Generation and Evaluation of Modified <I>Opaque-2</I>

Total Page:16

File Type:pdf, Size:1020Kb

Generation and Evaluation of Modified <I>Opaque-2</I> University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research in Agronomy and Horticulture Department Agronomy and Horticulture 12-2018 Generation and Evaluation of Modified opaque-2 (o2) Popcorn Suggests a Route to Quality Protein Popcorn (QPP) Ying Ren University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/agronhortdiss Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Genetics Commons, Other Plant Sciences Commons, and the Plant Breeding and Genetics Commons Ren, Ying, "Generation and Evaluation of Modified opaque-2 (o2) Popcorn Suggests a Route to Quality Protein Popcorn (QPP)" (2018). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 155. http://digitalcommons.unl.edu/agronhortdiss/155 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. GENERATION AND EVALUATION OF MODIFIED OPAQUE-2 (o2) POPCORN SUGGESTS A ROUTE TO QUALITY PROTEIN POPCORN (QPP) by Ying Ren A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Agronomy and Horticulture (Plant Breeding and Genetics) Under the Supervision of Professor David R. Holding Lincoln, Nebraska December, 2018 GENERATION AND EVALUATION OF MODIFIED OPAQUE-2 (o2) POPCORN SUGGESTS A ROUTE TO QUALITY PROTEIN POPCORN (QPP) Ying Ren, Ph.D. University of Nebraska, 2018 Advisor: David R. Holding I have been working on a Quality Protein Popcorn breeding project where QPM conversion is carried out simultaneously for several elite popcorn germplasms. During my study in the graduate program, I led the following aspects of the Quality Protein Popcorn Breeding Project: 1. Identified suitable QPMs as opaque-2 allele donors. 2. Examined the feasibility of quick introgression of the opaque-2 allele into popcorn lines via marker-assisted selection. 3. Monitored modification by SDS-PAGE zein profiling and light box phenotypic selection to make sure multiple modifier loci for opaque-2 were incorporated each time generation advancement was carried out. 4. Carried out high-throughput DNA extraction using the BioSprint Workstation and performed genotyping to guide field selection. 5. Principle Component Analysis (PCA) of amino acid profiles from UPLC (Ultra Performance Liquid Chromatography) of candidate QPP lines along with corresponding parental lines (QPM and popcorn). (in collaboration with Dr. Ruthie Angelovici from University of Missouri Columbia, MO) DEDICATION iii I would like to dedicate this work to all my family members who have always believed in me and have been supportive unconditionally in every aspects of my life, my advisors Dr. Xiyun Song Dr. David Holding for their generous impartion of knowledge, patient guidance during my pursuit of degrees and rigid attitude toward scientific research, and to all of my lovely friends for their companionship. Ying Ren iv Acknowledgements I'm indebted to Dr. David Holding for his support and encouragement. He sets good examples for me in both academia and life. I was fortunate to get onboard with this project led by him and gained great experience in performing scientific research. Great thanks to all of my committee members, Dr. Rodriguez, Dr. Clarke, Dr. Schnable and Dr. Rose who provided all the help I need to be on the right track toward graduation and a Ph.D. degree in Agronomy and Horticulture. Many thanks to ConAgra Foods for its support in funding and providing popcorn germplasms. Also, I would like to thank the North Central Regional Plant Introduction Station for providing QPM germplasms for research. Thanks for the collaborators who have made this research possible, Dr. Oscar Rodriguez from ConAgra, Dr. Ruthie Angelovici and Dr. Abou Yobi from University of Missouri Columbia, Dr. Devin Rose and Leandra Marshall from University of Nebraska-Lincoln. I feel grateful to Christine Smith, Dr. Kyla Morton, Dr. Aixia Li and Dr. Shangang Jia for their help with field work and Mike Livingston for his help with advice on high-throughput DNA extraction and genotyping. I also would like to express my thanks to instructors whom I learned a lot from in class including Dr. Eskridge from Department of Statistics, Dr. Hyten and Dr. Amundsen from Department of Agronomy and Horticulture, Dr. Cerrutti from School of Biological Sciences. Thanks for the knowledge and experience they’ve imparted to me. Thanks are due to my family, my friends and my two dog companions for their v unconditional care and support in all aspects as always. They have been my tutors for love, faith and how to lead a life. My life would have been a lot less happy without any of them in it. I dedicate this dissertation to all these people in my life. vi Funding Acknowledgement This research was financially supported by ConAgra Foods. vii Preface The results presented in Chapter 2, Chapter 3 and Chapter 4 were accepted for publication in Frontiers in Plant Science-Plant Breeding. (Y. Ren, A. Yobi, L. Marshall, R. Angelovici, O. Rodriguez and D. R. Holding, “Generation and evaluation of modified opaque-2 popcorn suggests a route to Quality Protein Popcorn,” (accepted for publication in Frontiers in Plant Science-Plant Breeding, Nov 20th, 2018).) viii Table of Contents LISTS OF MULTIMEDIA OBJECTS CHAPTER 1…………………………………………………………………...xi CHAPTER 2…………………………………………………………………...xi CHAPTER 3………………………………………………………………….xii CHAPTER 1 Literature Review Literature Review……………………………………………………………….1 1. Maize…………………………………………………………………………2 1.1 Maize kernel…………………………………………………………………3 1.1.1 Structure of a maize kernel…………………………………………………3 1.1.2 Kernel composition………………………………………………………3 1.2 Maize protein………………………………………………………………4 1.2.1 Zeins………………………………………………………………………4 1.2.2 Non-zeins…………………………………………………………………9 2. opaque-2 mutants and Quality Protein Maize………………………………9 2.1 opaque-2 mutants…………………………………………………………9 2.2 Quality Protein Maize (QPM) ……………………………………………20 2.3 Comparison of o2, QPM with wild type……………………………………29 3 Mechanism of amino acids change and protein quality improvement………31 3.1 Mechanism of amino acid changes in o2…………………………………31 3.1.1 Pathway for lysine synthesis and degradation……………………………31 3.1.2 Biosynthesis of other amino acids………………………………………37 3.2 Protein quality improvement………………………………………………38 ix 3.2.1 Conventional approach for protein quality improvement………………38 3.2.1.1 Marker-assisted breeding for gene introgression………………………38 3.2.1.2 QPM conversion studies…………………………………………………41 3.2.2 Application of transgenic approach for protein quality improvement………42 4. Popcorn………………………………………………………………………43 4.1 Types of popcorn……………………………………………………………44 4.2 Popcorn quality………………………………………………………………44 4.3 Popping process and mechanism for popping………………………………45 4.4 Popcorn breeding for incorporation of desirable traits……………………..51 4.5 Quality Protein Popcorn (QPP)……………………………………………55 Figures and Tables……………………………………………………………57 References……………………………………………………………………......67 CHAPTER 2 Design of breeding scHeme for QPP development Introduction…………………………………………………………………….108 1. Materials and ethods…………………………………………………......110 1.1 Plant materials……………………………………………………………110 1.2 Methods……………………………………………………………………111 2. Breeding scheme and selection procedure…………………………..…..113 2.1 Breeding cheme……………………………………………………………114 2.2 Genotypic and phenotypic selection methods applied in the breeding process…………………………………………………………………………114 Figures and Tables……………………………………………………………117 References……………………………………………………………………..132 x CHAPTER 3 Analysis of QPP developed between tHree QPM and four popcorn parental lines 1. Selection of BC2F4 population with full endosperm modification………….137 2. Confirmation of o2 genotype in BC2F4 population with full modification….137 3. Amino acids profiling revealed high lysine in all six different BC2F5 o2 introgressions…………………………………………………………………..137 4. Selection of fully modified o2 popcorn can result in equivalent popping to popcorn parents…………………………………………………………...…..140 Figures and Tables……………………………………………………….......142 References…………………………………………………………………….156 CHAPTER 4 Discussion of tHe impediments of QPP breeding and solutions, its prospective and future plans 1. Discussion on the impediments of QPP breeding and solutions……………....158 2. QPP prospective and future plans………………………………….…….....160 References………………………………………………………………….165 CHAPTER 5 Appendix 1. R codes for data analysis and presentation………………………………...171 1.1 PCA analysis of protein-bound amino acids (PBAA) ………………………171 1.2 PCA analysis of free amino acids (FAA) …………………………………...172 1.3. Comparison of log2 value of ratio (o2 /wild type ratio) for 15 amino acids using protein-bound amino acid (PBAA) measurements ……………………..173 1.4 Comparison of the relative concentration of total protein………………...175 1.5 Popping volume comparison……………………………………...………176 xi Lists of Multimedia Objects CHAPTER 1 Introduction Figure 1. Structure of a maize kernel (Hoseney et al., 1986).…………………………57 Figure 2. Regulatory effects of the Opaque-2 gene (Prioul et al., 2008).……………..58 Figure 3. A proposed model for PBF and O2 controlling kernel nutritional quality and yield in maize (Zhang
Recommended publications
  • Corn Has Diverse Uses and Can Be Transformed Into Varied Products
    Maize Based Products Compiled and Edited by Dr Shruti Sethi, Principal Scientist & Dr. S. K. Jha, Principal Scientist & Professor Division of Food Science and Postharvest Technology ICAR-Indian Agricultural Research Institute, Pusa New Delhi 110012 Maize is also known as Corn or Makka in Hindi. It is one of the most versatile crops having adaptability under varied agro-climatic conditions. Globally, it is known as queen of cereals due to its highest genetic yield potential among the cereals. In India, Maize is grown throughout the year. It is predominantly a kharif crop with 85 per cent of the area under cultivation in the season. The United States of America (USA) is the largest producer of maize contributing about 36% of the total production. Production of maize ranks third in the country after rice and wheat. About 26 million tonnes corn was produced in 2016-17 from 9.6 Mha area. The country exported 3,70,066.11 MT of maize to the world for the worth of Rs. 1,019.29 crores/ 142.76 USD Millions in 2019-20. Major export destinations included Nepal, Bangladesh Pr, Myanmar, Pakistan Ir, Bhutan The corn kernel has highest energy density (365 kcal/100 g) among the cereals and also contains vitamins namely, vitamin B1 (thiamine), B2 (niacin), B3 (riboflavin), B5 (pantothenic acid) and B6. Although maize kernels contain many macro and micronutrients necessary for human metabolic needs, normal corn is inherently deficient in two essential amino acids, viz lysine and tryptophan. Maize is staple food for human being and quality feed for animals.
    [Show full text]
  • Stone-Boiling Maize with Limestone: Experimental Results and Implications for Nutrition Among SE Utah Preceramic Groups Emily C
    Agronomy Publications Agronomy 1-2013 Stone-boiling maize with limestone: experimental results and implications for nutrition among SE Utah preceramic groups Emily C. Ellwood Archaeological Investigations Northwest, Inc. M. Paul Scott United States Department of Agriculture, [email protected] William D. Lipe Washington State University R. G. Matson University of British Columbia John G. Jones WFoasllohinwgt thion Sst atnde U naiddveritsitiony al works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, Food Science Commons, and the Indigenous Studies Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/172. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Journal of Archaeological Science 40 (2013) 35e44 Contents lists available at SciVerse ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Stone-boiling maize with limestone: experimental results and implications for nutrition among SE Utah preceramic groups Emily C. Ellwood a, M. Paul Scott b, William D. Lipe c,*, R.G. Matson d, John G. Jones c a Archaeological
    [Show full text]
  • Quality Protein Maize (QPM): a Guide to the Technology and Its Promotion in Ethiopia
    QUALITY PROTEIN MAIZE A Guide to the Technology (QPM) and Its Promotion in Ethiopia Adefris Teklewold, Dagne Wegary, Abraham Tadesse, Birhanu Tadesse, Kassahun Bantte, Dennis Friesen and B.M. Prasanna CIMMYT – the International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research-for-development. Headquartered near Mexico City, CIMMYT works with hundreds of partners worldwide to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR Consortium and leads the CGIAR Research Programs on MAIZE and WHEAT. The Center receives support from national governments, foundations, development banks and other public and private agencies. © 2015. International Maize and Wheat Improvement Center (CIMMYT). All rights reserved. The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of CIMMYT or its contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. CIMMYT encourages fair use of this material. Proper citation is requested. Correct citation: Adefris Teklewold, Dagne Wegary, Abraham Tadesse, Birhanu Tadesse, Kassahun Bantte, Dennis Friesen and B.M. Prasanna, 2015. Quality Protein Maize (QPM): A Guide to the Technology and Its Promotion in Ethiopia. CIMMYT: Addis Ababa, Ethiopia. Abstract: This guide book introduces the nutritional benefits of QPM over conventional maize varieties and presents a brief overview of its historical development. It also provides information on QPM varieties available for commercial production in different agro-ecologies of Ethiopia and the agronomic management practices required for seed and grain production.
    [Show full text]
  • Breeding for Quality Protein Maize (QPM) Varieties: a Review
    agronomy Review Breeding for Quality Protein Maize (QPM) Varieties: A Review Liliane N. Tandzi 1,2,*, Charles S. Mutengwa 1, Eddy L. M. Ngonkeu 2,3, Noé Woïn 2 and Vernon Gracen 4 1 Department of Agronomy, Faculty of Science and Agriculture, University of Fort Hare, P. Bag X1314, Alice 5700, South Africa; [email protected] 2 Institute of Agricultural Research for Development (IRAD), P.O. Box 2123, Messa, Yaounde, Cameroon; [email protected] (E.L.M.N.); [email protected] (N.W.) 3 Department of Plant Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon 4 West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon PMB LG 30, Accra 999064, Ghana; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +27-063-459-4323 Received: 28 August 2017; Accepted: 19 October 2017; Published: 28 November 2017 Abstract: The nutritional evaluation of quality protein maize (QPM) in feeding trials has proved its nutritional superiority over non-QPM varieties for human and livestock consumption. The present paper reviews some of the most recent achievements in development of QPM varieties using both conventional and molecular breeding under stressed and non-stressed environments. It is evident that numerous QPM varieties have been developed and released around the world over the past few decades. While the review points out some gaps in information or research efforts, challenges associated with adoption QPM varieties are highlighted and suggestions to overcome them are presented. The adoption of released varieties and challenges facing QPM production at the farmer level are also mentioned.
    [Show full text]
  • Factors Influencing Commercialization of Green Maize in Nandi South, Nandi County Kenya by Pius Kipkorir Cheruiyot a Thesis Subm
    FACTORS INFLUENCING COMMERCIALIZATION OF GREEN MAIZE IN NANDI SOUTH, NANDI COUNTY KENYA BY PIUS KIPKORIR CHERUIYOT A THESIS SUBMITTED TO THE SCHOOL OF ARTS AND SOCIAL SCIENCES, DEPARTMENT OF HISTORY, POLITICAL SCIENCE AND PUBLIC ADMINISTRATION FOR THE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN PUBLIC ADMINISTRATION AND POLICY MOI UNIVERSITY DECEMBER, 2018 ii DECLARATION Declaration by the Student I declare that this thesis is my original work and has not been presented for the award of degree in any another university. No part of this thesis may be reproduced without prior written permission of the Author and/ or Moi University Pius Kipkorir Cheruiyot ……………………… ……………… SASS/PGPA/06/07 Signature Date Declaration By the Supervisors This thesis has been submitted for examination with our Approval as University Supervisors. Dr. James K. Chelang’a ……………………… ……………… Department of History, Political Signature Date Science and Public Administration Mr. Dulo Nyaoro ……………………… ……………… Department of History, Political Signature Date Science and Public Administration iii DEDICATION This work is dedicated to my beloved wife Mercy Cheruiyot, children Kipkoech, Kimaru, Jerop, and Jepkurui. To my parents Sosten Cheruiyot and Anjaline Cheruiyot, siblings and all my friends for their inspiration, encouragement and continuous support throughout the entire process of writing this research thesis. God Bless you all. iv ABSTRACT The purpose of this study was to assess the factors that influenced the commercialization of green maize in Nandi South, Nandi County. The Study aimed at investigating the reasons why farmers opted to sell green maize rather than wait to sell it as dry cereals. The study aimed at achieving the following objectives; to analyze policies that guide the commercialization of green maize; to assess factors that motivate farmers to sell their green maize, to evaluate the consequences of the sale of green maize and to assess the positive ant the negative results of the sale of green maize.
    [Show full text]
  • Introgression of Opaque-2 Gene Into the Genetic Background of Popcorn Using Marker Assisted Selection P
    International Research Journal of Biotechnology Vol. 5(1) pp 10-18, January, 2019 DOI: http:/dx.doi.org/https://www.interesjournals.org/biotechnology.html Available online http://www.interesjournals.org/IRJOB Copyright ©2018 International Research Journals Research Article Introgression of Opaque-2 Gene into the Genetic Background of Popcorn Using Marker Assisted Selection P. M. Adunola1*, B. O. Akinyele1, A. C. Odiyi1, L. S. Fayeun1 and M. G. Akinwale2 1Department of Crop, Soil and Pest Management, Federal University of Technology, P.M.B 704, Akure, Ondo State, Nigeria 2Chitedze Research Station, International Institute of Tropical Agriculture, Malawi ABSTRACT Biofortification of a natural snack like popcorn is important for improved nutrition and health of children and adults. This study was aimed at introgressing opaque-2 gene, a high lysine/tryptophan gene into the genetic background of popcorn. Field experiments were carried out at the Teaching and Research Farm (TRF) of the Federal University of Technology, Akure (FUTA) during the dry and wet seasons of 2016 while biochemical and molecular analyses were carried out in the Biochemistry Laboratory, FUTA and Bioscience Laboratory, International Institute of Tropical Agriculture (IITA) respectively. Nine parental genotypes were used which comprised three popcorn maize varieties and six Quality Protein Maize (QPM) varieties. F1 hybrids were developed by crossing the parental genotypes using North Carolina mating design I. The hybrids were then advanced to F2 by self-pollination. Segregated F2 kernels from each genotype were screened on the light box. Kernel modifications 2 (25% opaque) and 3 (50% opaque) were selected. Selected kernels were analysed biochemically for protein and tryptophan contents.
    [Show full text]
  • A Comparative Study of Protein Changes in Normal and Quality Protein Maize During Tortilla Making
    A Comparative Study of Protein Changes in Normal and Quality Protein Maize During Tortilla Making ENRIQUE I. ORTEGA,' EVANGELINA VILLEGAS,I and SURINDER K. VASAL2 ABSTRACT Cereal Chem. 63(5):446-451 Protein changes were evaluated in two different maize genotypes of as nitrogen content increased in the glutelin fraction and in the residue after contrasting protein quality made into tortillas. In both types of maize, fractionation. Tortillas made from quality protein maize (QPM) had a albumins, globulins, zeins, and glutelinlike components became insoluble superior amino acid score mainly because of their very high lysine and after interacting with other biochemical entities catalyzed by the alkaline tryptophan content, which was not significantly affected during tortilla pH and the heat produced in tortilla-making. Increased nitrogen recovery preparation. The superiority of the product obtained with the QPM sample with solvents having alkaline pH, a reducing agent, and sodium dodecyl was demonstrated by its high content of available lysine. Although the in sulfate indicate that hydrophobic interactions may have been involved in vitro digestibility of protein with pepsin and the amount of availablelysine this change in solubility of proteins that are more easily solubilized in the changed during tortilla-making, no evidence was found of a specific unprocessed maize grain. In vitro protein digestibility with pepsin declined detrimental effect on the protein quality of the original QPM grain. Improving the protein quality of cereal grains has been a major Various researchers have investigated nixtamalization and other concern of agricultural scientists for the last two decades. Mutant aspects of tortilla making. Chemical changes that occur during the germ plasm with high levels of lysine has been identified in maize lime treatment of corn (Bressani and Scrimshaw 1958) and during (Mertz et al 1964), sorghum (Singh and Axtell 1973), and barley preparation of tortillas (Bressani et al 1958) are reported.
    [Show full text]
  • DP/PROJECTS/Rec.12
    DP UNITED NATIONS Distr. GoverningCouncil GENERAL of the United Nations DP/PROJECTS/REC/12 Development Programme 14 March 1984 ORIGINAL: ENGLISH Thirty-first session 4-29 June 1984, Geneva Agenda item 5(b) PROGRAMME PLANNING COUNTRY AND INTERCOUNTRY PROGRAMMES AND PROJECTS CONSIDERATION AND APPROVAL OF GLOBAL AND INTERREGIONAL PROGRAMMES AND PROJECTS Project recommendation of the Administrator Assistance for a global project International Maize Testing Programme and Selected Training Activities (GL0/84/002) $5 400 000 Estimated UNDP contribution: Five years Duration: UNDP Executing agency: I. BACKGROUND i. Among cereal crops, maize possesses the highest genetic yield potential, has enormous genetic variation and is adapted to an extremely wide range of climatic conditions. It is a crop of many productive uses. In addition to its value as a foodstuff and as the major animal feed, maize also has many industrial uses such as starch, cooking oil, sweeteners, and more recently, biomass and gasohol. OOl 84-06842 DP/PROJECTS/REC/12 English Page 2 2. In most developing countries in which maize is an important food crop, yields are low, averaging about 1.5 tons per hectare. Although one half of the world’s maize area is planted in the developing countries of Asia, Africa and Latin America, only one-third of the world crop is harvested there. Most of the maize produced in these coun=ries is a subsistence crop, usually grown on soils of low fertility under rainfed conditions characterized by seasonal problems of moisture stress and poor weed control. 3. The Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), which is part of the_network of international agricultural research centres sponsored by the Consultative Group on International Agricultural Research (CGIAR), originally began as a collaborative programme between the Government of Mexic6 and the Rockefeller Foundation for the improvement of maize and wheat.
    [Show full text]
  • Genetic Study of Compositional and Physical Kernel Quality Traits in Diverse Maize
    Genetic Study of Compositional and Physical Kernel Quality Traits in Diverse Maize (Zea mays L.) Germplasm DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Si Hwan Ryu, M.S. Graduate Program in Horticulture and Crop Science The Ohio State University 2010 Dissertation Committee: Dr. Richard C. Pratt, Advisor Dr. Joseph C. Scheerens Dr. Peter R. Thomison Dr. Margaret G. Redinbaugh Copyright by Si Hwan Ryu 2010 Abstract Grain quality traits of maize such as protein, oil, starch, and kernel size and density are essential for various end-uses; feed for animals, food for humans, and raw materials for industry. Kernel pigments like anthocyanins and carotenoids have numerous nutritional functions in animals and human beings. Increasing the levels of these compositional traits and pigments in kernels should increase the nutritional quality of maize. An investigation of protein content and its relationship with kernel physical traits and identification of quantitative trait loci (QTL) underlying these traits was conducted in a population arising from a cross between a low protein temperate dent inbred (B73) and a high protein tropical flint breeding line (H140). The QTL associated with these traits were determined by selective genotyping and the correlations among kernel traits were calculated. A preliminarily examination of QTL associated with oil and starch was also undertaken. Kernel pigment content of representative Arido-American land race maize accessions was evaluated and relationships between pigments, protein, and oil contents were determined. Reciprocal effects when high and low pigment containing progenies were crossed also were examined.
    [Show full text]
  • Grain Characteristics and Composition of Maize Specialty Hybrids S
    Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Spanish Journal of Agricultural Research 2011 9(1), 230-241 Available online at www.inia.es/sjar ISSN: 1695-971-X eISSN: 2171-9292 Grain characteristics and composition of maize specialty hybrids S. Zilic1*, M. Milasinovic1, D. Terzic1, M. Barac2 and D. Ignjatovic-Micic1 1 Maize Research Institute, «Zemun Polje». Slobodana Bajic´a, 1. 11000 Belgrade-Zemun. Serbia 2 Faculty of Agriculture. University of Belgrade. Nemanjina, 6. 11000 Belgrade-Zemun. Serbia Abstract Improved nutritive and technological maize grain value is very important for its use in diets. In this work, the chemical composition and potential beneficial components, including total and soluble proteins, tryptophan, starch, sugars (sucrose and reducing sugars), and fibres were investigated in flour of eight specialty maize hybrids from Maize Research Institute Zemun Polje (ZP): two sweet, popping, red, white, waxy, yellow semiflint and yellow dent maize hybrids. In addition, digestibility of grain dry matter and viscosity of maize flour were determined. The highest nutritive value was recorded in sweet maize hybrids ZP 504su and ZP 531su which had the highest content of total protein, albumin, tryptophan, sugars and dietary fibres. Besides, low content of starch (55.32% and 54.59%, respectively) and lignin (0.39% and 0.45%) affected the highest dry matter digestibility (92.69% and 91.07%) of sweet maize flour. However, functional properties of ZP sweet hybrids were not satisfactory for food and
    [Show full text]
  • Physicochemical and Functional Properties of Starches of Two Quality Protein Maize (QPM) Grown in Côte D’Ivoire Mariame CISSE, Lessoy T
    Cisse et al J. Appl. Biosci. 2013. Physicochemical & functional properties of starches in quality protein maize Journal of Applied Biosciences 66:5130– 5139 ISSN 1997–5902 Physicochemical and functional properties of starches of two quality protein maize (QPM) grown in Côte d’Ivoire Mariame CISSE, Lessoy T. ZOUE*, Yadé R. SORO, Rose-Monde MEGNANOU and Sébastien NIAMKE. Laboratoire de Biotechnologies, UFR Biosciences, Université de Cocody, Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire. (*) Corresponding author: Lessoy Thierry Zoué, [email protected] Original submitted in on 11th April 2013 Published online at www.m.elewa.org on 30th June 2013. https://dx.doi.org/10.4314/jab.v66i0.95010 ABSTRACT Objective: The aim of this study was to investigate physico-chemical and functional properties of starches from two novel (white and yellow QPM) varieties of maize cultivated in Côte d’Ivoire in order to explore their potential use in food and non food industries. Methodology and results: Starches from four varieties of maize, namely two ordinary (white and yellow varieties) and two QPM (white and yellow varieties) were extracted and their physico-chemical and functional characteristics were determined. Statistical analyses were performed on data obtained. Protein and fat contents (0.35-0.37 ± 0.06%; 0.53-0.57 ± 0.05%) of white and yellow QPM starches were lower than that (0.38-0.39 ± 0.06%; 0.63-0.66 ± 0.05%) of white and yellow ordinary maize. The particle size of the four starches varied from 4.75 to 22.79 µm for white QPM; 5.28 to 22.62 µm for white ordinary maize; 5.98 to 22.88 µm for yellow QPM and 5.63 to 21.47 µm for yellow ordinary maize.
    [Show full text]
  • Quality Protein Maize, Specialty and Other Corn Types Production
    Quality Protein Maize, Specialty and other Corn types production technology Other than grain, maize is also cultivated for various purposes like quality protein maize and other special purposes known as ‘Specialty Corn’. The various specialty corn types are quality protein maize (QPM), baby corn, sweet corn, pop corn, waxy corn, high oil corn etc. In India, QPM, baby corn and sweet corn are being popularized and cultivated by the large number of farmers. The brief summary of different type of specialty maize is as follows – i. Quality Protein Maize As more than 85 % of the maize is used directly for food and feed, the quality has a great role for food and nutritional security in the country. In this respect, discovery of Opaque-2 (O2) and floury-2 (F2) mutant had opened tremendous possibilities for improvement of protein quality of maize which later led to the development of “Quality Protein Maize (QPM). QPM which is nutritionally superior over the normal maize is the new dynamics to signify its importance not only for food and nutritional security but also for quality feed for poultry, piggery and animal sectors as well. Quality Protein Maize has specific features of having balanced amount of amino acids with high content of lysine and tryptophan and low content of leucine & isoleucine. The balanced proportion of all these essential amino acid in Quality Protein Maize enhances the biological value of protein. The biological value of protein in QPM is just double than that of normal maize protein which is very close to the milk protein as the biological value of milk and QPM proteins are 90 and 80 % respectively.
    [Show full text]