Genomic Features and Evolution of the Conditionally Dispensable Chromosome in the Tangerine Pathotype of Alternaria Alternata

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Features and Evolution of the Conditionally Dispensable Chromosome in the Tangerine Pathotype of Alternaria Alternata MOLECULAR PLANT PATHOLOGY (2019) 20(10), 1425–1438 DOI: 10.1111/mpp.12848 Genomic features and evolution of the conditionally dispensable chromosome in the tangerine pathotype of Alternaria alternata MINGSHUANG WANG 1,2,3,†, HUILAN FU1,†, XING-XING SHEN2, RUOXIN RUAN1,4, ANTONIS ROKAS2 AND HONGYE LI1,* 1 Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China 2 Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 3 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China 4 Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China SUMMARY INTRODUCTION The tangerine pathotype of the ascomycete fungus Alternaria Alternaria alternata fungi can be ubiquitously found in soil, var- alternata is the causal agent of citrus brown spot, which can ious plants, and decaying plant debris (Thomma, 2003). Some result in significant losses of both yield and marketability for A. alternata strains can cause plant diseases and result in se- tangerines worldwide. A conditionally dispensable chromosome vere crop losses worldwide. Because these strains can often be (CDC), which harbours the host-selective ACT toxin gene clus- morphologically very similar but exhibit substantial pathological ter, is required for tangerine pathogenicity of A. alternata. To differences, they have been defined as pathotypes of A. alter- understand the genetic makeup and evolution of the tangerine nata (Tsuge et al., 2013). At least seven pathogenic A. alternata pathotype CDC, we isolated and sequenced the CDCs of the pathotypes, each producing a unique host-selective toxin (HST) A. alternata Z7 strain and analysed the function and evolution essential to pathogenicity, have been recognized to cause dis- of their genes. The A. alternata Z7 strain has two CDCs (~1.1 eases in Japanese pear, strawberry, tangerine, apple, tomato, and ~0.8 Mb, respectively), and the longer Z7 CDC contains rough lemon and tobacco (Tsuge et al., 2013). Generally, genes all but one contig of the shorter one. Z7 CDCs contain 254 required for HST biosynthesis in A. alternata are clustered on rel- predicted protein-coding genes, which are enriched in func- atively small chromosomes that are 1.0–2.0 Mb in size (Tsuge tional categories associated with ‘metabolic process’ (55 genes, et al., 2013). These accessory or conditionally dispensable chro- P = 0.037). Relatively few of the CDC genes can be classified mosomes (CDCs) are highly variable among species, are gener- as carbohydrate-active enzymes (CAZymes) (4) and transporters ally not required for growth and reproduction on artificial media, (19) and none as kinases. Evolutionary analysis of the 254 CDC but are required for A. alternata pathogenicity (Hatta et al., proteins showed that their evolutionary conservation tends to be 2002; Johnson et al., 2001). restricted within the genus Alternaria and that the CDC genes The importance of CDCs conferring pathogenicity to fruits evolve faster than genes in the essential chromosomes, likely has been demonstrated by the construction of A. alternata hy- due to fewer selective constraints. Interestingly, phylogenetic brids in laboratory conditions. More specifically, two distinct lab- analysis suggested that four of the 25 genes responsible for the oratory hybrids were constructed from tomato and strawberry ACT toxin production were likely transferred from Colletotrichum pathotypes and separately for apple and tomato pathotypes. (Sordariomycetes). Functional experiments showed that two of The resulting hybrids harboured two CDCs from their parents, them are essential for the virulence of the tangerine pathotype of allowing for the production of HSTs that caused diseases in both A. alternata. These results provide new insights into the function parental plant species (Akagi et al., 2009b; Akamatsu et al., and evolution of CDC genes in Alternaria. 2001). Furthermore, these studies support the hypothesis that CDCs can be transmitted between different strains thereby fa- Keywords: accessory chromosome, Dothideomycetes, cilitating the spread and evolutionary diversification of fungal evolutionary origin, horizontal gene transfer, karyotype, phytopathogens. pathogenicity. Besides A. alternata, many other fungal phytopathogens have CDCs in their genomes, including Fusarium oxyspo- *Correspondence: Email: [email protected] rum, Nectria haematococca, Zymoseptoria tritici (previously †These authors contributed equally to this work. known as Mycosphaerella graminicola and Septoria tritici) and © 2019 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. 1425 1426 M. WANG et al. Colletotrichum gloeosporioides (Coleman et al., 2009; Ma et al., genes was restricted to the genus Alternaria and that four CDC 2010; Stukenbrock et al., 2010). Because CDCs are typically genes belonging to the ACT toxin gene cluster likely originated found in some, but not all, strains, they have been proposed to via horizontal gene transfer (HGT) events from other fungi. The have different evolutionary origins than the essential chromo- recombination mutants of two HGT genes showed a dramatic somes (Covert, 1998; Tsuge et al., 2013), e.g. through horizontal reduction in virulence to citrus leaves. These results suggest transfer from distantly related species (Covert, 1998; Hatta et al., that Alternaria CDCs exhibit chromosomal polymorphisms, 2002). The possibility of horizontal transfer of CDCs between that CDC genes are involved in processes associated with me- species has been demonstrated in several studies. For example, tabolism, that they are rapidly evolving and that the charac- a 2 Mb chromosome was transferred between two different bio- teristics associated with their virulence sometimes originate types of C. gloeosporioides during vegetative co-cultivation in via HGT. the laboratory (He et al., 1998). Importantly, CDC acquisition can facilitate the transition from the non-pathogenic to pathogenic RESULTS phenotype in the recipient organism. For example, co-incubation of non-pathogenic and pathogenic genotypes of F. oxysporum Identification and sequencing of the CDCs revealed that the transfer of a CDC from the pathogenic (donor) The tangerine pathotype strain of A. alternata from Florida con- to non-pathogenic genotype (recipient) enabled the recipient to tains one CDC (Miyamoto et al., 2009), which led us to reason become pathogenic to tomatoes (Ma et al., 2010). that the A. alternata Z7 strain would also contain one CDC. To Previously, the ~1.0 Mb CDC of the tomato pathotype of A. al- evaluate the genomic size of the CDC in A. alternata Z7, we per- ternata was identified and characterized (Hu et al., 2012). Genes formed pulsed-field gel electrophoresis using Z7 protoplast cells. in that CDC are abundant in the categories of ‘metabolic pro- Unexpectedly, we found that the strain Z7 possesses two CDCs, cess’ and ‘biosynthetic process’, and include 36 polyketide and one that is ~1.1 Mb in size and another that is ~0.8 Mb (Fig. 1). non-ribosomal peptide synthetase domain-containing genes. The electrophoretic karyotype of A. alternata Z7 is different from Furthermore, the G+C content of third codon positions, codon that of the tangerine pathotype strains isolated from Florida, usage bias and repeat region load in the CDC are different from USA, which has only one ~1.9–2.0 Mb CDC (Miyamoto et al., those in the essential chromosomes (Hu et al., 2012), raising the 2009). These results suggest that Alternaria strains within the hypothesis that the A. arborescens CDC was acquired through same pathotype exhibit variability in both the number and size horizontal transfer from an unrelated fungus (Hu et al., 2012). of their CDCs. The tangerine pathotype of A. alternata, which can cause To obtain the genomic sequence of the A. alternata Z7 CDCs, citrus brown spot on tangerines and tangerine hybrids, was we isolated the corresponding CDC bands from the pulsed-field demonstrated to harbour an additional chromosome of about 1.9–2.0 Mb by pulsed-field gel electrophoresis studies (Miyamoto et al., 2008, 2009). Seven genes, ACTTR, ACTT2, ACTT3, ACTT5, ACTT6, ACTTS2 and ACTTS3, were located on this chromosome and found to be required for the biosynthe- sis of the ACT toxin, a unique HST produced by the tanger- ine pathotype (Tsuge et al., 2013). However, relatively little is known about the content, potential biological functions and evolution of the other genes in the CDC of the tangerine pathotype of A. alternata. To address this question, we isolated and sequenced the CDCs of the tangerine pathotype strain Z7 of A. alternata iso- lated from Zhejiang, China (Huang et al., 2015). We found that the Z7 strain contains two different CDCs, 1.1 and 0.8 Mb in size; in contrast, another strain of the same pathotype from Florida was described to have one CDC (Miyamoto et al., 2009). Interestingly, the smaller CDC is nearly identical in se- quence to part of the larger CDC in the Z7 strain. Examination of the functional annotation of all 254 genes in the Z7 CDCs showed that 55 out of the 254 CDC genes are enriched in func- Fig. 1 Electrophoretic karyotype of the Alternaria alternata Z7 tions associated
Recommended publications
  • Management of Alternaria Leaf and Fruit Spot in Apples
    Management of Alternaria leaf and fruit spot in apples Christine Horlock QLD Department of Primary Industries and Fisheries Project Number: AP02011 AP02011 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the apple and pear industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the apple and pear industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 1256 4 Published and distributed by: Horticulture Australia Ltd Level 1, 50 Carrington Street Sydney NSW 2000 T: (02) 8295 2300 F: (02) 8295 2399 E: [email protected] © Copyright 2006 FINAL REPORT AP02011 (28 February 2006) Management of Alternaria leaf and fruit spot in apples Christine M. Horlock et al. Department of Primary Industries and Fisheries, Queensland AP02011 Ms Christine M. Horlock Plant Pathologist, Delivery Department of Primary Industries and Fisheries, Queensland Applethorpe Research Station PO Box 501 STANTHORPE QLD 4380 Dr Shane Hetherington Deciduous Fruits Pathologist NSW Department of Primary Industries, Agriculture Orange Agricultural Institute Forest Road ORANGE NSW 2800 Mr Shane Dullahide Former Senior Experimentalist, Delivery Department of Primary Industries and Fisheries, Queensland Applethorpe Research Station PO Box 501 STANTHORPE QLD 4380 This document is the final report for the APAL / HAL funded project “Management of Alternaria leaf and fruit spot in apples”, and as such contains the details of all scientific work carried out in this project.
    [Show full text]
  • Isolation and Identification of Fungi from Leaves Infected with False Mildew on Safflower Crops in the Yaqui Valley, Mexico
    Isolation and identification of fungi from leaves infected with false mildew on safflower crops in the Yaqui Valley, Mexico Eber Addi Quintana-Obregón 1, Maribel Plascencia-Jatomea 1, Armando Burgos-Hérnandez 1, Pedro Figueroa-Lopez 2, Mario Onofre Cortez-Rocha 1 1 Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Colonia Centro. C.P. 83000 Hermosillo, Sonora, México. 2 Campo Experimental Norman E. Borlaug-INIFAP. C. Norman Borlaug Km.12 Cd. Obregón, Sonora C.P. 85000 3 1 0 2 Aislamiento e identificación de hongos de las hojas infectadas con la falsa cenicilla , 7 en cultivos de cártamo en el Valle del Yaqui, México 2 - 9 1 Resumen. La falsa cenicilla es una enfermedad que afecta seriamente los cultivos de cártamo en : 7 3 el Valle del Yaqui, México, y es causada por la infección de un hongo perteneciente al género A Ramularia. En el presente estudio, un hongo aislado de hojas contaminadas fue cultivado bajo Í G diferentes condiciones de crecimiento con la finalidad de estudiar su desarrollo micelial y O L producción de esporas, determinándose que el medio sólido de , 18 C de O Septoria tritici ° C I incubación y fotoperiodos de 12 h luz-oscuridad, fueron las condiciones más adecuadas para el M desarrollo del hongo. Este aislamiento fue identificado morfológicamente como Ramularia E D , pero genómicamente como , por lo que no se puede cercosporelloides Cercosporella acroptili A aún concluir que especie causa esta enfermedad. Adicionalmente, en la periferia de las N A C infecciones estudiadas se detectó la presencia de Alternaria tenuissima y Cladosporium I X cladosporioides.
    [Show full text]
  • 1 Etiology, Epidemiology and Management of Fruit Rot Of
    Etiology, Epidemiology and Management of Fruit Rot of Deciduous Holly in U.S. Nursery Production Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shan Lin Graduate Program in Plant Pathology The Ohio State University 2018 Dissertation Committee Dr. Francesca Peduto Hand, Advisor Dr. Anne E. Dorrance Dr. Laurence V. Madden Dr. Sally A. Miller 1 Copyrighted by Shan Lin 2018 2 Abstract Cut branches of deciduous holly (Ilex spp.) carrying shiny and colorful fruit are popularly used for holiday decorations in the United States. Since 2012, an emerging disease causing the fruit to rot was observed across Midwestern and Eastern U.S. nurseries. A variety of other symptoms were associated with the disease, including undersized, shriveled, and dull fruit, as well as leaf spots and early plant defoliation. The disease causal agents were identified by laboratory processing of symptomatic fruit collected from nine locations across four states over five years by means of morphological characterization, multi-locus phylogenetic analyses and pathogenicity assays. Alternaria alternata and a newly described species, Diaporthe ilicicola sp. nov., were identified as the primary pathogens associated with the disease, and A. arborescens, Colletotrichum fioriniae, C. nymphaeae, Epicoccum nigrum and species in the D. eres species complex were identified as minor pathogens in this disease complex. To determine the sources of pathogen inoculum in holly fields, and the growth stages of host susceptibility to fungal infections, we monitored the presence of these pathogens in different plant tissues (i.e., dormant twigs, mummified fruit, leaves and fruit), and we studied inoculum dynamics and assessed disease progression throughout the growing season in three Ohio nurseries exposed to natural inoculum over two consecutive years.
    [Show full text]
  • Biotechnology of Neglected and Underutilized Crops Biotechnology of Neglected and Underutilized Crops Shri Mohan Jain · S
    Shri Mohan Jain · S. Dutta Gupta Editors Biotechnology of Neglected and Underutilized Crops Biotechnology of Neglected and Underutilized Crops Shri Mohan Jain · S. Dutta Gupta Editors Biotechnology of Neglected and Underutilized Crops 1 3 Editors Shri Mohan Jain S. Dutta Gupta Department of Agricultural Sciences Department of Agricultural University of Helsinki and Food Engineering Helsinki Indian Institute of Technology Kharagpur Finland Kharagpur India ISBN 978-94-007-5499-7 ISBN 978-94-007-5500-0 (eBook) DOI 10.1007/978-94-007-5500-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013934379 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
    [Show full text]
  • Morphological Characters of Alternaria Mali Roberts1
    MORPHOLOGICAL CHARACTERS OF ALTERNARIA MALI ROBERTS1 By JOHN 'W. ROBERTS Pathologist, Fruit-Disease Investigations, Bureau of Plant Industry, United States Department of Agriculture Some years ago Alternaría mali was described by the writer (16)2 and shown to be involved in a peculiar spotting of apple leaves. Alternaría malí does not originate these spots, but, gaining entrance through areas killed by Physalospora cydoníae (Sphaeropsis malorum), by chemicals such as sprays, or by other means, enlarges the dead spots, giving them a peculiar and characteristic appearance. A spot thus formed consists of the original dead area with semicircular or crescent-shaped enlarge- ments about it (PI. i, B). One might conceive of such a spot as being formed by infections taking place indiscriminately within the tissues of the original dead area. The fungus growing at equal pace in all direc- tions from each of these infection centers would occupy circular areas, only part of which would project beyond the original spot. Where there is a single infection, in the center of a circular spot, the enlarge- ment appears as a differently colored zone surrounding the original spot and concentric with it. By means of new infections the increase in size may be such that one spot may involve almost an entire leaf, appearing as a more or less, circular (original) spot surrounded by consecutive crescent-shaped enlargements. The striations or zones within the spots greatly resemble those produced by species of Alternaría on the leaves of other hosts. Crabill (7) does not agree that Alternaría malí is the cause of the.
    [Show full text]
  • Genetic Variability in the Pistachio Late Blight Fungus, Alternaria Alternata
    Mycol. Res. 105 (3): 300–306 (March 2001). Printed in the United Kingdom. 300 Genetic variability in the pistachio late blight fungus, Alternaria alternata Mallikarjuna K. ARADHYA*, Helen M. CHAN and Dan E. PARFITT Department of Pomology, University of California, One Shields Avenue, Davis, CA 95616, USA. E-mail: aradhya!ucdavis.edu Received 15 December 1999; accepted 21 August 2000 Genetic variation in the pistachio late blight fungus, Alternaria alternata, was investigated by restriction fragment length polymorphism (RFLP) in the rDNA region. Southern hybridization of EcoRI, HindIII, and XbaI digested fungal DNA with a RNA probe derived from Alt1, an rDNA clone isolated from a genomic library of the Japanese pear pathotype of A. alternata, revealed 34 different rDNA haplotypes among 56 isolates collected from four central valley locations in California. Analysis of molecular variation revealed a significant amount of genetic diversity within populations (85n8%), with only marginal variation accounting for differentiation among populations (14n2%, ΦST l 0n142). All isolates examined were highly pathogenic. The identity of the four geographic populations sampled was not evident in both cluster and principal component analyses, probably indicating either the selectively neutral nature of rDNA variation or prevalence of widespread gene flow among populations combined with uniform host-selection. INTRODUCTION 1998). Biochemical and molecular markers have been used to demonstrate the existence of multiple strains and to assess The genus Alternaria contains diverse and ubiquitous species of infraspecific variation in A. alternata at the protein and DNA fungi, including aggressive and opportunistic plant pathogens level (Petrunak & Christ 1992, Adachi et al. 1993, Weir et al.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • The Evolution of Secondary Metabolism Regulation and Pathways in the Aspergillus Genus
    THE EVOLUTION OF SECONDARY METABOLISM REGULATION AND PATHWAYS IN THE ASPERGILLUS GENUS By Abigail Lind Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Informatics August 11, 2017 Nashville, Tennessee Approved: Antonis Rokas, Ph.D. Tony Capra, Ph.D. Patrick Abbot, Ph.D. Louise Rollins-Smith, Ph.D. Qi Liu, Ph.D. ACKNOWLEDGEMENTS Many people helped and encouraged me during my years working towards this dissertation. First, I want to thank my advisor, Antonis Rokas, for his support for the past five years. His consistent optimism encouraged me to overcome obstacles, and his scientific insight helped me place my work in a broader scientific context. My committee members, Patrick Abbot, Tony Capra, Louise Rollins-Smith, and Qi Liu have also provided support and encouragement. I have been lucky to work with great people in the Rokas lab who helped me develop ideas, suggested new approaches to problems, and provided constant support. In particular, I want to thank Jen Wisecaver for her mentorship, brilliant suggestions on how to visualize and present my work, and for always being available to talk about science. I also want to thank Xiaofan Zhou for always providing a new perspective on solving a problem. Much of my research at Vanderbilt was only possible with the help of great collaborators. I have had the privilege of working with many great labs, and I want to thank Ana Calvo, Nancy Keller, Gustavo Goldman, Fernando Rodrigues, and members of all of their labs for making the research in my dissertation possible.
    [Show full text]
  • Characterization of Alternaria Alternata Isolates Causing Brown Spot of Potatoes in South Africa
    Characterization of Alternaria alternata isolates causing brown spot of potatoes in South Africa By Joel Prince Dube Submitted in partial fulfilment of the requirements for the degree of Master in Science (Agriculture) Plant Pathology In the faculty of Natural and Agricultural Sciences Department of Microbiology and Plant Pathology University of Pretoria Pretoria February 2014 © University of Pretoria DECLARATION I, Joel Prince Dube, declare that the thesis, which I hereby submit for the degree Master of Science (Agriculture) Plant Pathology at the University of Pretoria, is my own work and has not been previously submitted by me for a degree at this or any other tertiary institution. Signed: ___________________________ Date: ____________________________ i © University of Pretoria Acknowledgements I would like to extend my heartfelt thanks the contributions of the following: 1. First and foremost, the Almighty God by whose grace I am where I am today. I owe everything to him. 2. My supervisors, Prof. Jacquie van der Waals and Dr. Mariette Truter, for their unwavering support and guidance throughout my Masters journey. 3. Pathology programme @ UP for the opportunity and funding for my studies. 4. Syngenta for funding one of my chapters. 5. Charles Wairuri, Nelisiwe Khumalo, Alain Misse for their help with all my molecular work. 6. Colleagues in greenhouse for all their help, suggestions and contributions throughout my studies. 7. My family and friends for their financial, spiritual and moral support, it is greatly appreciated. ii © University of Pretoria Characterization of Alternaria alternata isolates causing brown spot of potatoes in South Africa By Joel Prince Dube Supervisor : Prof. J.
    [Show full text]
  • Dothistroma Septosporum
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Secondary metabolism of the forest pathogen Dothistroma septosporum A thesis presented in the partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Genetics at Massey University, Manawatu, New Zealand Ibrahim Kutay Ozturk 2016 ABSTRACT Dothistroma septosporum is a fungus causing the disease Dothistroma needle blight (DNB) on more than 80 pine species in 76 countries, and causes serious economic losses. A secondary metabolite (SM) dothistromin, produced by D. septosporum, is a virulence factor required for full disease expression but is not needed for the initial formation of disease lesions. Unlike the majority of fungal SMs whose biosynthetic enzyme genes are arranged in a gene cluster, dothistromin genes are dispersed in a fragmented arrangement. Therefore, it was of interest whether D. septosporum has other SMs that are required in the disease process, as well as having SM genes that are clustered as in other fungi. Genome sequencing of D. septosporum revealed that D. septosporum has 11 SM core genes, which is fewer than in closely related species. In this project, gene cluster analyses around the SM core genes were done to assess if there are intact or other fragmented gene clusters. In addition, one of the core SM genes, DsNps3, that was highly expressed at an early stage of plant infection, was knocked out and the phenotype of this mutant was analysed.
    [Show full text]
  • Identification and Characterization of Alternaria Species Causing Leaf Spot
    Eur J Plant Pathol (2017) 149:401–413 DOI 10.1007/s10658-017-1190-0 Identification and characterization of Alternaria species causing leaf spot on cabbage, cauliflower, wild and cultivated rocket by using molecular and morphological features and mycotoxin production Ilenia Siciliano & Giovanna Gilardi & Giuseppe Ortu & Ulrich Gisi & Maria Lodovica Gullino & Angelo Garibaldi Accepted: 22 February 2017 /Published online: 11 March 2017 # Koninklijke Nederlandse Planteziektenkundige Vereniging 2017 Abstract Alternaria species are common pathogens of Keywords Crucifers . Toxins . Leaf spot . Tenuazonic fruit and vegetables able to produce secondary metabo- acid lites potentially affecting human health. Twenty-nine isolates obtained from cabbage, cauliflower, wild and cultivated rocket were characterized and identified Introduction based on sporulation pattern and virulence; the phylo- β genetic analysis was based on the -tubulin gene. Most Alternaria species are saprophytes and ubiquitous Isolates were identified as A. alternata, A. tenuissima, in the environment, however some are plant pathogenic, A. arborescens, A. brassicicola and A. japonica. inducing diseases on a large variety of economically Pathogenicity was evaluated on plants under greenhouse important crops like cereals, oil-crops, vegetables and conditions. Two isolates showed low level of virulence fruits (Pitt and Hocking, 1997). Most Alternaria spp. on cultivated rocket while the other isolates showed produce chains of conidia with transverse and longitu- medium or high level of virulence. Isolates were also dinal septa with a tapering apical cell. Conidial size, characterized for their mycotoxin production on a mod- presence and size of a beak, the pattern of catenation ified Czapek-Dox medium. Production of the five and longitudinal and transverse septation are key taxo- Alternaria toxins, tenuazonic acid, alternariol, nomic features for this genus (Joly 1964; Ellis 1971 and alternariol monomethyl ether, altenuene and tentoxin 1976, Simmons 1992).
    [Show full text]
  • First Report of Alternaria Carthami Causing Leaf Spots on Carthamus Tinctorius in Brazil
    New Disease Reports (2016) 33, 3. http://dx.doi.org/10.5197/j.2044-0588.2016.033.003 First report of Alternaria carthami causing leaf spots on Carthamus tinctorius in Brazil J.L. Alves 1, R.M. Saraiva 1, E.S.G. Mizubuti 1, S.M.T.P.G. Carneiro 2, L.C. Borsato 2, J.H.C. Woudenberg 3 and V. Lourenço Jr. 4* 1 Universidade Federal de Viçosa, Departamento de Fitopatologia, 36570-000, Viçosa, Minas Gerais, Brazil; 2 Instituto Agronômico do Paraná – IAPAR, Área de Proteção de Plantas, 86047-902, Londrina, Paraná, Brazil; 3 CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands; 4 Embrapa Hortaliças, 70351-970, Brasília, Distrito Federal, Brazil *E-mail: [email protected] Received: 01 Oct 2015. Published: 22 Jan 2016. Keywords: Alternaria alternata, safflower Carthamus tinctorius (safflower) is an important commercial flower which The fungus was re-isolated from the inoculated plants and the morphology is cultivated mainly for its seeds, from which vegetable oil can be was the same as the inoculated isolate (Fig. 2). No symptoms developed in extracted. In March 2013, approximately 50% of the safflower cv. Goiás at control plants sprayed with distilled water. the Instituto Agronômico do Paraná in Londrina (Paraná, Brazil) showed At least seven species of Alternaria are recorded from C. tinctorius (Farr & brown spots with concentric rings on leaves and elongated or irregular Rossman, 2014). A. carthami is known as a destructive disease of safflower necrotic lesions on petioles, stems and flower heads. One distinct and is recorded worldwide.
    [Show full text]