the cell. The junctions with the pulp at its apex Second, cells lying deeper in the pulp showed evidence of and the provisional stratum intermedium at its base were organization into two or three layers of flattened cells wavy and irregular. A basement membrane separated the forming a subodontoblastic layer Lastly, large, thin walled ameloblasts from the pulp. The term "provisional stratum capillaries came into close association with the developing intermedium" was applied to the layer of cells lying against subodontoblastic layer . the base of the ameloblasts. These cells were "provisional" because, first, they were continuous with the well- (b) Region of ameloblasts facing dentin organized layer of stratum intermedium seen further It was in this region that the ameloblasts developed all the incisally, and second, because it was often unclear as to morphological features of secretory ameloblasts except for whether a cell in this layer belonged to the ameloblasts, the Tomes, processes. At the apical limit of the region the stellate reticulum or to stratum intermedium itself. appearance of the ameloblasts was more regular than in the previous region, and by the end of the apical one-third of 392 Sanjay Madhavan /J. Pharm. Sci. & Res. Vol. 6(12), 2014, 392-395 this region, mitotic figures were no longer seen in ameloblasts. (3) Maturation Zone. Half-way along this region the cells began to elongate and This was a very long zone which occupied the remaining the nucleus as well as the mitochondria became located in incisal length of the enamel organ of the tooth. Along the the base. An apical cell web with obvious terminal bars length of this zone the amount of dentin increased became evident. At the incisal limit of the region the continually until the pulp became partially occluded. The ameloblasts were fully functional in secreting the initial odontoblasts continued to form a stratified layer and began layer of enamel. The oval nuclei of these cells remained to show signs of regression. The thickness of enamel perpendicular to the layer of mantle dentin and were seen to remained constant up to the point where it was lost by lie at two staggered levels.Mitotic figures in this group of decalcification. The enamel matrix at the conclusion of cells were seen one-third of the way into the region; after outer enamel secretion was homogeneous in staining. this they no longer showed division.. The thickness of the Gradually, rod profiles began to appear and then became stellate reticulum was reduced to one cell layer at the distinct in the region of nearly mature enamel [4] and incisal limit of the region. In the pulp, the previously finally faded rapidly in staining intensity and disappeared differentiated odontoblasts became angled with respect to completely as it became mature enamel. the ameloblast-dentinal junction such that the cell sloped (a) Region of postsecretory transition. toward the apex. Thin wall capillaries moved closer to the For a short distance incisally, immediately after outer odontoblasts as the subodontoblastic layer was lost. The enamel secretion, the ameloblasts remained tall columnar, predentin appeared as a coarse matrix containing bundles but changed their inclination and came to lie perpendicular of fibrils resembling von Korff's fibres and gradually to the surface of the enamel. The mitochondria remained in thickened in amount and became more homogeneous near the infranuclear zone. At this stage, the stratum the incisal limit of the region. intermedium gradually began to lose its organization as a distinct layer. Beyond this short region, the height of the (2) Secretory Zone ameloblast decreased rapidly until the cell was about half (a) Region of inner enamel secretion. its former height. Along with this shrinkage, the base of the The point of initial enamel secretion was marked by the ameloblast and the cells of the papillary layer contained presence of large spherical dark staining bodies between intracellular dense debris[5]. In addition, cells resembling the apices of adjacent ameloblasts. Gradually, the macrophages were occasionally seen in the papillary interdigitating portions of Tomes, processes were layer[6]. delineated by the prongs of enamel matrix and took on the (b) Region of maturation proper. characteristics of inner enamel secretion [3].The After the region of postsecretory transition, the ameloblasts arrangement is described as the "picket-fence" and consists were modified into cells of early maturation in which of processes cut at various angles as they course into the changes were evident at the base and apex of the cell. enamel. The nucleus of the ameloblast appeared to be Foamy vacuolization appeared at the apex of the cell and slightly inclined incisally relative to a perpendicular line the mitochondria began to migrate towards this region. The drawn to the dentino-enamel junction. In the stratum nucleus remained basally located, but the base of the cell intermedium the bilayered and irregular organization of the became irregular. This was caused by the exaggerated basal cells disappeared, and now contained a single continuous bulge and by the large intercellular spaces between the layer of cuboidal cells with large spherical nuclei. The bases of adjacent ameloblasts. The papillary layer increased stellate reticulum and outer dental
Recommended publications
  • Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes
    Cells and Materials Volume 3 Number 2 Article 8 1993 Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes H. Lesot Institut de Biologie Médicale C. Begue-Kirn Institut de Biologie Médicale M. D. Kubler Institut de Biologie Médicale J. M. Meyer Institut de Biologie Médicale A. J. Smith Dental School, Birmingham See next page for additional authors Follow this and additional works at: https://digitalcommons.usu.edu/cellsandmaterials Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Lesot, H.; Begue-Kirn, C.; Kubler, M. D.; Meyer, J. M.; Smith, A. J.; Cassidy, N.; and Ruch, J. V. (1993) "Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes," Cells and Materials: Vol. 3 : No. 2 , Article 8. Available at: https://digitalcommons.usu.edu/cellsandmaterials/vol3/iss2/8 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Cells and Materials by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes Authors H. Lesot, C. Begue-Kirn, M. D. Kubler, J. M. Meyer, A. J. Smith, N. Cassidy, and J. V. Ruch This article is available in Cells and Materials: https://digitalcommons.usu.edu/cellsandmaterials/vol3/iss2/8 Cells and Materials, Vol. 3, No. 2, 1993 (Pages201-217) 1051-6794/93$5. 00 +. 00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA EXPERIMENTAL INDUCTION OF ODONTOBLAST DIFFERENTIATION AND STIMULATION DURING REPARATIVE PROCESSES 1 1 1 2 2 1 H.
    [Show full text]
  • Journal of Dental Research
    Journal of Dental Research http://jdr.sagepub.com/ Cell Differentiation and Matrix Organization in Engineered Teeth A. Nait Lechguer, M.L. Couble, N. Labert, S. Kuchler-Bopp, L. Keller, H. Magloire, F. Bleicher and H. Lesot J DENT RES 2011 90: 583 originally published online 4 February 2011 DOI: 10.1177/0022034510391796 The online version of this article can be found at: http://jdr.sagepub.com/content/90/5/583 Published by: http://www.sagepublications.com On behalf of: International and American Associations for Dental Research Additional services and information for Journal of Dental Research can be found at: Email Alerts: http://jdr.sagepub.com/cgi/alerts Subscriptions: http://jdr.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Apr 13, 2011 OnlineFirst Version of Record - Feb 4, 2011 What is This? Downloaded from jdr.sagepub.com at Service Commun de la Documentation Université de Strasbourg on September 6, 2013 For personal use only. No other uses without permission. © 2011 International & American Associations for Dental Research RESEARCH REPORTS Biomaterials & Bioengineering A. Nait Lechguer1,2, M.L. Couble3,4, N. Labert3,4, S. Kuchler-Bopp1,2, Cell Differentiation and L. Keller1,2, H. Magloire3,4, F. Bleicher3,4, Matrix Organization in and H. Lesot1,2* Engineered Teeth 1INSERM UMR 977, Faculté de Médecine, 11, rue Humann, F-67085 Strasbourg, France; 2Dental School, University of Strasbourg, Strasbourg, France; 3Université de Lyon, Faculté d’Odontologie, Rue Guillaume Paradin, F-69372 Lyon Cedex 08, France; and 4IGFL, CNRS UMR 5242, Ecole Normale Supérieure, 46 Allée d’Italie, 69364, Lyon Cedex 08, France; *corresponding author, [email protected] J Dent Res 90(5):583-589, 2011 ABSTRACT InTRODuCTIOn Embryonic dental cells were used to check a series of criteria to be achieved for tooth engineering.
    [Show full text]
  • Tooth Enamel and Its Dynamic Protein Matrix
    International Journal of Molecular Sciences Review Tooth Enamel and Its Dynamic Protein Matrix Ana Gil-Bona 1,2,* and Felicitas B. Bidlack 1,2,* 1 The Forsyth Institute, Cambridge, MA 02142, USA 2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA * Correspondence: [email protected] (A.G.-B.); [email protected] (F.B.B.) Received: 26 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
    [Show full text]
  • Amelogenic Transcriptome Profiling in Ameloblast-Like Cells Derived From
    www.nature.com/scientificreports OPEN Amelogenic transcriptome profling in ameloblast-like cells derived from adult gingival epithelial cells Received: 23 May 2018 Sun-Yi Hyun1, Seyoung Mun1,2, Kyung-Jung Kang1, Jong-Chan Lim1, Shin-Young Kim1, Accepted: 29 January 2019 Kyudong Han1,2 & Young-Joo Jang 1 Published: xx xx xxxx Dental enamel is the highly mineralized tissue covering the tooth surface and is formed by ameloblasts. Ameloblasts have been known to be impossible to detect in adult tooth because they are shed by apoptosis during enamel maturation and tooth eruption. Owing to these, little was known about appropriate cell surface markers to isolate ameloblast-like cells in tissues. To overcome these problems, epithelial cells were selectively cultivated from the gingival tissues and used as a stem cell source for ameloblastic diferentiation. When gingival epithelial cells were treated with a specifed concentration of BMP2, BMP4, and TGFβ-1, the expression of ameloblast-specifc markers was increased, and both the MAPK and Smad signaling pathways were activated. Gingival epithelial cells diferentiated into ameloblast-like cells through epithelial-mesenchymal transition. By RNA-Seq analysis, we reported 20 ameloblast-specifc genes associated with cell surface, cell adhesion, and extracellular matrix function. These cell surface markers might be useful for the detection and isolation of ameloblast-like cells from dental tissues. Dentin, dental pulp, periodontal ligament, and dental enamel are developed by reciprocal interactions between dental epithelium and ectomesenchyme. Neural crest cell-derived ectomesenchyme diferentiates into odonto- blasts, periodontal ligament progenitors, cementoblasts, as well as various fibroblasts. On the other hand, enamel-forming ameloblasts diferentiate from epithelial cells originating from oral ectoderm.
    [Show full text]
  • Oral Histology
    Oral Histology Lec-6 Dr. Nada AL.Ghaban Amelogenesis (Enamel formation) Amelogenesis begins at cusp tips and the incisal edges of the E.organ of the tooth germ and then it separated down the cusp slopes until all the cells of inner enamel epithelium(IEE) differentiate into ameloblasts. Amelogenesis begins shortly after dentinogenesis at the advanced or late bell stage. The delicate basement membrane between IEE and odontoblasts will disintegrate after dentinogenesis and before amelogenesis. During the early stages of tooth development, the IEE cells proliferate and contribute to the growth of the developing tooth. Ameloblasts fully differentiate at the growth centers located at cusp tips of the forming crown and this differentiation pattern spreads towards the cervical loop (the future cervical line in a fully formed tooth). However, once the IEE has fully differentiated into ameloblasts there is no more proliferation as these highly differentiated cells do not divide again. Amelogenesis is a complex process, it involves 2 stages which are: 1- E. matrix deposition. 2- Maturation or mineralization of the E. matrix. E. matrix deposition: It means the secretion of the E. matrix by ameloblasts. The freshly secreted E. matrix contain 30% minerals as hydroxy apatite crystals and 70% waters and E. proteins which include 90% amelogenine protein and 10% non-amelogenins protein( enameline and ameloblastin). These E. proteins which are secreted by ameloblasts are responsible for creating and 1 maintaining an extracellular environment favorable to mineral deposition. When the first layer of E. is laid down, the ameloblasts will begins to retreat from DEJ towards E. surface and begins to secrete the next layer of E.
    [Show full text]
  • Ameloblastic Fibro-Odontoma of the Maxilla: a Case Report Belal Alani, Muraja Aldoori, Amar Adham, Farag Ismail
    694 Case report Ameloblastic fibro-odontoma of the maxilla: a case report Belal Alani, Muraja Aldoori, Amar Adham, Farag Ismail HMC Hamad Medical Corporation, Doha, Qatar The ameloblastic fibro-odontoma is a rare benign odontogenic lesion defined as a Correspondence to Dr. Belal Alani, HMC tumor with the general features of ameloblastic fibroma but that also contains Hamad Medical Corporation, Doha, Qatar, enamel and dentin. In this article the authors describe a case of a young male PO Box 3050; patient with ameloblastic fibro-odontoma of the maxilla and the management of e-mail: [email protected] such condition. Received 8 April 2017 Accepted 3 June 2017 Keywords: The Egyptian Journal of Otolaryngology ameloblastic fibro-odontoma, ameloblastic, fibromaodontogenic tumor 2017, 33:694–697 Egypt J Otolaryngol 33:694–697 © 2017 The Egyptian Journal of Otolaryngology 1012-5574 Figure 1 Introduction The ameloblastic fibro-odontoma (AFO) is a rare benign odontogenic lesion defined as a tumor with the general features of ameloblastic fibroma but that also contains enamel and dentin [1]. According the recent WHO classification of odontogenic tumors published in 2005, AFO belongs to the group of lesions with odontogenic epithelium with odontogenic ectomesenchyme, with or without hard tissue formation [1]. AFO is normally found in young patients, with no significant sex predilection. The incidence of AFO is between 1 and 3% in odontogenic tumors [2,3]. Facial deformity and intraoral lesion with impingement on the left nostril. Clinically, it presents as a painless swelling of the affected area, usually the posterior portion of the Figure 2 maxilla or mandible.
    [Show full text]
  • Factors Associated with the Development of Dental Defects Acquired in the Extrauterine Environment
    ORIGINAL RESEARCH Social/Community Dentistry Factors associated with the development of dental defects acquired in the extrauterine environment Judith Rafaelle Oliveira PINHO(a) Abstract: This study aimed to analyze the association of Erika Barbara Abreu Fonseca sociodemographic, child health, healthcare service, and access indicators THOMAZ(a) with developmental defects of enamel (DDE) acquired outside the Cecília Cláudia Costa RIBEIRO(b) uterus, based on gestational factors. A cohort of births was carried out, Cláudia Maria Coelho ALVES(b) and 982 children aged 12 to 30 months were examined. A total of 1,500 th Antônio Augusto Moura da SILVA(a) women were followed up as of the 5 month of gestation, and the child’s gestational age was evaluated at follow-up. The clinical examination was performed as recommended by the World Health Organization, (a) Universidade Federal do Maranhão – UFMA, Public Health Department, and defects were classified using the modified DDE index. Six models Pos-Graduate Program in Public Health, were considered: presence of DDE (Model 1) or opacities (Model São Luís, Maranhão, Brazil. 4), number of teeth with DDE (Model 2) or opacities (Model 5), and (b) Universidade Federal do Maranhão incidence rate of DDE (Model 3) or opacities (Model 6). Associations – UFMA, Department of Dentistry II, were estimated by relative risk (RR) in Poisson regression models. In the Pos-Graduate Program in Public Health, São Luís, Maranhão, Brazil. adjusted analysis, the mother’s lowest education level was associated with the highest occurrence of DDE in Models 1 (RR = 26.43; p = 0.002), 2 (RR = 9.70; p = 0.009), and 3 (RR = 5.63; p = 0.047).
    [Show full text]
  • Developmental Biology of Cementum
    Int. J. Dev. Biol. 45: 695-706 (2001) Review Developmental Biology of Cementum THOMAS G.H. DIEKWISCH* Allan G. Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, USA CONTENTS Origins of cementum - a scientific "whodunit" ........................................................................695 Loss of ameloblast continuity and insertion of mesenchymal cells from the dental follicle proper ................................................................................................697 Initial cementum matrix deposition by mesenchymal cells in proximity to non-secretory epithelial cells ...................................................................................699 Cementogenesis at the tooth cervix and at the cemento-enamel junction .............................700 Early removal of HERS from the root surface in humans as seen in the Gottlieb collection ..............................................................................................701 Role of amelogenins in cementogenesis ................................................................................702 Possible mechanism of cementoblast induction .....................................................................704 Summary ................................................................................................................................704 KEY WORDS: Cementum, Hertwig’s epithelial root sheath, Gottlieb, amelogenin, periodontium Tooth cementum is a bone-like mineralized tissue secreted by Origins of cementum - a scientific
    [Show full text]
  • Pages 393-402) DOI: 10.22203/Ecm.V020a32 Formation/Regeneration of Junctional ISSN Epithelium1473-2262
    CEuropean Nishio et Cells al. and Materials Vol. 20 2010 (pages 393-402) DOI: 10.22203/eCM.v020a32 Formation/regeneration of junctional ISSN epithelium1473-2262 EXPRESSION PATTERN OF ODONTOGENIC AMELOBLAST-ASSOCIATED AND AMELOTIN DURING FORMATION AND REGENERATION OF THE JUNCTIONAL EPITHELIUM Clarice Nishio1, Rima Wazen1, Shingo Kuroda1, Pierre Moffatt2, and Antonio Nanci1* 1Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada 2Shriners Hospital for Children, Montréal, Québec, Canada Abstract Introduction The junctional epithelium (JE) adheres to the tooth surface, The junctional epithelium (JE) is a specialized epithelial and seals off periodontal tissues from the oral environment. structure that seals off the supporting tissues of the tooth This incompletely differentiated epithelium is formed from the aggressive oral environment, and represents the initially by the fusion of the reduced enamel organ with first line of defense against periodontal diseases (Takata the oral epithelium (OE). Two proteins, odontogenic et al., 1986; Schroeder and Listgarten, 1997; Schroeder ameloblast-associated (ODAM) and amelotin (AMTN), and Listgarten, 2003). This stratified squamous, non- have been identified in the JE. The objective of this study keratinizing epithelium is considered to be incompletely was to evaluate their expression pattern during formation differentiated, producing components for tooth attachment and regeneration of the JE. Cytokeratin 14 was used as a instead of progressing along a keratinization pathway differentiation marker for oral epithelial cells, and Ki67 (Schroeder and Listgarten, 2003; Shimono et al., 2003). for cell proliferation. Immunohistochemistry was carried The attachment of the gingiva to the enamel surface is out on erupting rat molars, and in regenerating JE following provided by a structural complex called the epithelial gingivectomy.
    [Show full text]
  • AMELOGENSIS Mean the Process of Production & Development (Mineralization) of Enamel, and Begins When the Crown Is Forming During the Bell Stage of Tooth Development
    Lec. 6 Dr. Ali H. Murad AMELOGENSIS Mean the process of production & development (mineralization) of enamel, and begins when the crown is forming during the bell stage of tooth development. A- Life cycle of the ameloblast: The life span of the cells of the inner enamel epithelium can be divided into six stages. 1-morphogenic stage: the inner enamel epithelium interacts with the adjacent mesenchymal cells of dental papillae, determining the shape of the dentinioenamel junction & the crown. During this morphogenic stage the cells are short columnar, with large oval nuclei. Terminal bars appear represent points of close contact between cells. The inner enamel epithelium is separated from the C.T of dental papillae by basal lamina. 2-organizing stage: the inner enamel epithelium cells become longer & come into close contact with C.T. cells of the pulp which differentiate into odontoblasts. The 1st appearance of dentin is a critical phase in the life cycle of the inner enamel epithelium as it’s in contact with the C.T. of dental papillae; it receives nutrient material from the blood vessels of this tissue. When dentin forms, it cuts off the ameloblasts from their original source of nourishment, then they are supplied by the capillaries that surround & penetrate the outer enamel epithelium. 3-formative stage: the ameloblasts enter their formative stage after the 1st layer of dentin has been formed. During formation of the enamel matrix the ameloblasts retain the same length & arrangement. The earliest change is the development of cell process on the ameloblast surface, which penetrate the predentin & known as Tome’s processes.
    [Show full text]
  • Ameloblastin Expression in Rat Incisors and Human Tooth Germs
    I Int. .I. Un. iii..!. ~n: 11~1-1150 (1996) 1141 I Origillal Arlid,' I I Ameloblastin expression in rat incisors and I human tooth germs I SUK KEUN LEE', PAUL H. KREBSBACH', YUTAKA MATSUKI", ANTONIO NANCI2, I KENNETH M. YAMADA' and YOSHIHIKO YAMADA" I 'Laboratory of Developmental Biology, Nations/Institute of Dental Research, National Institutes of Health. Bethesda, MD. USA and lDepartment of Stomatology, Facultr of Dentistry, Universite de Montreal. Montreal, Canada I ABSTRACT We recently identified ameloblastin as an ameloblast~specific gene product from a rat incisor cDNA library (Krebsbach et a/., J. B;o/. Chern. 271: 4431-4435, 1996). Here we report the I developmental pattern of expression of ameloblastin in rat incisors and human tooth germs as visualized by in situ hybridization and immunochemistry. Compared to the expression of amelogenin, I the major ameloblast product, ameloblastin mRNA was more widely expressed in ameloblasts from the presecretory to the late maturation stage of development, Ameloblastin mRNA was first observed in the juxtanuclear cytoplasm of pre secretory stage ameloblasts, gradually increased in the distal I cytoplasm of secretory stage ameloblasts and was found throughout the cytoplasm of early to late maturation stage ameloblasts. The immunostaining of ameloblastin, using a monospecific antibody I raised against a recombinant protein, showed intense reactivity in Tomes' processes of secretory stage ameloblasts and surrounding enamel. The immunoreaction was concentrated in the juxtanuclear I cytoplasm
    [Show full text]
  • Ameloblast Differentiation and Function: Exploring the Effects of Microrna, Fluoride, and Iron
    Ameloblast Differentiation and Function: Exploring the Effects of microRNA, Fluoride, and Iron by Michael Huan Le DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Oral and Craniofacial Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Copyright by Michael Huan Le 2016 ii Dedication and acknowledgements This project would not have been possible without the mentorship of my advisor, Dr. Pamela Den Besten, who has provided me with significant advice, feedback, and wisdom in the scientist portion of my clinician scientist training. I have been able to do many things that I would have otherwise thought I was not capable of doing during my PhD training at UCSF. I would also like to thank Dr. Yukiko Nakano, whose guidance in laboratory techniques, data analysis, subject matter expertise, and limitless patience were crucial to obtaining the results I report in this dissertation. I would also like to thank Drs. Li Zhu, and Yan Zhang, and all those I worked with in the Den Besten laboratory for their support and encouragement over the past five years. I would also like to thank Drs. Wu Li, Noelle L’Etoile, and Stefan Habelitz for being a part of my dissertation committee, providing an additional source of insight, encouragement, and support. I would also like to thank my present and past peers in the both Oral and Craniofacial Sciences PhD program who have provided me with numerous opportunities to take a (brief) break from research and enjoy the many of little things that life offers daily, while making many incredible memories in the process.
    [Show full text]