Effects of Sterol Structure on Insect Herbivore

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Sterol Structure on Insect Herbivore EFFECTS OF STEROL STRUCTURE ON INSECT HERBIVORE PHYSIOLOGY, BIOCHEMISTRY AND MOLECULAR BIOLOGY A Dissertation by XIANGFENG JING Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2011 Major Subject: Entomology Effects of Sterol Structure on Insect Herbivore Physiology, Biochemistry and Molecular Biology Copyright 2011 Xiangfeng Jing EFFECTS OF STEROL STRUCTURE ON INSECT HERBIVORE PHYSIOLOGY, BIOCHEMISTRY AND MOLECULAR BIOLOGY A Dissertation by XIANGFENG JING Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Spencer T. Behmer Committee Members, Frederick T. Davies Micky D. Eubanks Keyan Zhu-Salzman Head of Department, David Ragsdale December 2011 Major Subject: Entomology iii ABSTRACT Effects of Sterol Structure on Insect Herbivore Physiology, Biochemistry and Molecular Biology. (December 2011) Xiangfeng Jing, B.A., Shandong Agricultural University; M.S., Huazhong Agricultural University Chair of Advisory Committee: Dr. Spencer T. Behmer Sterols serve two important biological functions in animals - they act as cellular membrane components, and as the precursor to steroid hormones. Insects require a dietary source of sterol because they cannot synthesize sterols de novo . Cholesterol is the most common sterol in plant-feeding insects, but because plants contain very little cholesterol, plant-feeding insects must convert plant sterols into cholesterol. In this dissertation I investigate the effect of common and novel plant sterols and steroids found in a transgenic tobacco line on several caterpillar species. I also explore the metabolism of these sterols and steroids, and use a microarray approach to identify genes involved in sterol use and metabolism in plant-feeding insects. I also study cholesterol homeostasis using a grasshopper species. Modified tobacco plants containing a novel sterol profile negatively affected performance of three different caterpillar species, especially in the second generation. Insects reared on modified plants contained less total sterols and cholesterol than those on control plants having a normal sterol profile. Similar results were found using iv artificial diets containing atypical steroids, e.g., cholestanol and cholestan-3-one, identified in the tobacco plants that were fed to my experimental caterpillars. More importantly, the sterol/steroid ratio, but not their absolute amount in the diets, determined the negative effects. Caterpillar species could convert stigmasterol, a common plant sterol, into cholesterol. They could also convert cholestan-3-one into cholestanol and epicholestanol, although this ability varied among different species. A microarray study that focused on gene expression in midgut tissue indicated that stigmasterol, cholestanol and cholestan-3-one could induce different gene expression level, and that cholestan-3- one caused the largest pool of genes to be regulated. The genes possibly involved in the metabolism of stigmasterol and cholestan-3-one were reported. These findings are important in directing further research on the potential application of plant sterol modification to control pests in agricultural systems. Insect herbivores could behaviorally regulate the intake of several nutrients, but they could not regulate their sterol intake. They did, however, practice cholesterol homeostasis, by post-ingestively regulating tissue sterol levels, even when feeding on diets with high cholesterol content. Collectively, the results from this dissertation provide unique insight into cholesterol regulation, which is difficult to achieve in mammals that are capable of synthesizing their own sterols. v ACKNOWLEDGEMENTS I heartily thank my advisor, Spencer T. Behmer, for his assistance, guidance and patience during my research. Without his support in various aspects, I would not have been able to finish this dissertation. His philosophy of doing research and insight in science will influence me in my future career. I sincerely thank Robert J. Grebenok at Canisius College, NY, for his assistance in my research and for the use of his lab. I sincerely thank Keyan Zhu-Salzman, committee member, who allowed me to use her lab resources. I also sincerely thank Heiko Vogel at the Max-Planck Institute of Chemical Ecology in Jena, Germany, for his assistance with the molecular research conducted in this disseration. Each gave me perceptive guidance in my research and important suggestions from experimental design to manuscript writing. I also sincerely thank Micky D. Eubanks and Frederick T. Davies, committee members, for the improvement of my knowledge in insect ecology, especially insect- plant interaction, and plant physiology which are important for my knowledge as a researcher. Travis Gates provided excellent technical assistance for my research, and the advice and discussion from the members of the Behmer lab, including Steve Cook, Paul Lenhart and Marion Le Gall, were valuable in developing my research. Joshua Jones gave me important advice in my English writing. Finally, I would like to thank my family members. Their love and encouragement made it possible to finish this dissertation. vi TABLE OF CONTENTS Page ABSTRACT .............................................................................................................. iii ACKNOWLEDGEMENTS ...................................................................................... v TABLE OF CONTENTS .......................................................................................... vi LIST OF FIGURES ................................................................................................... viii LIST OF TABLES .................................................................................................... xi CHAPTER I INTRODUCTION ................................................................................ 1 II PLANT STEROLS AND HOST PLANT SUITABILITY FOR GENERALIST AND SPECIALIST CATERPILLARS ...................... 7 2.1 Introduction .............................................................................. 7 2.2 Materials and Methods ............................................................. 10 2.3 Results ...................................................................................... 17 2.4 Discussion ................................................................................ 24 III BALANCE MATTERS: HOW THE RATIO OF DIETARY STEROIDS AFFECTS CATERPILLAR DEVELOPMENT, GROWTH AND REPRODUCTION ................................................... 32 3.1 Introduction .............................................................................. 32 3.2 Materials and Methods ............................................................. 34 3.3 Results ...................................................................................... 42 3.4 Discussion ................................................................................ 60 vii CHAPTER Page IV STEROL AND STEROID METABOLISM PLUS ABSORPTION IN GENERALIST AND SPECIALIST CATERPILLARS ......................................................... 68 4.1 Introduction .............................................................................. 68 4.2 Materials and Methods ............................................................. 70 4.3 Results ...................................................................................... 78 4.4 Discussion ................................................................................ 88 V DIETARY STEROLS/STEROIDS AND THE GENERALIST CATERPILLAR HELICOVERPA ZEA : PHYSIOLOGY, BIOCHEMISTRY AND DIFFERENTIAL GENE EXPRESSION IN THE MIDGUT ....................................................... 98 5.1 Introduction .............................................................................. 98 5.2 Materials and Methods ............................................................. 100 5.3 Results ...................................................................................... 107 5.4 Discussion ................................................................................ 112 VI CHOLESTEROL HOMEOSTASIS IN A GENERALIST GRASSHOPPER, SCHISTOCERCA AMERICANA ............................ 120 6.1 Introduction .............................................................................. 120 6.2 Materials and Methods ............................................................. 122 6.3 Results ...................................................................................... 127 6.4 Discussion ................................................................................ 135 VII CONCLUSION .................................................................................... 140 REFERENCES .......................................................................................................... 143 APPENDIX ............................................................................................................... 154 VITA ......................................................................................................................... 156 viii LIST OF FIGURES FIGURE Page 1.1 Cholesterol and other sterols/steroids of interest ....................................... 2 2.1 Cholesterol and 5 typical sterols/steroids in our modified plants .............. 8 2.2 Larval and pupal performance of H. virescens , S. exigua , and M. sexta on control and modified
Recommended publications
  • Bacterial Cell Membrane
    BACTERIAL CELL MEMBRANE Dr. Rakesh Sharda Department of Veterinary Microbiology NDVSU College of Veterinary Sc. & A.H., MHOW CYTOPLASMIC MEMBRANE ➢The cytoplasmic membrane, also called a cell membrane or plasma membrane, is about 7 nanometers (nm; 1/1,000,000,000 m) thick. ➢It lies internal to the cell wall and encloses the cytoplasm of the bacterium. ➢It is the most dynamic structure of a prokaryotic cell. Structure of cell membrane ➢The structure of bacterial plasma membrane is that of unit membrane, i.e., a fluid phospholipid bilayer, composed of phospholipids (40%) and peripheral and integral proteins (60%) molecules. ➢The phospholipids of bacterial cell membranes do not contain sterols as in eukaryotes, but instead consist of saturated or monounsaturated fatty acids (rarely, polyunsaturated fatty acids). ➢Many bacteria contain sterol-like molecules called hopanoids. ➢The hopanoids most likely stabilize the bacterial cytoplasmic membrane. ➢The phospholipids are amphoteric molecules with a polar hydrophilic glycerol "head" attached via an ester bond to two non-polar hydrophobic fatty acid tails. ➢The phospholipid bilayer is arranged such that the polar ends of the molecules form the outermost and innermost surface of the membrane while the non-polar ends form the center of the membrane Fluid mosaic model ➢The plasma membrane contains proteins, sugars, and other lipids in addition to the phospholipids. ➢The model that describes the arrangement of these substances in lipid bilayer is called the fluid mosaic model ➢Dispersed within the bilayer are various structural and enzymatic proteins, which carry out most membrane functions. ➢Some membrane proteins are located and function on one side or another of the membrane (peripheral proteins).
    [Show full text]
  • De Novo Sequencing and Analysis of the American Ginseng Root
    Sun et al. BMC Genomics 2010, 11:262 http://www.biomedcentral.com/1471-2164/11/262 RESEARCH ARTICLE Open Access DeResearch novo article sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis Chao Sun†1, Ying Li†1, Qiong Wu1, Hongmei Luo1, Yongzhen Sun1, Jingyuan Song1, Edmund MK Lui2 and Shilin Chen*1 Abstract Background: American ginseng (Panax quinquefolius L.) is one of the most widely used herbal remedies in the world. Its major bioactive constituents are the triterpene saponins known as ginsenosides. However, little is known about ginsenoside biosynthesis in American ginseng, especially the late steps of the pathway. Results: In this study, a one-quarter 454 sequencing run produced 209,747 high-quality reads with an average sequence length of 427 bases. De novo assembly generated 31,088 unique sequences containing 16,592 contigs and 14,496 singletons. About 93.1% of the high-quality reads were assembled into contigs with an average 8-fold coverage. A total of 21,684 (69.8%) unique sequences were annotated by a BLAST similarity search against four public sequence databases, and 4,097 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Based on the bioinformatic analysis described above, we found all of the known enzymes involved in ginsenoside backbone synthesis, starting from acetyl-CoA via the isoprenoid pathway. Additionally, a total of 150 cytochrome P450 (CYP450) and 235 glycosyltransferase unique sequences were found in the 454 cDNA library, some of which encode enzymes responsible for the conversion of the ginsenoside backbone into the various ginsenosides.
    [Show full text]
  • On Skin Cells and Mitochondria Isolated from Melanoma Induced Mouse
    Original Research Article 2019;2(1):e5 Selective Toxicity of Standardized Extracts of Persian Gulf Sponge (Irciniamutans) on Skin Cells and Mitochondria isolated from Melanoma induced mouse a b c d e Yalda Arast , Nina SeyedRazi , Melika Nazemi , Enayatollah Seydi , Jalal Pourahmad * a. Department of Occupational Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran. b. Pharmaceutical Sciences Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran. c. Persian Gulf and Oman Sea Ecological Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran. d. Research Center for Health, Safety and Environment (RCHSE), Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran. e. Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Article Info: ABSTRACT: Received: March 2019 Melanoma is an aggressive and highly lethal cancer with poor prognosis and Accepted: June 2019 resistance to current treatments. Apoptosis signaling is believed to be suppressed in Published online: melanoma. Evidence suggests that compounds isolated from marine sponges have June 2019 anti-cancer properties. This study was designed to evaluate the apoptotic effect of methanolic, diethyl ether, and n-hexane extracts of Irciniamutans (I.mutans) on skin mitochondria isolated from mice animal
    [Show full text]
  • Structural Basis of Sterol Recognition and Nonvesicular Transport by Lipid
    Structural basis of sterol recognition and nonvesicular PNAS PLUS transport by lipid transfer proteins anchored at membrane contact sites Junsen Tonga, Mohammad Kawsar Manika, and Young Jun Ima,1 aCollege of Pharmacy, Chonnam National University, Bukgu, Gwangju, 61186, Republic of Korea Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved December 18, 2017 (received for review November 11, 2017) Membrane contact sites (MCSs) in eukaryotic cells are hotspots for roidogenic acute regulatory protein-related lipid transfer), PITP lipid exchange, which is essential for many biological functions, (phosphatidylinositol/phosphatidylcholine transfer protein), Bet_v1 including regulation of membrane properties and protein trafficking. (major pollen allergen from birch Betula verrucosa), PRELI (pro- Lipid transfer proteins anchored at membrane contact sites (LAMs) teins of relevant evolutionary and lymphoid interest), and LAMs contain sterol-specific lipid transfer domains [StARkin domain (SD)] (LTPs anchored at membrane contact sites) (9). and multiple targeting modules to specific membrane organelles. Membrane contact sites (MCSs) are closely apposed regions in Elucidating the structural mechanisms of targeting and ligand which two organellar membranes are in close proximity, typically recognition by LAMs is important for understanding the interorga- within a distance of 30 nm (7). The ER, a major site of lipid bio- nelle communication and exchange at MCSs. Here, we determined synthesis, makes contact with almost all types of subcellular or- the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like ganelles (10). Oxysterol-binding proteins, which are conserved domain and the SDs of Lam2 and Lam4 in the apo form and in from yeast to humans, are suggested to have a role in the di- complex with ergosterol.
    [Show full text]
  • A Comprehensive Review on Phyllanthus Derived Natural Products As Potential Chemotherapeutic and Immunomodulators for a Wide Range of T Human Diseases
    Biocatalysis and Agricultural Biotechnology 17 (2019) 529–537 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: www.elsevier.com/locate/bab A comprehensive review on Phyllanthus derived natural products as potential chemotherapeutic and immunomodulators for a wide range of T human diseases Mohamed Ali Seyed Department of Clinical Biochemistry, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia ARTICLE INFO ABSTRACT Keywords: Treatment options for most cancers are still insufficient, despite developments and technology advancements. It Cancer has been postulated that the immune response to progressive tumors is insufficient due to a deficiency in afferent Phyllanthus amarus/niruri mechanisms responsible for the development of tumor-reactive T cells. Many patients treated for cancer will Phyllanthin have their cancer recurrence, often after a long remission period. This suggests that there are a small number of Hypophyllanthin tumor cells that remain alive after standard treatment(s) – alone or in combination and have been less effective Chemotherapeutic in combating metastasis that represents the most elaborate hurdle to overcome in the cure of the disease. Immunomodulation Therefore, any new effective and safe therapeutic agents will be highly demanded. To circumvent many plant extracts have attributed for their chemoprotective potentials and their influence on the human immune system. It is now well recognized that immunomodulation of immune response could provide an alternative or addition to conventional chemotherapy for a variety of disease conditions. However, many hurdles still exist. In recent years, there has been a tremendous interest either in harnessing the immune system or towards plant-derived immunomodulators as anticancer agents for their efficacy, safety and their targeted drug action and drug de- livery mechanisms.
    [Show full text]
  • Structural Evolution and Differential Effects on Lipid Bilayers
    Biophysical Journal Volume 82 March 2002 1429–1444 1429 From Lanosterol to Cholesterol: Structural Evolution and Differential Effects on Lipid Bilayers Ling Miao,* Morten Nielsen,†‡ Jenifer Thewalt,§ John H. Ipsen,† Myer Bloom,¶ Martin J. Zuckermann,§‡ and Ole G. Mouritsen* *MEMPHYS, Physics Department, University of Southern Denmark-Odense, DK-5230 Odense M, Denmark; †Department of Chemistry, Technical University of Denmark, Building 206, DK-2800 Lyngby, Denmark; ‡Centre for the Physics of Materials, Department of Physics, McGill University, Montreal, Quebec H3A 2T5, Canada; §Department of Physics, Simon Fraser University, Burnaby, V5A 1S6 British Columbia, Canada; and ¶Department of Physics and Astronomy, University of British Columbia, Vancouver, V6T 1Z3 British Columbia, Canada ABSTRACT Cholesterol is an important molecular component of the plasma membranes of mammalian cells. Its precursor in the sterol biosynthetic pathway, lanosterol, has been argued by Konrad Bloch (Bloch, K. 1965. Science. 150:19–28; 1983. CRC Crit. Rev. Biochem. 14:47–92; 1994. Blonds in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry. Yale University Press, New Haven, CT.) to also be a precursor in the molecular evolution of cholesterol. We present a comparative study of the effects of cholesterol and lanosterol on molecular conformational order and phase equilibria of lipid-bilayer membranes. By using deuterium NMR spectroscopy on multilamellar lipid-sterol systems in combination with Monte Carlo simulations of microscopic models of lipid-sterol interactions, we demonstrate that the evolution in the molecular chemistry from lanosterol to cholesterol is manifested in the model lipid-sterol membranes by an increase in the ability of the sterols to promote and stabilize a particular membrane phase, the liquid-ordered phase, and to induce collective order in the acyl-chain conformations of lipid molecules.
    [Show full text]
  • Mechanisms of Sterol Uptake and Transport in Yeastଝ
    G Model SBMB-3587; No. of Pages 9 ARTICLE IN PRESS Journal of Steroid Biochemistry & Molecular Biology xxx (2010) xxx–xxx Contents lists available at ScienceDirect Journal of Steroid Biochemistry and Molecular Biology journal homepage: www.elsevier.com/locate/jsbmb Review Mechanisms of sterol uptake and transport in yeastଝ Nicolas Jacquier, Roger Schneiter ∗ Department of Medicine, Division of Biochemistry, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland article info abstract Article history: Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in Received 12 July 2010 understanding how sterols are transported between different membranes. Baker’s yeast is a particularly Received in revised form attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major 12 November 2010 sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to Accepted 30 November 2010 the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the Keywords: environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the Cholesterol Sterol metabolism free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable Lipid homeostasis readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the Lipid transport endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of Endoplasmic reticulum the fungal ergosterol can be provided by structurally related sterols, including the mammalian choles- Lipid detoxification terol.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin Et Al
    USOO8486374B2 (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin et al. (45) Date of Patent: Jul. 16, 2013 (54) HYDROPHILIC, NON-AQUEOUS (56) References Cited PHARMACEUTICAL CARRIERS AND COMPOSITIONS AND USES U.S. PATENT DOCUMENTS 1,159,250 A 11/1915 Moulton 1,666,684 A 4, 1928 Carstens (75) Inventors: Dov Tamarkin, Maccabim (IL); Meir 1924,972 A 8, 1933 Beckert Eini, Ness Ziona (IL); Doron Friedman, 2,085,733. A T. 1937 Bird Karmei Yosef (IL); Alex Besonov, 2,390,921 A 12, 1945 Clark Rehovot (IL); David Schuz. Moshav 2,524,590 A 10, 1950 Boe Gimzu (IL); Tal Berman, Rishon 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely LeZiyyon (IL); Jorge Danziger, Rishom 2,767,712 A 10, 1956 Waterman LeZion (IL); Rita Keynan, Rehovot (IL); 2.968,628 A 1/1961 Reed Ella Zlatkis, Rehovot (IL) 3,004,894 A 10/1961 Johnson et al. 3,062,715 A 11/1962 Reese et al. 3,067,784. A 12/1962 Gorman (73) Assignee: Foamix Ltd., Rehovot (IL) 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn 3,141,821 A 7, 1964 Compeau (*) Notice: Subject to any disclaimer, the term of this 3,142,420 A 7/1964 Gawthrop patent is extended or adjusted under 35 3,144,386 A 8/1964 Brightenback U.S.C. 154(b) by 1180 days. 3,149,543 A 9, 1964 Naab 3,154,075 A 10, 1964 Weckesser 3,178,352 A 4, 1965 Erickson (21) Appl.
    [Show full text]
  • The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry
    nanomaterials Article The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry Robin Delhom 1,2,3 , Andrew Nelson 4 , Valerie Laux 1, Michael Haertlein 1, Wolfgang Knecht 3,5, Giovanna Fragneto 1 and Hanna P. Wacklin-Knecht 2,6,* 1 Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble CEDEX 9, France; [email protected] (R.D.); [email protected] (V.L.); [email protected] (M.H.); [email protected] (G.F.) 2 European Spallation Source ERIC, P.O. Box 176, 22100 Lund, Sweden 3 Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden; [email protected] 4 Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia; [email protected] 5 Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden 6 Department of Chemistry, Division of Physical Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden * Correspondence: [email protected] Received: 10 November 2020; Accepted: 4 December 2020; Published: 6 December 2020 Abstract: We have characterized and compared the structures of ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes before and after interaction with the amphiphilic antifungal drug amphotericin B (AmB) using neutron reflection. AmB inserts into both pure POPC and sterol-containing membranes in the lipid chain region and does not significantly perturb the structure of pure POPC membranes. By selective per-deuteration of the lipids/sterols, we show that AmB extracts ergosterol but not cholesterol from the bilayers and inserts to a much higher degree in the cholesterol-containing membranes.
    [Show full text]
  • Sflifttrru$&FV
    Summary 547 Aspirin blocks the qmthesis of prostaglandins that induce pain and fever. It also has been reported that low doses of aspirin reduce the danger of heart attack and stroke by blocking the synthesis of prostaglandins that promote blood clotting. Aspirin's inhibition of the formation of these prostaglandins accounts for its effectivenessas an analgesic (pain killer), antipyretic (fever killer), and anticlotting agent. Leukotrienes are another classof hormone-like substancessynthesized from arachidonic acid. Lettkotriene Bn and leukotriene En are examples of leukotrienes. Unlike the prostaglandins, the leukotrienes contain three car- bon-carbon double bonds in a row in their molecular structures. I NHz Leukotriene Ea Certain leukotrienes constitute what is referred to as the slow-acting sub- stances of anaphylactic shock. Anaphylactic shock is a drastic allergic responseof the body that can be fatal. Severeallergies to foods such as shellfish or peanuts can trigger anaphylactic shock in susceptible people. The symptoms of anaphylactic shock include closing of the throat, blocking the airways. Heart stoppage also can occur, leading to death. Leukotrienes are also implicated in less severeallergic reactions, asthma, inflammations, and heart attacks. Recent studies suggestthat dietary fish oils can reduce levels of leukotrienes and reduce the risk of heart attack. sflifttrru$&FV Lipids are a broad class of naturally occurring, rela- mon glycolipids. Phospholipid and glycolipid mole- tively water-insoluble molecules. Triglycerides-tri- cules have polar heads and hydrophobic tails. The esters of glycerol and fatty acids-are the most lipid bilayer is the fundamental structure of lipo- abundant lipids in animal tissue. somes and the membranes of cells and organelles.
    [Show full text]
  • Cholesterol Lowering: Plant Sterol Enriched Foods
    National Heart Foundation of Australia Position Statement Phytosterol/stanol enriched foods Questions and Answers – Professional August 2017 Background Epidemiological data have shown a continuous linear relationship between low-density lipoprotein cholesterol (LDL-cholesterol) levels and coronary heart disease (CHD) events1,2. Studies indicate that incorporating plant sterols into the diet may be an effective method of lowering total and LDL-cholesterol levels. By consuming plant sterols daily, adults may lower their LDL-cholesterol levels by around 10% depending on the age of the person. A reduced blood cholesterol level is associated with a reduced risk of CHD and stroke. The Heart Foundation reviewed the relevant scientific research and developed the publication Summary of evidence on phytosterol/stanol enriched foods and associated Position Statement. Both papers are available from www.heartfoundation.org.au. The Position Statement may also be obtained by calling 13 11 12. What are plant sterols? Plant sterols (or phytosterols) are a naturally occurring part of all plants. They are mainly found in vegetable oils but are also present in smaller amounts in nuts, legumes, grains, cereals, wood pulp and leaves. The main sources of plant sterols added to foods in Australia are soybean oil or tall (pine) oil. What does the Heart Foundation recommend for adults with high blood cholesterol? To lower LDL-cholesterol the Heart Foundation recommends adults consume 2 to 3 grams of plant sterols per day from plant sterol enriched foods. Consuming more than this amount will not do harm but will not give any additional benefits. In Australia, foods approved for enrichment with plant sterols are: margarine spreads, breakfast cereal, low-fat yoghurt and low-fat milk.
    [Show full text]
  • Cholesterol, Phytosterols, Marine Sterols… 2
    LIPIDS sterol lipids Marek Vecka CLASSIFICATION OF LIPIDS - molecular structure N of known Abbreviation Lipid class structures Fatty acyls FA 5869 Glycerolipids GL 7541 Glycerophospholipids GP 8002 Sphingolipids SP 4338 Sterol lipids ST 2715 Prenol lipids PL 1259 Other – saccharolipids, polyketides SL, PK 1293+6742 Fahy 2005, Fahy 2009 STEROL LIPIDS STEROL LIPIDS = lipid molecules with backbone derived from cyclopenta[a]phenanthrene (?) Division according to biochemical function 1. Sterols cholesterol, phytosterols, marine sterols… 2. Bile acids and derivatives C24, C26, C27, C28 bile acids, bile alcohols 3. Steroids C18 steroids, C19 steroids, C21 steroids 4.Secosteroids vitamins D Other groups conjugates, hopanoids, … STEROL LIPIDS Structures 1. Numbering system for C27 four-ring system first C´s on attached methyls side chain STEROL LIPIDS Structures 2. Stereochemistry Ring position b- a- substituent position Conventions: 1. Ring position: cis- (remaining 4th bonds of common C-C are cis-) (A-B cis-: bile acids) vs. trans- (remaining 4th bonds of common C-C are trans-) (all : cholesterol) 2. Substituents: a- (below cycle plane) vs. b- (above cycle plane) STEROL LIPIDS Structures 3. Important hydrocarbon structures C18 structures: estra- steroid hormones C19 structures: androsta- steroid hormones C21 structures: pregna- steroid hormones C24 structures: chola- bile acids/alcohols C27 structures: cholesta- cholesterol, oxysterols CLASSIFICATION OF LIPIDS - biosynthetic route Lipid class Biosynthetic route Fatty acyls condensation of thioesters Glycerolipids Glycerophospholipids Sphingolipids Sterol lipids condensation of activated isoprene units Prenol lipids Other – saccharolipids, polyketides other types STEROLS Biosynthesis of sterols (cholesterol) 1. Biosynthesis of isopentenyldiphosphate = activated isoprene unit 2. Condensation of isopentenyldiphosphate units 6 units are needed (C30) 3.
    [Show full text]