Cross-Layer Congestion Control and Quality of Service in Mobile Networks

Cross-Layer Congestion Control and Quality of Service in Mobile Networks

2 2 0 Cross-layer congestion control and T A P quality of service in mobile networks P I 0 The`se de doctorat de l’Institut Polytechnique de Paris 2 0 pre´pare´e a` Telecom Paris 2 : E´ cole doctorale n◦626 E´ cole Doctorale de l’Institut Polytechnique de Paris (IP Paris) T Spe´cialite´ de doctorat : Informatique, Donne´es et Intelligence Artificielle N N The`se pre´sente´e et soutenue a` Palaiseau, le 15/07/2020, par ZHENZHE ZHONG Composition du Jury : Isabel Amigo Assistant Professor,IMT Atlantique Pre´sident M.Lyes Khoukhi Professeur,University of Technology of Troyes Rapporteur M.Pascal Lorenz Professeur, University of Haute Alsace Rapporteur Dominique Gaiti Professeur, University of Technology of Troyes Examinateur Ste´phane Tuffin Gestionnaire de projet, Orange Labs Examinateur Isabelle Hamchaoui inge´nieur de recherche senior, Orange Labs Directeur de the`se(CIFRE) Ahmed Serhrouchni Professeur, Telecom ParisTech Directeur de the`se Rida Khatoun Associate Professor, Telecom ParisTech Co-directeur de the`se 626 Table of contents List of figures5 List of tables9 List of Abbreviations 18 1 Introduction 21 1.1 Context and Objective . 21 1.2 Contributions . 24 1.3 Thesis outline . 25 2 Introduction en Français 27 2.1 Contexte et objectif . 27 2.2 Contributions . 30 2.3 Aperçu de la thèse . 32 3 Overview of Mobile network architecture and congestion control algorithms 33 3.1 Introduction . 33 3.2 LTE mobile network . 34 3.2.1 LTE backhaul . 34 3.2.2 LTE Radio Access Network . 35 3.3 End-to-End Congestion control methods for Quality of Service . 41 3.3.1 Non-Cross-Layer protocols . 42 3.3.2 Cross-layer protocols . 52 3.3.3 Other solutions . 58 3.4 Discussion and conclusion . 59 4 Models and Tools used in Congestion Control Algorithms 63 4.1 Introduction . 63 Table of contents 4.2 Design logics in a Congestion Control Algorithm: a TCP example . 63 4.3 TCP Transmit/Receive Sequence Trace figures . 66 4.4 The STARTUP procedure in bottleneck bandwidth and round trip delay-based congestion control . 69 4.5 DupAck procedure for the lower bound to confirm a trend . 71 4.6 BURSTY traffic and PACING traffic . 72 4.7 Conclusion and discussion . 77 5 Adapt Channel Quality Indicator Control and Bottleneck Bandwidth and RTT congestion control in LTE network in NS3 simulator 79 5.1 Introduction . 79 5.2 TCP BBR . 80 5.2.1 BBR state machine . 80 5.2.2 BBR capacity estimation . 82 5.3 From CQIC in 3G to DCIC/TCP-CQIC-LTE . 82 5.3.1 QUIC-CQIC in HSPA+ . 82 5.3.2 DCIC/TCP-CQIC in LTE . 84 5.3.3 Why Delayed ACK . 87 5.4 DCIC/TCP-CQIC implementation on NS3 . 89 5.5 DCIC/TCP-CQIC-LTE v.s. TCP Westwood and Cubic . 90 5.5.1 Result and discussion . 91 5.6 DCIC/TCP-CQIC v.s. TCP BBR . 95 5.7 Conclusion . 98 6 Toward client driven bandwidth estimation architecture for end-to-end conges- tion control: a protocol design 101 6.1 Introduction . 101 6.2 The pros and cons of tested CCAs . 102 6.3 Bandwidth estimation method in UE . 104 6.3.1 Principle of design . 104 6.3.2 Validate CDBE BWE method with saturated traffic . 107 6.4 CDBE state transition module in server . 107 6.4.1 State definition and impact of parameters . 109 6.4.2 Condition of state transition in CDBE server . 111 6.5 Simulation and result discussion . 113 6.5.1 Simulation configuration . 113 6.5.2 Performance of CDBE server . 114 2 Table of contents 6.5.3 Per-flow analysis . 116 6.5.4 System level result statistics, evaluation and discussion . 116 6.6 Conclusion . 118 7 CDBEv2: Toward ubiquitous congestion control in a mobile network 121 7.1 Introduction . 121 7.2 From CDBE to CDBEv2 . 122 7.2.1 Simplified Client-Side bottleneck bandwidth estimation . 122 7.2.2 Server Side Windowed BWE report utilisation with a dynamic low-pass filter . 123 7.2.3 Advanced features in CDBEv2 state machine . 126 7.2.4 Simulation and analysis of CDBEv2 . 142 7.3 Conclusion and future work . 153 8 Conclusion and Future work 159 8.1 Thesis conclusion . 159 8.2 Perspectives and future direction . 161 References 163 3 List of figures 1.1 Goals and tradeoffs for an ubiquitous CCA design . 23 2.1 Objectifs et compromis pour une conception CCA omniprésente . 30 3.1 LTE interface stacks . 34 3.2 Capacity variation in different generations of Cellular network . 37 3.3 Brief LTE protocol stack . 40 3.4 Simplified LTE Network architecture with RAN, backhaul and gateway . 41 3.5 Categories of congestion control solutions . 42 3.6 Illustrate the basic concept behind loss-based congestion control . 45 3.7 Illustration of ITCP . 50 3.8 Illustration of MTCP . 51 3.9 Mobile throughput Guidance . 51 3.10 CQIC Flowchart . 53 3.11 Improved CQIC Flowchart . 54 3.12 piStream flowchart . 55 3.13 Time consumption in different section of a Mobile edge network . 60 3.14 Goals and tradeoffs for an ubiquitous CCA design . 60 4.1 Abstract of the network assumption in the thesis . 64 4.2 Compare the target operating point and area of loss-based Congestion control and bandwidth/round trip delay based control algorithm . 65 4.3 Reading the TCP Trace figure . 67 4.4 Rough working pattern of Loss-based congestion control. 68 4.5 Simplest case for 3 Dupack . 72 4.6 Birth-death process of a M/M/1 Queue model . 74 4.7 Bandwidth utilisation against the cost in time for poisson type of traffic and bursty traffic . 75 5 List of figures 4.8 Cost of idle, queuing and sum of the two when the pacing data rate is equivalent to bottleneck bandwidth . 75 4.9 The effect of pacing in a network. 76 4.10 Recalling goals and objectives . 78 5.1 Case study example of CQIC and BBR . 83 5.2 DCI in LTE radio link . 84 5.3 Compare CQIC method and DCIC method . 85 5.4 Capacity difference among PHY, RLC and estimations . 88 5.5 CQIC Header report design. 89 5.6 Average Throughput(a), and(b)Average Round Trip Time . 91 5.7 Throughput Cumulative Distributive Function of1MB(a),10MB(b) download 92 5.8 RTT cdf of 1MB(a),10MB(b) download . 92 5.9 (a),Average RLC UL re-transmission (per UE) and (d)Average RLC UL re- transmission (per UE) . 93 5.10 The Maximum sequence of transmitteda,c and ACKed data sequenced,b... 94 5.11 DL, UL and End-to-End traffic . 97 6.1 Illustration of CDBE filter function on UE . 105 6.2 Fixed network topology for CDBE BWE validation . 107 6.3 Validate CDBE BWE method in a wired network with UDP traffic . 108 6.4 Validate CDBE BWE method in LTE with UDP traffic . 108 6.5 CDBE server state transition . 109 6.6 Bandwidth estimation (left), Gain, DSDL and DSDLmin in one experiment (right) . 113 6.7 Simulation topology and concept illustration . 114 6.8 (a) Goodput CDF of CDBE, CQIC, CQIC-S and BBR and (b) RTT samples with 75% and 99% percentiles . 119 7.1 The structure of BW option field in TCP header. 123 7.2 How does b change with RTT on interval RTTmin 2 [20ms;300ms] ...... 125 7.3 Queuing delay caused by STARTUP stage for Gpacing = 2;2:77;2:88 with BW(t0) = 1Mbps ................................ 129 7.4 Overall mean delay for initial bandwidth from 100Kbps to 1Mbps and the STARTUP Gain from 2 to 3 respectively. 130 7.5 The the mean, maximum, minimum delay and lost percentage caused by different pairs of Gpacing and BW(t0) for BWBtlnck 2 [1Mbps;150Mbps] ... 131 6 List of figures 7.6 The the mean, maximum, minimum delay and lost percentage caused by different pairs of Gpacing and BW(t0) for BWBtlnck 2 [150Mbps;500Mbps] .. 132 7.7 Summary of STARTUP Gain pair selection . 133 7.8 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 1Mbps .............................. 136 7.9 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 1Mbps .............................. 137 7.10 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 5Mbps .............................. 138 7.11 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 20Mbps ............................. 138 7.12 Performance of thresholds, evolution of BW0/BW1 and Queue size in bottlneck in BWBtlnck = 150Mbps ............................. 139 7.13 Performance of thresholds, evolution of BW0/BW1 and Queue.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    174 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us