Cross-Layer Congestion Control and Quality of Service in Mobile Networks
Total Page:16
File Type:pdf, Size:1020Kb
2 2 0 Cross-layer congestion control and T A P quality of service in mobile networks P I 0 The`se de doctorat de l’Institut Polytechnique de Paris 2 0 pre´pare´e a` Telecom Paris 2 : E´ cole doctorale n◦626 E´ cole Doctorale de l’Institut Polytechnique de Paris (IP Paris) T Spe´cialite´ de doctorat : Informatique, Donne´es et Intelligence Artificielle N N The`se pre´sente´e et soutenue a` Palaiseau, le 15/07/2020, par ZHENZHE ZHONG Composition du Jury : Isabel Amigo Assistant Professor,IMT Atlantique Pre´sident M.Lyes Khoukhi Professeur,University of Technology of Troyes Rapporteur M.Pascal Lorenz Professeur, University of Haute Alsace Rapporteur Dominique Gaiti Professeur, University of Technology of Troyes Examinateur Ste´phane Tuffin Gestionnaire de projet, Orange Labs Examinateur Isabelle Hamchaoui inge´nieur de recherche senior, Orange Labs Directeur de the`se(CIFRE) Ahmed Serhrouchni Professeur, Telecom ParisTech Directeur de the`se Rida Khatoun Associate Professor, Telecom ParisTech Co-directeur de the`se 626 Table of contents List of figures5 List of tables9 List of Abbreviations 18 1 Introduction 21 1.1 Context and Objective . 21 1.2 Contributions . 24 1.3 Thesis outline . 25 2 Introduction en Français 27 2.1 Contexte et objectif . 27 2.2 Contributions . 30 2.3 Aperçu de la thèse . 32 3 Overview of Mobile network architecture and congestion control algorithms 33 3.1 Introduction . 33 3.2 LTE mobile network . 34 3.2.1 LTE backhaul . 34 3.2.2 LTE Radio Access Network . 35 3.3 End-to-End Congestion control methods for Quality of Service . 41 3.3.1 Non-Cross-Layer protocols . 42 3.3.2 Cross-layer protocols . 52 3.3.3 Other solutions . 58 3.4 Discussion and conclusion . 59 4 Models and Tools used in Congestion Control Algorithms 63 4.1 Introduction . 63 Table of contents 4.2 Design logics in a Congestion Control Algorithm: a TCP example . 63 4.3 TCP Transmit/Receive Sequence Trace figures . 66 4.4 The STARTUP procedure in bottleneck bandwidth and round trip delay-based congestion control . 69 4.5 DupAck procedure for the lower bound to confirm a trend . 71 4.6 BURSTY traffic and PACING traffic . 72 4.7 Conclusion and discussion . 77 5 Adapt Channel Quality Indicator Control and Bottleneck Bandwidth and RTT congestion control in LTE network in NS3 simulator 79 5.1 Introduction . 79 5.2 TCP BBR . 80 5.2.1 BBR state machine . 80 5.2.2 BBR capacity estimation . 82 5.3 From CQIC in 3G to DCIC/TCP-CQIC-LTE . 82 5.3.1 QUIC-CQIC in HSPA+ . 82 5.3.2 DCIC/TCP-CQIC in LTE . 84 5.3.3 Why Delayed ACK . 87 5.4 DCIC/TCP-CQIC implementation on NS3 . 89 5.5 DCIC/TCP-CQIC-LTE v.s. TCP Westwood and Cubic . 90 5.5.1 Result and discussion . 91 5.6 DCIC/TCP-CQIC v.s. TCP BBR . 95 5.7 Conclusion . 98 6 Toward client driven bandwidth estimation architecture for end-to-end conges- tion control: a protocol design 101 6.1 Introduction . 101 6.2 The pros and cons of tested CCAs . 102 6.3 Bandwidth estimation method in UE . 104 6.3.1 Principle of design . 104 6.3.2 Validate CDBE BWE method with saturated traffic . 107 6.4 CDBE state transition module in server . 107 6.4.1 State definition and impact of parameters . 109 6.4.2 Condition of state transition in CDBE server . 111 6.5 Simulation and result discussion . 113 6.5.1 Simulation configuration . 113 6.5.2 Performance of CDBE server . 114 2 Table of contents 6.5.3 Per-flow analysis . 116 6.5.4 System level result statistics, evaluation and discussion . 116 6.6 Conclusion . 118 7 CDBEv2: Toward ubiquitous congestion control in a mobile network 121 7.1 Introduction . 121 7.2 From CDBE to CDBEv2 . 122 7.2.1 Simplified Client-Side bottleneck bandwidth estimation . 122 7.2.2 Server Side Windowed BWE report utilisation with a dynamic low-pass filter . 123 7.2.3 Advanced features in CDBEv2 state machine . 126 7.2.4 Simulation and analysis of CDBEv2 . 142 7.3 Conclusion and future work . 153 8 Conclusion and Future work 159 8.1 Thesis conclusion . 159 8.2 Perspectives and future direction . 161 References 163 3 List of figures 1.1 Goals and tradeoffs for an ubiquitous CCA design . 23 2.1 Objectifs et compromis pour une conception CCA omniprésente . 30 3.1 LTE interface stacks . 34 3.2 Capacity variation in different generations of Cellular network . 37 3.3 Brief LTE protocol stack . 40 3.4 Simplified LTE Network architecture with RAN, backhaul and gateway . 41 3.5 Categories of congestion control solutions . 42 3.6 Illustrate the basic concept behind loss-based congestion control . 45 3.7 Illustration of ITCP . 50 3.8 Illustration of MTCP . 51 3.9 Mobile throughput Guidance . 51 3.10 CQIC Flowchart . 53 3.11 Improved CQIC Flowchart . 54 3.12 piStream flowchart . 55 3.13 Time consumption in different section of a Mobile edge network . 60 3.14 Goals and tradeoffs for an ubiquitous CCA design . 60 4.1 Abstract of the network assumption in the thesis . 64 4.2 Compare the target operating point and area of loss-based Congestion control and bandwidth/round trip delay based control algorithm . 65 4.3 Reading the TCP Trace figure . 67 4.4 Rough working pattern of Loss-based congestion control. 68 4.5 Simplest case for 3 Dupack . 72 4.6 Birth-death process of a M/M/1 Queue model . 74 4.7 Bandwidth utilisation against the cost in time for poisson type of traffic and bursty traffic . 75 5 List of figures 4.8 Cost of idle, queuing and sum of the two when the pacing data rate is equivalent to bottleneck bandwidth . 75 4.9 The effect of pacing in a network. 76 4.10 Recalling goals and objectives . 78 5.1 Case study example of CQIC and BBR . 83 5.2 DCI in LTE radio link . 84 5.3 Compare CQIC method and DCIC method . 85 5.4 Capacity difference among PHY, RLC and estimations . 88 5.5 CQIC Header report design. 89 5.6 Average Throughput(a), and(b)Average Round Trip Time . 91 5.7 Throughput Cumulative Distributive Function of1MB(a),10MB(b) download 92 5.8 RTT cdf of 1MB(a),10MB(b) download . 92 5.9 (a),Average RLC UL re-transmission (per UE) and (d)Average RLC UL re- transmission (per UE) . 93 5.10 The Maximum sequence of transmitteda,c and ACKed data sequenced,b... 94 5.11 DL, UL and End-to-End traffic . 97 6.1 Illustration of CDBE filter function on UE . 105 6.2 Fixed network topology for CDBE BWE validation . 107 6.3 Validate CDBE BWE method in a wired network with UDP traffic . 108 6.4 Validate CDBE BWE method in LTE with UDP traffic . 108 6.5 CDBE server state transition . 109 6.6 Bandwidth estimation (left), Gain, DSDL and DSDLmin in one experiment (right) . 113 6.7 Simulation topology and concept illustration . 114 6.8 (a) Goodput CDF of CDBE, CQIC, CQIC-S and BBR and (b) RTT samples with 75% and 99% percentiles . 119 7.1 The structure of BW option field in TCP header. 123 7.2 How does b change with RTT on interval RTTmin 2 [20ms;300ms] ...... 125 7.3 Queuing delay caused by STARTUP stage for Gpacing = 2;2:77;2:88 with BW(t0) = 1Mbps ................................ 129 7.4 Overall mean delay for initial bandwidth from 100Kbps to 1Mbps and the STARTUP Gain from 2 to 3 respectively. 130 7.5 The the mean, maximum, minimum delay and lost percentage caused by different pairs of Gpacing and BW(t0) for BWBtlnck 2 [1Mbps;150Mbps] ... 131 6 List of figures 7.6 The the mean, maximum, minimum delay and lost percentage caused by different pairs of Gpacing and BW(t0) for BWBtlnck 2 [150Mbps;500Mbps] .. 132 7.7 Summary of STARTUP Gain pair selection . 133 7.8 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 1Mbps .............................. 136 7.9 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 1Mbps .............................. 137 7.10 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 5Mbps .............................. 138 7.11 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 20Mbps ............................. 138 7.12 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 150Mbps ............................. 139 7.13 Performance of thresholds, evolution of BW0/BW1 and Queue.