Characterization of Hepatitis C Virus Interaction with Heparan Sulfate Proteoglycans Yan Xu

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Hepatitis C Virus Interaction with Heparan Sulfate Proteoglycans Yan Xu Characterization of Hepatitis C Virus interaction with heparan sulfate proteoglycans Yan Xu To cite this version: Yan Xu. Characterization of Hepatitis C Virus interaction with heparan sulfate proteoglycans. Hu- man health and pathology. Université du Droit et de la Santé - Lille II, 2014. English. NNT : 2014LIL2S021. tel-01201824 HAL Id: tel-01201824 https://tel.archives-ouvertes.fr/tel-01201824 Submitted on 18 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ LILLE II École Doctorale Biologie –Santé de Lille Pour l’obtention du grade de : Docteur de L’UNIVERSITÉ LILLE II Thèse soutenue le 16 Septembre 2014 Caractérisation des interactions du Virus de l'Hépatite C avec les protéoglycanes à héparane sulfate Characterization of Hepatitis C Virus interaction with heparan sulfate proteoglycans Centre d’Infection & d’Immunité de Lille (CIIL), Inserm U1019, CNRS UMR 8204, Institut Pasteur de Lille, Équipe Virologie Moléculaire & Cellulaire de l’Hépatite C !"#$%&$'#()$(*+,-$.((Dr Jean Dubuisson! ( ! /#0-$1&0$($&(-2'&$1'$(3'45"6'$7$1&(38#.( ( Yan XU Membres du Jury: Président Pr. Didier HOBER Rapporteur Pr. Sandrine CASTELAIN Rapporteur Pr. Philip MEULEMAN Examinateur Dr. Sandrine BELOUZARD Examinateur Dr. François HELLE Directeur de thèse Dr. Jean DUBUISSON 1 To my parents and my dearest friend Manuel 2 Dreams Hold fast to dreams For if dreams die Life is a broken-winged bird That cannot fly. Hold fast to dreams For when dreams go Life is a barren field Frozen with snow. -Langston Hughes 3 ACKNOWLEDGMENTS At the beginning, I would like to thank all the members of jury: professors Didier Hober, Philip Meuleman and Sandrine Castelain, and doctors François Helle and Sandrine Belouzard, and my supervisor Dr. Jean Dubuisson. Thanks to all of you for the attendance and participation in my thesis defence. Then, I would like to give my sincere gratitude again to my supervisor Dr. Jean Dubuisson. Thanks for your initial help and the precious opportunity given to me so that I could do my PhD study in your laboratory. Thanks very much for your patience and great kindness to me all along the way. Also, thanks for your scientific guidance and putting in. Next, I would like to sincerely acknowledge my “petit chef ” Dr. Sandrine Belouzard. Thanks for your generous access to me in the whole process of my project. With you, I learned a lot, from basic experimental techinque to critical thinking on the results. I believe that your strict attitude and whole-hearted dedication into scientific research, as well as your confident decision-making manner have already infected me, and from which I can benefit for my future career. Hereafter, I also thank other scientists including Drs Guangxiang Luo, Mansun Law, Steven Foung and Jane A. McKeating, for your kindly providing us the antibodies that are very important for this work. And then thanks to Dr. Karin Séron, for your technical assistance which contributed a lot to this work. Certainly, thanks very much for the scientific input from our collaborators Dr. Allain Fabrice and Pierre Martinez. I am very grateful to M. Sophana Ung. Thanks for your scientific and plenty of non-scientific support. Also, for all our talking and telling me “this world is not black and white”. Another impressing meet- Pr. Yves Rouillé. You are so wise and farsighted. Your passion to research is obvious. You are always in the state of thinking. Very nice to meet you and talk with you, and also thank you for your professional contribution to our work. Then, many thanks to people in the lab. including Laurence, Muriel, Anne, Rayan, Juliette, Allison, Marie-Emmanuelle, Nathalie, Claire, Adeline, Lucie, Nana, Lison, Laura, and a pair of old mates: Czes and André. Also thanks to previous members : Sohail, Ahmed, Julie, PYD, Noémie and Thibaut. And, to my French teacher Anaïs who makes me like French Language more and more. In a word, thanks to all the people ‘‘J'ai rencontré d’ici’’, thanks for your help and those time we passed together. At last, I want to thank friends here Fan, Jia, Odile and Julie. Thanks for your help, and the time with you that enriched my days in France. Also, thanks to my foundation support from CSC and my family backing, which together made my short ‘‘life journey’’ in France possible, then I could travel around Europe a bit, know China better and love her more. 4 RÉSUMÉ .................................................................................................................................................................. 7 RÉSUMÉ LONG ...................................................................................................................................................... 9 ABSTRACT............................................................................................................................................................22 LIST OF ILLUSTRATIONS.................................................................................................................................24 LIST OF TABLES .................................................................................................................................................25 ABBREVIATIONS................................................................................................................................................26 INTRODUCTION .................................................................................................................................................29 I. GENERAL INTRODUCTION OF VIRAL HEPATITIS C ............................................................................29 1. HEPATITIS C EPIDEMIOLOGY ...........................................................................................................................................29 2. NATURAL HISTORY OF HCV INFECTION ........................................................................................................................31 3. DIAGNOSIS AND TREATMENT OF HCV INFECTION......................................................................................................32 4. MOLECULAR BIOLOGY OF HCV........................................................................................................................................36 4.1 HCV classification and genotype distribution ................................................................................................36 4.2 HCV genome and viral proteins............................................................................................................................37 4.3 The HCV life cycle........................................................................................................................................................43 4.4 HCV particles.................................................................................................................................................................47 4.5 HCV model system.......................................................................................................................................................52 II. HCV VIRAL PARTICLE COMPONENTS IN VIRAL ENTRY ...................................................................61 1. HCV HOST CELL TROPISM AND TRANSMISSION ROUTES ............................................................................................61 2. HCV ENTRY INTO HEPATOCYTES ....................................................................................................................................63 3. HCV ENVELOPE GLYCOPROTEINS IN VIRAL ENTRY......................................................................................................67 4. HYPERVARIABLE REGION 1 OF ENVELOPE GLYCOPROTEIN E2 .................................................................................70 5. HCV PARTICLE COMPONENT APOE ................................................................................................................................71 5.1 ApoE protein and its isoforms in lipid metabolism and in AD.................................................................72 5.2 ApoE in infectious diseases .....................................................................................................................................77 5.3 Influence of apoE isoforms in the HCV life cycle............................................................................................82 6. OTHER APOLIPOPROTEINS ...............................................................................................................................................84 6.1 ApoCs in lipoprotein metabolism and HCV infection ..................................................................................84 6.2 ApoAI in lipoprotein metabolism and in HCV infection .............................................................................87 III. CELLULAR FACTORS IN HCV ENTRY .....................................................................................................89 1. HCV ATTACHMENT FACTORS ..........................................................................................................................................89
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Tetraspanin CD53: an Overlooked Regulator of Immune Cell Function
    Medical Microbiology and Immunology (2020) 209:545–552 https://doi.org/10.1007/s00430-020-00677-z REVIEW Tetraspanin CD53: an overlooked regulator of immune cell function V. E. Dunlock1 Received: 31 March 2020 / Accepted: 2 May 2020 / Published online: 21 May 2020 © The Author(s) 2020 Abstract Tetraspanins are membrane organizing proteins that play a role in organizing the cell surface through the formation of subcellular domains consisting of tetraspanins and their partner proteins. These complexes are referred to as tetraspanin enriched microdomains (TEMs) or the tetraspanin web. The formation of TEMs allows for the regulation of a variety of cellular processes such as adhesion, migration, signaling, and cell fusion. Tetraspanin CD53 is a member of the tetraspanin superfamily expressed exclusively within the immune compartment. Amongst others, B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and natural killer cells have all been found to express high levels of this protein on their sur- face. Almost three decades ago it was reported that patients who lacked CD53 sufered from an increased susceptibility to pathogens resulting in the clinical manifestation of recurrent viral, bacterial, and fungal infections. This clearly suggests a vital and non-redundant role for CD53 in immune function. Yet, despite this striking fnding, the specifc functional roles of CD53 within the immune system have remained elusive. This review aims to provide a concise overview of the published literature concerning CD53 and refect on the underappreciated role of this protein in immune cell regulation and function. Keywords Tetraspanins · Tetraspanin enriched microdomains · CD53 · Membrane organization · Immune cell signaling · Immune cell adhesion Introduction: tetraspanins in the immune surface or on intracellular membranes.
    [Show full text]
  • Lampe À Poser Watt Sylvain Dubuisson
    FLOOR LAMPS AR1 B4 RF503 J14 A23 2983 /80 - 150 - 225 ABRAHAM & ROL R.J. CAILLETTE R. FATUS J.A. MOTTE A. RICHARD O. MOURGUE 1965 1957 1957 1959 1968 1969 DISDEROT TABLE LAMPS LAMPE À POSER WATT SYLVAIN DUBUISSON 1013 1021 J13 P. DISDEROT R. FATUS J.A. MOTTE 1955 1960 1959 INSTRUCTIONS DIRECTIONS FOR USE F170 A22 A21 AR71 AR70 AR65 WATT E. FERMIGIER A. RICHARD A. RICHARD ABRAHAM & ROL ABRAHAM & ROL ABRAHAM & ROL S. DUBUISSON 1970 1960 1960 1964 1964 1965 2019 WALL LAMPS 2059 B3 2093-A 6135PM 6135GM 5980 P. DISDEROT R.J. CAILLETTE O. MOURGUE P. PAULIN P. PAULIN A. RICHARD 1955 1957 1969 1960 1960 1957 A25 A25-190 A25-270 A24-1500-D A24-2200-Q A. RICHARD A. RICHARD A. RICHARD A. RICHARD A. RICHARD 1968 1968 1968 1968 1968 LAMPE À POSER WATT PENDANT & CEILING LAMPS 2019 Watt est une lampe à poser simple et savante, créée par l’architecte et designer Sylvain DISDEROT • 03/2021 • DUBUISSON • WATT • DUBUISSON • 03/2021 DISDEROT Dubuisson en 2019. Simple puisqu’elle n’a la forme que d’un simple cylindre. Savante parce que l’ajourage du cylindre est un modèle mathématique unique selon lequel 6 spires entretiennent des relations de vitesses proportionnelles de telle sorte que les vides soient des triangles. Le poli du fût central réfléchit le dessin des spires comme une vue anomorphique et la lumière projette les ombres des découpes sur le plan de la table. La lampe Watt peut être déclinée en différentes couleurs (sur mesure). Elle est disponible en blanc, noir et orange.
    [Show full text]
  • Les Historiens D'architecture
    Les historiens de l’architecture et le marché de l’emploi. Résultats et analyse de l’enquête menée auprès des docteurs en histoire de l’architecture de l’université Paris 1 Panthéon-Sorbonne en juin 2005 par Hélène Caroux et Aymone Nicolas, docteurs de l’université Paris 1. Introduction Encouragées par le mouvement de contestation des chercheurs et par la question de l’emploi dans le domaine de la culture et du patrimoine, nous avons lancé en mai 2005 une enquête auprès de nos collègues, historiens de l’architecture contemporaine. Ces doctorants ou docteurs ont en commun d’avoir suivi la formation doctorale en histoire de l’art, option histoire de l’architecture contemporaine proposée depuis 1991 à l’initiative de Gérard Monnier, professeur à l’Université Paris I Panthéon-Sorbonne et poursuivie par Claude Massu depuis 2003. Sont également pris en compte les doctorants et docteurs qui ont entamés une thèse sous la direction d’enseignants associés : Jean-Yves Andrieux, Dominique Rouillard, Antoine Picon, Frédéric Seitz et Danièle Voldman. Si cette formation est particulièrement axée sur l’histoire de l’architecture du XX e siècle, d’autres universités (Paris IV, Bordeaux III, Rennes II, Lille III, Paris VIII et Paris XII) proposent une formation analogue mais avec chacune leur spécificité : XIX e siècle, patrimoine industriel, histoire des jardins, urbanisme etc. Prochainement, les masters de recherche et les doctorats en architecture délivrés par les écoles d’architecture devraient s’ajouter à cette offre. La multiplicité des formations rend compte de l’intérêt qui est porté à l’histoire de l’architecture.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Human Eosinophils and Their Activation by Allergens Via Danger
    Human eosinophils and their activation by allergens via danger signal receptors Elin Redvall ______________________ 2010 Department of Infectious diseases, Institute of Biomedicine, The Sahlgrenska Academy Cover illustration photo: Kerstin Andersson (Eosinophils) Abstract Human eosinophilic granulocytes are polymorphonuclear cells with a powerful arsenal of cytotoxic substances in their granules, which are mainly found in the gastrointestinal mucosa, and the respiratory and genitourinary tracts. Their physiological role is incompletely understood, although it is likely they protect the mucosal surfaces, perhaps by recognizing danger signals present on microorganisms or released from damaged tissue. We have earlier shown that eosinophils can recognize and become directly activated by aeroallergens such as house dust mite (HDM) and birch pollen. Eosinophils exposed to (HDM) release both of the cytotoxic granule proteins eosinophil peroxidase (EPO) and major basic protein, whereas birch pollen extract only triggers EPO release. Here we further investigate which receptors on eosinophils are used to signal the presence of HDM and birch pollen. Recognition was found to be mediated by the formyl peptide receptors (FPRs) FPR1 and FPR2. We also characterized the expression of this family of receptors in human eosinophils and found that they express FPR1 and FPR2, but not FPR3, similar to neutrophilic granulocytes. We also discovered that signaling through FPR1 can desensitize the eotaxin-1 receptor CCR3 rendering the cells anergic with respect to chemotaxis in response to eotaxin-1, but not regarding respiratory burst. Hence, there is cross- talk between these two receptors regarding one important effector function of eosinophils. Eosinophilic reactivity in vitro to the aeroallergens HDM, birch pollen, timothy grass pollen and cat dander did not differ between individuals with allergy and healthy individuals.
    [Show full text]
  • Combination Immunotherapy with Anti-CD20 and Anti-HLA-DR Monoclonal Antibodies Induces Synergistic Anti-Lymphoma Effects in Human Lymphoma Cell Lines
    UC Davis UC Davis Previously Published Works Title Combination immunotherapy with anti-CD20 and anti-HLA-DR monoclonal antibodies induces synergistic anti-lymphoma effects in human lymphoma cell lines Permalink https://escholarship.org/uc/item/8pk1f4nx Journal Leukemia & Lymphoma, 48(5) ISSN 1042-8194 Authors Tobin, Evan Denardo, Gerald Zhang, Nan et al. Publication Date 2007-05-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Rituximab & ChLym-1 Combined Immunotherapy Combination Immunotherapy with Anti-CD20 and Anti-HLA-DR Monoclonal Antibodies Induces Synergistic Anti-lymphoma Effects in Human Lymphoma Cell Lines Evan Tobin1, Gerald DeNardo1, Nan Zhang2, Alan L. Epstein2, Cathy Liu1 & Sally DeNardo1 1 Department of Internal Medicine, University of California Davis, CA, USA 2 Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA Running Title: Rituximab & ChLym-1 Combined Immunotherapy Keywords: Lymphoma; immunotherapy; rituximab; Lym-1; CD20; HLA-DR 1Address for correspondence: Gerald L. DeNardo, M.D. Division of Hematology and Oncology 1508 Alhambra Blvd., No. 3100 Sacramento, CA 95816 Telephone (916) 734-3787 Fax (916) 703-5014 E-mail: [email protected] 1 Rituximab & ChLym-1 Combined Immunotherapy ABSTRACT Rituximab is effective in about one half of patients with indolent lymphoma. Even these patients relapse and develop rituximab resistance. To increase potency and circumvent resistance, the anti-lymphoma effects of rituximab, an anti-CD20 MAb1, combined with chLym-12, an anti- HLA-DR MAb, were assessed in human lymphoma cell lines by examining growth inhibition and cell death, apoptosis induction, ADCC3 and CDC4. There were additive effects in all assays and synergism in cell lines, such as B35M, which displayed resistance to either MAb alone.
    [Show full text]
  • CD20 (B9E9): Sc-9984
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . CD20 (B9E9): sc-9984 BACKGROUND APPLICATIONS CD20 is a leukocyte surface antigen consisting of four transmembrane regions CD20 (B9E9) is recommended for detection of CD20 of human origin by and cytoplasmic N- and C-termini. The cytoplasmic domain of CD20 contains Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), multiple phosphorylation sites, leading to additional isoforms. CD20 is ex- immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell pressed primarily on B cells but has also been detected on both normal and lysate)] and flow cytometry (1 µg per 1 x 10 6 cells). neoplastic T cells. CD20 functions as a calcium-permeable cation channel, and Suitable for use as control antibody for CD20 siRNA (h): sc-29972, CD20 it is known to accelerate the G to G progression induced by IGF-1. CD20 is 0 1 shRNA Plasmid (h): sc-29972-SH and CD20 shRNA (h) Lentiviral Particles: activated by the IGF-1 receptor via the subunits of the heterotrimeric G α sc-29972-V. proteins. Activation of CD20 significantly increases DNA synthesis and is thought to involve basic helix-loop-helix leucine zipper transcription factors. Molecular Weight of CD20 isoforms: 33-37 kDa. REFERENCES RECOMMENDED SECONDARY REAGENTS 1. Tedder, T.F., et al. 1994. CD20: a regulator of cell-cycle progression of B To ensure optimal results, the following support (secondary) reagents are lymphocytes. Immunol. Today 15: 450-454. recommended: 1) Western Blotting: use goat anti-mouse IgG-HRP: sc-2005 (dilution range: 1:2000-1:32,000) or Cruz Marker™ compatible goat anti- 2.
    [Show full text]
  • Aberrant Expression of Tetraspanin Molecules in B-Cell Chronic Lymphoproliferative Disorders and Its Correlation with Normal B-Cell Maturation
    Leukemia (2005) 19, 1376–1383 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation S Barrena1,2, J Almeida1,2, M Yunta1,ALo´pez1,2, N Ferna´ndez-Mosteirı´n3, M Giralt3, M Romero4, L Perdiguer5, M Delgado1, A Orfao1,2 and PA Lazo1 1Instituto de Biologı´a Molecular y Celular del Ca´ncer, Centro de Investigacio´n del Ca´ncer, Consejo Superior de Investigaciones Cientı´ficas-Universidad de Salamanca, Salamanca, Spain; 2Servicio de Citometrı´a, Universidad de Salamanca and Hospital Universitario de Salamanca, Salamanca, Spain; 3Servicio de Hematologı´a, Hospital Universitario Miguel Servet, Zaragoza, Spain; 4Hematologı´a-hemoterapia, Hospital Universitario Rı´o Hortega, Valladolid, Spain; and 5Servicio de Hematologı´a, Hospital de Alcan˜iz, Teruel, Spain Tetraspanin proteins form signaling complexes between them On the cell surface, tetraspanin antigens are present either as and with other membrane proteins and modulate cell adhesion free molecules or through interaction with other proteins.25,26 and migration properties. The surface expression of several tetraspanin antigens (CD9, CD37, CD53, CD63, and CD81), and These interacting proteins include other tetraspanins, integri- F 22,27–30F their interacting proteins (CD19, CD21, and HLA-DR) were ns particularly those with the b1 subunit HLA class II 31–33 34,35 analyzed during normal B-cell maturation and compared to a moleculesFeg HLA DR -, CD19, the T-cell recep- group of 67 B-cell neoplasias. Three patterns of tetraspanin tor36,37 and several other members of the immunoglobulin expression were identified in normal B cells.
    [Show full text]
  • Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression
    iScience ll OPEN ACCESS Article Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression Maria C. Demaria, Louisa Yeung, Rens Peeters, ..., Annemiek van Spriel, Michael J. Hickey, Mark D. Wright [email protected] HIGHLIGHTS CD53 is essential for lymph node cellularity as À/À Cd53 lymph nodes lack TandBcells CD53 is essential for lymphocyte homing to lymph nodes CD53 stabilizes L-selectin cell surface expression and may restrain shedding Impaired lymphocyte homing leads to diminished immune À À responses in Cd53 / mice Demaria et al., iScience 23, 101104 May 22, 2020 ª 2020 The Author(s). https://doi.org/10.1016/ j.isci.2020.101104 iScience ll OPEN ACCESS Article Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression Maria C. Demaria,1 Louisa Yeung,1,2 Rens Peeters,3 Janet L. Wee,1,2 Masa Mihaljcic,1 Eleanor L. Jones,1 Zeyad Nasa,1 Frank Alderuccio,1 Pamela Hall,2 Brodie C. Smith,2 Katrina J. Binger,4 Gunther Hammerling,5 Hang Fai Kwok,6 Andrew Newman,7 Ann Ager,7 Annemiek van Spriel,3 Michael J. Hickey,2 and Mark D. Wright1,8,* SUMMARY Tetraspanins regulate key processes in immune cells; however, the function of the leukocyte-restricted tetraspanin CD53 is unknown. Here we show that CD53 is essential for lymphocyte recirculation. Lymph nodes of Cd53À/À mice were smaller than those of wild-type mice due to a marked reduction in B cells and a 50% decrease in T cells. This reduced cellularity reflected an inability of Cd53À/À B and T cells to effi- ciently home to lymph nodes, due to the near absence of L-selectin from Cd53À/À B cells and reduced stability of L-selectin on Cd53À/À T cells.
    [Show full text]
  • Complexes of Tetraspanins with Integrins: More Than Meets the Eye
    COMMENTARY 4143 Complexes of tetraspanins with integrins: more than meets the eye Fedor Berditchevski CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, B15 2TA, UK Author for correspondence (e-mail: [email protected]) Journal of Cell Science 114, 4143-4151 (2001) © The Company of Biologists Ltd Summary The transmembrane proteins of the tetraspanin membrane, integrin-tetraspanin signalling complexes superfamily are implicated in a diverse range of biological are partitioned into specific microdomains proximal to phenomena, including cell motility, metastasis, cell cholesterol-rich lipid rafts. A substantial fraction of proliferation and differentiation. The tetraspanins are tetraspanins colocalise with integrins in various associated with adhesion receptors of the integrin family intracellular vesicular compartments. It is proposed that and regulate integrin-dependent cell migration. In cells tetraspanins can influence cell migration by one of the attached to the extracellular matrix, the integrin- following mechanisms: (1) modulation of integrin tetraspanin adhesion complexes are clustered into a distinct signalling; (2) compartmentalisation of integrins on the cell type of adhesion structure at the cell periphery. Various surface; or (3) direction of intracellular trafficking and tetraspanins are associated with phosphatidylinositol 4- recycling of integrins. kinase and protein kinase C isoforms, and they may facilitate assembly of signalling complexes by tethering these enzymes to integrin heterodimers. At the plasma Key words: Tetraspanin, Integrin, Migration, Signalling Introduction relatively well conserved among tetraspanins (Fig. 1). A Tetraspanins (also referred to as tetraspans or TM4SF proteins) combination of all the above features distinguishes tetraspanins are a family of widely expressed four-transmembrane-domain from a diverse group of proteins that have four transmembrane proteins.
    [Show full text]
  • Archiwebture Base De Données D'inventaires Du Centre D'archives De L'ifa
    Archiwebture Base de données d'inventaires du Centre d'archives de l'Ifa https://archiwebture.citedelarchitecture.fr Fonds Dubuisson, Jean (1914-2011) Présentation Notice biographique Jean Dubuisson est né à Lille le 18 septembre 1914, et décédé à Nîmes le 22 octobre 2011. Son père Emile Dubuisson et son grand-père étaient tous les deux architectes. Jean Dubuisson commence ses études à l'école des beaux-arts de Lille et obtient son diplôme à l'Ecole des beaux-arts de Paris en 1939, à l'atelier Pontrémoli. Deuxième Grand Prix de Rome en 1943, il obtient le Premier Grand Prix en 1945 et séjourne donc à Rome, à la villa Médicis, puis à Athènes jusqu’en 1949. Il revient en France trop tard pour prendre une part active à la reconstruction. La solide culture classique caractéristique de sa formation et l'impression très forte provoquée par les œuvres du Bauhaus et de Le Corbusier forgent sa vision de l'architecture. De retour en France en 1950, à l'invitation de Paul La Mache, il participe avec Marcel Lods au concours de Strasbourg portant sur 800 logements et inaugurant la production de logements de masse avec la mise au point de procédés d'industrialisation de la construction. Riche de cette expérience, il reçoit en 1951 la commande prestigieuse du SHAPE Village à Saint- Germain-en-Laye, ou il réalise 300 logements pour le quartier général des forces alliées en Europe. Ce projet, fondé sur les principes de la Charte d'Athènes, devient une réalisation marquante de l'époque. (Félix Dumail est l'auteur de l'autre partie du SHAPE Village.) A la même époque, sa rencontre avec André Bloc amène Jean Dubuisson à se rapprocher des CIAM et à rencontrer leurs membres fondateurs, notamment Le Corbusier, avec lequel il noue des relations privilégiées.
    [Show full text]