US5176895.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

US5176895.Pdf ||||||||||||||||| USOO576895A United States Patent (19) Patent Number: 5,176,895 Biermanns et al. (45) Date of Patent: Jan. 5, 1993 54 PROCESS FOR THE CONTINUOUS PRODUCTION OF SODIUM AZIDE OTHER PUBLICATIONS Alien Property Custodian Ser. No. 324,626, published 75) Inventors: Franz-Josef Biermanns, Troisdorf Jun. 1, 1943, Meissner. Hans-Heinz Heidbuechel, Cologne; T. Urbanski, "Chemistry and Technology of Expo Heinz-Gerd Emans, Niederkassel; sives', 1985, Oxford GB, Chemical Abstracts, vol. 84, Ralf Weber, Troisdorf, all of No. 18. Fed. Rep. of Germany Primary Examiner-Wayne Langel 73 Assignee: Dynamit Nobel Aktiengesellschaft, Attorney, Agent, or Firm-Antonelli, Terry, Stout & Troisdorf, Fed. Rep. of Germany Kraus 57) ABSTRACT 21 Appl. No.: 726,839 The present invention deals with the continuous pro duction of sodium azide from sodium amide and nitrous 22 Filed: Jul. 8, 1991 oxide. This reaction takes place on a support material for sodium amide consisting of a mixture of sodium (30) Foreign Application Priority Data azide and sodium hydroxide. This mixture is passed Jul. 6, 1990 (DE) Fed. Rep. of Germany ....... 4021615 through a reactor maintained at temperatures of be tween 200 and 270° C.; a portion of the reaction prod 51) Int. Cl. .............................................. CO1B 2/08 uct and the support material are transferred out of the 52 U.S. Cl. .................................................... 423/40 system at an end of the reactor, and a primary quantity (58) Field of Search ......................................... 423/40 of the reaction product and support material are re turned to the reactor inlet where the material is con bined with fresh, heated sodium amide in an amount 56 References Cited corresponding to the quantity of sodium azide trans U.S. PATENT DOCUMENTS ferred-out with the reaction product and support mate rial. With the aid of this continuous process, higher 2,994,583 8/1961 Levering ............................. 423/40 space-time yields of sodium azide can be obtained than FOREIGN PATENT DOCUMENTS in case of the conventional methods without increasing 144243 2/1963 Fed. Rep. of Germany . the danger of no longer controllable explosions. 369529 3/1932 United Kingdom ................ 423/40 1082021 9/1967 United Kingdom ................ 423/40 9 Claims, 1 Drawing Sheet NaNH2 U.S. Patent Jan. 5, 1993 5,176,895 FIG. 1 NaNH2 5,176,895 1 2 with nitrous oxide (N2O) to form sodium azide (NaNs) PROCESS FOR THE CONTINUOUS and sodium hydroxide (NaOH). PRODUCTION OF SODIUM AZIDE Appropriate mixing-conveying units are known to a person skilled in the art; examples that can be cited are BACKGROUND OF THE INVENTION 5 screw conveyors or kneader mixers preferably located in a tubular reactor. This invention relates to a continuous process for the The mixing/conveying reactor is maintained at an production of sodium azide wherein sodium amide on a internal temperature of between 200 and 270° C.; the support material of sodium azide and sodium hydroxide reaction is preferably performed at a temperature of is reacted with nitrous oxide or dinitrogen monooxide 10 between 230 and 270° C. (N2O). The solid reaction material and the reaction products The production of sodium azide has heretofore been including newly formed sodium azide and sodium hy conducted by reacting sodium amide with nitrous oxide droxide pass from the mixing reactor into a product at temperatures of above 190° C. At this temperature, stream divider directly adjoining the outlet section of sodium amide is present in the molten phase. For this 15 the reactor; the product stream divider can also option reason, it is applied to a support material of sodium ally be integrated into the reactor on an end facing azide and sodium hydroxide. The reaction is performed away from the inlet section. The reaction material, after discontinuously in mixing reactors permitting because leaving the reactor, need no longer be heated to the of the size of the reactors maximally the conversion of reaction temperature; however, a special cooling step is 130 kg of sodium amide within 8 hours. likewise unnecessary since the main portion of the solid During the reaction between sodium amide and ni reaction material is from there again conducted to the trous oxide. water is formed in addition to the target inlet section of the reactor where this portion must product, sodium azide: this water reacts with sodium again be heated to the reaction temperature. amide leading to the formation of ammonia and sodium In the product stream divider, from 5 to 10% by hydroxide. Since ammonia and nitrous oxide form an weight of the reaction mixture obtained at that point is explosive mixture, the aforedescribed mode of opera transferred out of the system. From the removed mate tion for producing sodium azide has given rise to explo rial, the sodium azide contained therein is obtained by sions in case the two gases are in an explosive mixing conventional methods. For example, after cooling, the range. Consequently, enlargement of the reactor vol mixture is dissolved in water and subsequently such a ume to increase the space-time yield in this conven 30 quantity of water is distilled off from the resulting aque tional process would considerable heighten the danger ous solution that the sodium azide is precipitated in the of explosions, which are no longer controllable. aqueous medium. The sodium azide is then filtered off Therefore, the problem presents itself of guiding the and can be purified, if desired, by recrystallization. reaction between sodium amide and nitrous oxide in 35 The main quantity of solid reaction material and the such a way that sodium azide is obtained in a considera remainder of the newly formed sodium azide and so bly larger space-time yield than in the disclosed meth dium hydroxide leaving the product stream divider are ods without incurring the aforedescribed disadvantages. reintroduced into the inlet section of the mixing reactor SUMMARY OF THE INVENTION by way of suitable conveying means. It is advantageous 40 to heat the conveying means so that the material being In meeting this objective, in accordance with the conveyed will not cool down too much and a minimum invention a continuous process for the production of of additional energy needs to be expended during heat sodium azide has now been found wherein nitrous oxide ing of the material in the reactor. (N2O) is reacted with sodium amide arranged on a sup Before the recycled material is made to contact the port material of sodium azide and sodium hydroxide in 45 nitrous oxide in the mixing reactor, fresh, preheated a reactor at temperatures of between 200 and 270° C., sodium amide is added to this material stream in a quan characterized by separating at least about 5% by weight tity corresponding to the quantity of sodium azide trans of the solid material discharge from the reactor to pro ferred out in the product stream divider. Suitably, this vide a first product stream containing a mixture of so addition takes place shortly prior to entrance of the dium azide and sodium hydroxide (which include newly 50 recycled solid material into the reactor. However, it is formed products and support material) and a second also possible to effect the addition in the inlet section of product stream with the remainder of the discharged the reactor. material; the first product stream being removed from The sodium amide added to the returned reaction the system and the second product stream being recy material is preferably heated to a temperature at which cled to the reactor and NH3 and excess N2O being dis 55 it is present in the liquid phase. In principle, it is also charged from the reactor in a zone of an inlet section of possible to conduct the heating step to a temperature the reactor. corresponding to the temperature exhibited by the recy It is possible with the aid of this process to increase cled material. The nitrous oxide is passed countercur the space-time yield in the reaction of sodium amide rently to the stream of solid material through the reac with nitrous oxide by a multiple as compared with the tor. Preferably, the nitrous oxide is introduced into the above-disclosed known process without increasing the system at the product stream divider; however, it can total gas volume of ammonia and nitrous oxide to such also be introduced at the outlet section of the reactor. A an extent that uncontrolled gas explosions occur. stoichiometric excess is utilized; the excess gas in with In the reactor which preferably is a mixing/convey drawn, together with the ammonia formed during the ing reactor, molten sodium amide provided on the sup 65 reaction in the reactor at the inlet portion of the mixing port material - - - denoted hereinbelow also as "solid reactor. reaction material' - - - is transported in the direction It is advantageous to separate out of the withdrawn toward a product stream divider, whereby it is reacted gaseous mixture, the nitrous oxide from the ammonia in 5,176,895 3 4. a manner known perse and to recycle this nitrous oxide If one compares the continuous addition of sodium into the process. amide at about 60 kg/h, corresponding to approxi The amount of nitrous oxide to be employed is to be mately 480 kg within 8 h, with the throughput accord at least so large that one mole of nitrous oxide is used ing to the discontinuous method according to the prior per two moles of sodium amide. An excess past this art, amounting to 130 kg in 8 h, the pilot plant itself will stoichiometric ratio is advantageous. The excess can increase output by a factor of about 3.6. range up to 50% above this ratio. What is claimed is: A mixture of sodium azide and sodium hydroxide, 1.
Recommended publications
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • 23.5 Basicity and Acidity of Amines
    23_BRCLoudon_pgs5-0.qxd 12/8/08 1:22 PM Page 1122 1122 CHAPTER 23 • THE CHEMISTRY OF AMINES alkylamines, this resonance occurs at rather small chemical shift—typically around d 1. In aromatic amines, this resonance is at greater chemical shift, as in the second of the preceding examples. Like the OH protons of alcohols, phenols, and carboxylic acids, the NH protons of amines under most conditions undergo rapid exchange (Secs. 13.6 and 13.7D). For this reason, split- ting between the amine N H and adjacent C H groups is usually not observed. Thus, in the NMR spectrum of diethylamine,L the N H resonanceL is a singlet rather than the triplet ex- pected from splitting by the adjacent CHL2 protons. In some amine samples, the N H resonance is broadened and, like the OL H protonL of alcohols, it can be obliterated fromL the spectrum by exchange with D2O (the “DL2O shake,” p. 611). The characteristic 13C NMR absorptions of amines are those of the a-carbons—the carbons attached directly to the nitrogen. These absorptions occur in the d 30–50 chemical-shift range. As expected from the relative electronegativities of oxygen and nitrogen, these shifts are somewhat less than the a-carbon shifts of ethers. PROBLEMS 23.4 Identify the compound that has an M 1 ion at mÜz 136 in its CI mass spectrum, an IR 1 + = absorption at 3279 cm_ , and the following NMR spectrum: d 0.91 (1H, s), d 1.07 (3H, t, J 7Hz), d 2.60 (2H, q, J 7Hz), d 3.70 (2H, s), d 7.18 (5H, apparent s).
    [Show full text]
  • S.T.E.T.Women's College, Mannargudi Semester Iii Ii M
    S.T.E.T.WOMEN’S COLLEGE, MANNARGUDI SEMESTER III II M.Sc., CHEMISTRY ORGANIC CHEMISTRY - II – P16CH31 UNIT I Aliphatic nucleophilic substitution – mechanisms – SN1, SN2, SNi – ion-pair in SN1 mechanisms – neighbouring group participation, non-classical carbocations – substitutions at allylic and vinylic carbons. Reactivity – effect of structure, nucleophile, leaving group and stereochemical factors – correlation of structure with reactivity – solvent effects – rearrangements involving carbocations – Wagner-Meerwein and dienone-phenol rearrangements. Aromatic nucleophilic substitutions – SN1, SNAr, Benzyne mechanism – reactivity orientation – Ullmann, Sandmeyer and Chichibabin reaction – rearrangements involving nucleophilic substitution – Stevens – Sommelet Hauser and von-Richter rearrangements. NUCLEOPHILIC SUBSTITUTION Mechanism of Aliphatic Nucleophilic Substitution. Aliphatic nucleophilic substitution clearly involves the donation of a lone pair from the nucleophile to the tetrahedral, electrophilic carbon bonded to a halogen. For that reason, it attracts to nucleophile In organic chemistry and inorganic chemistry, nucleophilic substitution is a fundamental class of reactions in which a leaving group(nucleophile) is replaced by an electron rich compound(nucleophile). The whole molecular entity of which the electrophile and the leaving group are part is usually called the substrate. The nucleophile essentially attempts to replace the leaving group as the primary substituent in the reaction itself, as a part of another molecule. The most general form of the reaction may be given as the following: Nuc: + R-LG → R-Nuc + LG: The electron pair (:) from the nucleophile(Nuc) attacks the substrate (R-LG) forming a new 1 bond, while the leaving group (LG) departs with an electron pair. The principal product in this case is R-Nuc. The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged.
    [Show full text]
  • Synthesis and Chemistry of Indole
    Synthesis and Chemistry of Indole 1. Introduction: ➢ Indole is a benzo[b]pyrrole formed by the fusion of benzene ring to the 2,3 positions of pyrrole nucleus. ➢ The word “Indole” is derived from the word India, as the heterocycle was first isolated from a blue dye “Indigo” produced in India during sixteenth century. ➢ In 1886, Adolf Baeyer isolated Indole by the pyrolysis of oxindole with Zn dust. Oxindole was originally obtained by the reduction of isatin, which in turn was isolated by the oxidation of Indigo. ➢ Commercially indole is produced from coal tar ➢ Indole is the most widely distributed heterocyle ➢ Indole nucleus is an integral part of thousands of naturally occurring alkaloids, drugs and other compounds. By Dr. Divya Kushwaha 2. Synthesis of Indole 2.1. Fischer Indole Synthesis: ➢ This reaction was discovered in 1983 by Emil Fischer and so far remained the most extensively used method of preparation of indoles. ➢ The synthesis involves cyclization of arylhydrazones under heating conditions in presence of protic acid or lewis acids such as ZnCl2, PCl3, FeCl3, TsOH, HCl, H2SO4, PPA etc. ➢ The starting material arylhydrazoles can be obtained from aldehydes, ketones, keto acids, keto esters and diketones etc. ➢ Reaction produces 2,3-disubtituted products. Unsymmetrical ketones can give a mixture of indoles. 2.2 Madelung Synthesis: ➢ Base catalyzed cyclization of 2-(acylamino)-toluenes under very harsh conditions (typically sodium amide or potassium t-butoxide at 250-300oC). ➢ Limited to the synthesis of simple indoles such as 2-methyl indoles without having any sensitive groups. By Dr. Divya Kushwaha Mechanism: ➢ A modern variant of madelung reaction is performed under milder conditions by the use of alkyllithiums as bases.
    [Show full text]
  • Chem 232 Lecture 19
    CHEM 232 University of Illinois Organic Chemistry I at Chicago UIC Lecture 19 Organic Chemistry 1 Professor Duncan Wardrop March 16, 2010 1 CHEM 232 University of Illinois Organic Chemistry I at Chicago UIC Chapter 9 Alkynes Sources and Nomenclature Sections 9.1 - 9.6 2 CHEM 232 University of Illinois Organic Chemistry I at Chicago UIC Exam Two • Monday, April 5 • 6:00-7:15 p.m. • 250 SES • Chapters 6-10, 13 • Makeup Exam: Monday, April 12, time t.b.a. Makeup policy: There are no makeup exams without prior approval. Only students showing proof of a class con!ict will have the option to take a makeup exam. To be added to the makeup list, you must email me no later than Friday, April. 2. 3 Self-Test Question Which column lists the correct mechanistic symbol for each description? A B C D E Methyl halides react with sodium ethoxide in ethanol only by this mechanism. SN2 SN1 E2 SN2 SN1 Unhindered primary halides react with sodium ethoxide in ethanol mainly by this mechanism. SN2 SN2 SN2 SN2 SN1 Cyclohexyl bromide reacts with sodium ethoxide in ethanol, mainly by this mechanism. E2 SN1 E2 SN2 SN1 The product obtained by solvolysis of tert-butyl bromide in ethanol arises by this mechanism. SN1 SN2 SN2 SN2 E2 In ethanol that contains sodium ethoxide, tert-butyl bromide in ethanol reacts mainly by this mechanism. E2 E2 SN1 SN1 E2 University of Slide CHEM 232, Spring 2010 4 Illinois at Chicago UIC Lecture 19: March 16 4 Substitution/Elimination Review SN2 H3C Cl + OCH2CH3 H3C OCH2CH3 Methyl halides react with sodium ethoxide in • methyl halide = ethanol only by this mechanism.
    [Show full text]
  • Ethylamine Derivatives and Their Use As Antihypertensive Agents
    Europaisches Patentamt European Patent Office (fl) Publication number: 0 294 183 Office europeen des brevets A1 ® EUROPEAN PATENT APPLICATION @ Application number: 88305012.2 ® int. a*: C 07 D 211/32 C 07 D 211/22, @ Date of filing: 01.06.88 C 07 D 211/18, C 07 D 285/24, C 07 D 401/06, A 61 K 31/445, A 61 K 31/54 (So) Priority: 02.06.87 JP 138405/87 Toyota, Kozo No. 1-1 Suzuki-cho Kawasaki-ku @ Date of publication of application : Kawasaki-shi Kanagawa-ken (JP) 07.12.88 Bulletin 88/49 Yoshimoto, Ryota No. 1-1 Suzuki-cho Kawasaki-ku @ Designated Contracting States: Kawasaki-shi Kanagawa-ken (JP) CH DE FR GB IT LI Koyama, Yosikatsu @ Applicant: AJINOMOTO CO., INC. No. 1-1 Suzuki-cho Kawasaki-ku 5-8, Kyobashi 1-chome, Chuo-ku Kawasaki-shi Kanagawa-ken (JP) Tokyo 104 (JP) Domoto, Hideki No. 1-1 Suzuki-cho Kawasaki-ku @ Inventor: Syoji, Masataka Kawasaki-shi Kanagawa-ken (JP) No. 1-1 Suzuki-cho Kawasaki-ku Kawasaki-shi Kanagawa-ken (JP) Kamimura, Akira No. 1-1 Suzuki-cho Kawasaki-ku Eguchi, Chikahiko Kawasaki-shi Kahagawa-ken (JP) No. 1-1 Suzuki-cho Kawasaki-ku Kawasaki-shi Kanagawa-ken (JP) Representative: Armitage, Ian Michael et al MEWBURN ELLIS & CO. 2/3 Cursitor Street London EC4A1BQ (GB) (54) Ethylamine derivatives and their use as antihypertensive agents. @ Novel ethylamine derivatives of the formula (I) and salts thereof are useful as antihypertensive agents. Q-X N CH2CH2-A-B (I) \ / CH^ CO 00 wherein A is a linking group wherein the linkage is formed by a carbon or nitrogen atom; B is an aryl-containing group; C is O) hydrogen or optionally substituted alkyl, aralkyl or aryl, or C may CM be bonded to A to form an optionally substituted alkylene bridge; Q is an aryl- or heterocyclic aryl-containing group; X is a linking group wherein the linkage is formed by optionally CL substituted alkylene having from 2 to 20 carbon atoms and/or HI one or more hetero atoms selected from nitrogen and sulfur.
    [Show full text]
  • Aqueous Acid–Base Equilibriums”, Chapter 16 from the Book Principles of General Chemistry (Index.Html) (V
    This is “Aqueous Acid–Base Equilibriums”, chapter 16 from the book Principles of General Chemistry (index.html) (v. 1.0M). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/) license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms. This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz (http://lardbucket.org) in an effort to preserve the availability of this book. Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header). For more information on the source of this book, or why it is available for free, please see the project's home page (http://2012books.lardbucket.org/). You can browse or download additional books there. i Chapter 16 Aqueous Acid–Base Equilibriums Many vital chemical and physical processes take place exclusively in aqueous solution, including the complex biochemical reactions that occur in living organisms and the reactions that rust and corrode steel objects, such as bridges, ships, and automobiles. Among the most important reactions in aqueous solution are those that can be categorized as acid–base, precipitation, and complexation reactions.
    [Show full text]
  • The Action of Sodiumamide on Pyridine, and Some Properties of Α
    Chemistry. - "Tlte Action o} Sodiumamide on P.'l/1·idine, and some Properties of a-arninopyridine". By J. P . WIBAUT and ELISABETH DINGEMANS~; . (Communicated by Pmf. A. F . HOLJ,)t;MAN). (Communicated at the meetiD~ of December 30, 1922). Through TSCHITSCHIBABIN' S 1) beautiful researches a-aminopyridine has , become easily accessible. This investigator found tllat sodium amide acts on pyridine as follows: C,H,N + NaNH~ = C,H.N.NHNa + H,. On decomp?sition of lhe reartion p"oduct with water, amillopyridine 8,nd sodium hydroxide is formed. As we requil'ed tlli s substauce a s startjng ma.terial for !lynthetie investigations, we have applied the method of pl'epnration found by TSCHITSCHIBABIN. Though also in oU!' experiments a-arninopyridine was fOl'llled as ehief Pl'oduet, we found other substances than the Russian investigatol' among t.he by-pl'oducts. We experienced thaI. the action of sodium amide on pyddine can take place in different ways, dependent 011 th~ nature of the sodium amide preparation used. We ha\'e prepal'ed sodiurn amide according 10 TITm;RLEY'S indiCátion by the action of carefully dried ammonia on melted sodium at 350-400° C. The prepamtion obtained was a pure white, showed a cryst.alline fracture, and contained no free sodium. This preparation did not reaet wÎth pyridine. A p"eparation prepared at 300°, reacted very slowly with pyridine. In this expe­ I'Ïment ve,·y little a-amino pyridine was however, formed; fmther a little y-y-dipY"idyl, and some other products, which we did not examine.
    [Show full text]
  • CH107 Mock Exam 3 Name: 100
    CH107 Mock Exam 3 Name: ______________________________ 100 pts. 1-34 2pts, 35-40 8pts. (choose 4 of 6) 1) A lipid is composed of A) Polar and nonpolar parts B) 2 polar heads C) Phosphate and fatty acids D) A long hydrophobic tail E) 2 fatty acids 2) What has the highest melting point? A) Stearic acid (18:0) Saturated fat (all single bonded carbons) has a higher melting point than unsaturated fat (contains 1 or more double bonds between carbons). The longer the carbon chain, the higher the melting point B) Oleic acid (18:1) this annotation means 18 carbon chain, 1 double bond. So this is an unsaturated fat = low melting point. Think vegetable oil (unsaturated fat) vs. butter (saturated fat). 1 is a liquid at room temp and the other is solid at room temp C) Myristic acid 14 carbon saturated fat. 2nd highest melting point out of 5 options D) Linoleic acid unsaturated fat, omega-6. Super low melting point due to multiple double bonds E) Butyric acid very short carbon chain. But = 4 carbons. 3) Lipids allow for the formation of ______ and _______. A) Membranes, lips can form membranes but not lips B) Micelles, bilayers micelles are formed by lipids having a nonpolar, hydrophobic carbon chain tail and a polar, hydrophilic head. The nonpolar tails stick together to avoid H2O while the polar heads act as a barrier and touch the water in solution. This makes a kind of bubble with all the nonpolar tails stuck together and the polar heads around the outside.
    [Show full text]
  • Sodium Amide Sam
    SODIUM AMIDE SAM CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 7.1 Grades of Purity: Pure; Technical Common Synonyms Solid Colorless Odorless Flammable solid 7.2 Storage Temperature: Ambient Sodamide 4.2 Flammable Limits in Air: Not pertinent 7.3 Inert Atmosphere: Must be dry 4.3 Fire Extinguishing Agents: Dry soda Sinks and reacts violently with water. 7.4 Venting: Sealed containers must be stored in ash, graphite, salt, or other well-ventilated area. Keep people away. Avoid contact with liquid and vapor. recommended dry powder, such as dry Wear rubber overclothing (including gloves). limestone. 7.5 IMO Pollution Category: Currently not available Shut off ignition sources and call fire department. 4.4 Fire Extinguishing Agents Not to Be 7.6 Ship Type: Currently not available Notify local health and pollution control agencies. Used: Water 7.7 Barge Hull Type: Currently not available Protect water intakes. 4.5 Special Hazards of Combustion Products: Toxic and irritating ammonia Fire FLAMMABLE. gas may be formed. 8. HAZARD CLASSIFICATIONS POISONOUS GAS IS PRODUCED IN FIRE. 4.6 Behavior in Fire: Currently not available 8.1 49 CFR Category: Not listed. DO NOT USE WATER ON FIRE. 4.7 Auto Ignition Temperature: Not pertinent 8.2 49 CFR Class: Not pertinent. Extinguish with dry graphite, soda ash, powdered limestone, or other approved dry powder. 4.8 Electrical Hazards: Currently not 8.3 49 CFR Package Group: Not listed. available 8.4 Marine Pollutant: No Exposure CALL FOR MEDICAL AID. 4.9 Burning Rate: Not pertinent 8.5 NFPA Hazard Classification: 4.10 Adiabatic Flame Temperature: Currently SOLID not available Category Classification Will burn skin and eyes.
    [Show full text]
  • CHEMISTRY 30A Final Exam FALL 2014 LANEY COLLEGE KEY Dr Schaleger
    CHEMISTRY 30A Final Exam FALL 2014 LANEY COLLEGE KEY Dr Schaleger 1. (4). What is the formula of the sulfide of lithium? Li2S 2. (4). How many neutrons are present in the nucleus of chlorine-35? 18 3. (5). What is the pH of 0.0010 M NaOH? 11.0. 4. (5). Hydrogen chloride, a gas, dissolves in water with the evolution of a considerable amount of heat. Write a chemical equation that explains this observation. + ─ HCl(g) + H2O(l) H3O + Cl 5. (5). Provide the missing product in the following nuclear reaction: 238 4 234 94Pu 2He + ? Answer: 92U 6. (10). Sodium amide, NaNH2, reacts with water in a Brønsted acid-base reaction as follows: NaNH2(s) + H2O(l) NH3(aq) + NaOH(aq) a. Write the net ionic equation for this reaction. + ─ NaNH2(s) + H2O(l) NH3(aq) + Na (aq) + OH (aq) b. Which is the stronger base, __X__sodium amide or ____sodium hydroxide? 7. (4). What is the oxidation number of chlorine in NaOCl? Answer: +1. 8. (5). The half-life of C-14 is about 6000 years. After 18,000 years, what percentage of the original amount of the isotope would remain? Answer: Three half-lives or 12.5%. 9. (4). Although helium is a gas under normal conditions, it becomes a liquid at about 4 K. The principal force of attraction holding atoms together in its liquid phase is: a. ____Ion-ion b. ____Dipole-dipole c. __X__London dispersion (induced dipole-induced dipole) d. ____Hydrogen bonding Page | 1 CHEMISTRY 30A Final Exam FALL 2014 LANEY COLLEGE KEY Dr Schaleger 10.
    [Show full text]
  • (Rmgx) Problem Set You Will Be Using Grignard Reagents Throughout This Course to Make Carbon-Carbon Bonds
    CHEM 341 Problem Set 18 Problem Set 10/27/17 Grignard (RMgX) Problem Set You will be using Grignard reagents throughout this course to make carbon-carbon bonds. Making Grignard Reagents: Molecules containing a carbon halogen bond can be transformed into a Grignard reagent. Iodides react faster than bromides. Bromides react faster than chlorides. Fluorides react very slowly to form Grignards and are in general not used. Bromides are the most widely used because they balance good reactivity while not as high of cost as iodides. To make a Grignard reagent, simply add magnesium metal and diethyl ether to a molecule containing a carbon halogen bond. The magnesium will insert itself between the carbon halogen bond. (The actual mechanism probably involves unpaired electrons, but I will never ask for that mechanism) Mg R X R MgX O Grignards are highly reactive compounds. First, and foremost, they are REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!! Grignards are essentially carbanions. They will react with acidic protons such as OH’s, NH’s, SH’s, and terminal alkynes. So, the Grignard reagent cannot have an acidic hydrogen on it. Second, they will react with carbon nitrogen or carbon oxygen pi bonds. Grignards cannot have carbonyls or nitriles. They also cannot contain epoxides. Third, they cannot have a leaving group (even a poor one like OMe) attached to the same carbon next to the halogen. Such Grignards eliminate to give alkenes. Examples of Bad Grignard Reagents MgCl MgBr MeO HO MgBr 1.) Circle the following molecules that can be made into a Grignard reagent.
    [Show full text]