Towards Self Dual Loop Quantum Gravity Jibril Ben Achour

Total Page:16

File Type:pdf, Size:1020Kb

Towards Self Dual Loop Quantum Gravity Jibril Ben Achour Towards self dual Loop Quantum Gravity Jibril Ben Achour To cite this version: Jibril Ben Achour. Towards self dual Loop Quantum Gravity. Physics [physics]. Université Paris 7 Denis Diderot, 2015. English. tel-01396791 HAL Id: tel-01396791 https://tel.archives-ouvertes.fr/tel-01396791 Submitted on 15 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universite´ Paris Diderot (Paris 7) Sorbonne Paris Cite´ ED 560 - STEP'UP - \Sciences de la Terre de l'Environnement et Physique de l'Univers de Paris" Th`ese de Doctorat Physique theorique Towards self dual Loop Quantum Gravity pr´esent´eepar Jibril Ben Achour pour l'obtention des titres de Docteur de l'Universite´ Paris Diderot (Paris 7) Sorbonne Paris Cite´ Th`esedirig´eepar Dr Eric Huguet / Dr Karim Noui Laboratoire AstroParticule et Cosmologie soutenue publiquement le 30 septembre 2015 devant le jury compos´ede : Dr Eric Huguet Directeur de th`ese Dr Karim Noui Co - Directeur de th`ese Dr Etera Livine Rapporteur arXiv:1511.07332v1 [gr-qc] 23 Nov 2015 Pr Hanno Sahlmann Rapporteur Dr Renaud Parentani Examinateur Pr Alejandro Perez Examinateur Pr Pierre Binetruy Pr´esident 3 \ Ce qui est plus certain, c'est que nos notions habituelles d'espace et de temps, m^emeas- sez profond´ement remani´eespar la th´eoriede la relativit´e,ne sont pas exactement appropri´ees `ala description des ph´enom`enesatomiques. [...] En v´erit´e, les notions d'espace et de temps tir´eesde notre exp´eriencequotidienne ne sont valables que pour les ph´enom`enes`agrandes ´echelles. Il faudrait y substituer, comme notions fondamentales valables en micro-physique, d'autres conceptions qui conduiraient `aretrouver asymptotiquement, quand on repasse des ph´enom`enes´el´ementaires aux ph´enom`enesobservables `anotre ´echelle, les notions habituelles d'espace et de temps. Est-il besoin de dire que c'est l`aune t^ache bien difficile ? On peut m^emese demander si elle est possible, si nous pourrons jamais arriver `a´eliminer `a ce point ce qui constitue le cadre m^emede notre vie courante. Mais l'histoire de la science montre l'extr^emefertilit´ede l'esprit humain et il ne faut pas d´esesp´erer.Cependant, tant que nous ne serons pas parvenus `a´elargirnos concepts dans le sens indiqu´e`al'instant, nous de- vrons nous ´evertuer `afaire entrer, plus ou moins gauchement, les ph´enom`enesmicroscopiques dans le cadre de l'espace et du temps et nous aurons le sentiment p´eniblede vouloir enfermer un joyau dans un ´ecrin qui n'est pas fait pour lui." Louis De Broglie - La Physique Nouvelle et les Quantas (1936) Acknowledgements Mes premiers remerciements vont tout d'abord `aEric Huguet et Jacques Renaud, pour m'avoir fait confiance en stage, puis offert la possibilit´ed'entreprendre cette th`eseau sein du laboratoire APC, m'ouvrant ainsi les portes aux joies de la physique th´eorique,et plus globalement de la recherche scientifique. Je garderai un tr`esbon souvenir de leur bonne humeur, leur disponibilit´eet des apr`esmidi pass´eesdevant le tableau `aleurs cot´es. Je tiens `aremercier tout particuli`erement Karim Noui, pour m'avoir fait partager sa passion pour la recherche, ses id´eeset ses questions, et pour m'avoir fait d´ecouvrirle champ de recherche de la gravit´equantique `aboucles. J'ai particuli`erement appr´eci´esa p´edagogie, sa patience sans limites et sa rigueur scientifique. Ce fut un privil`egeet un tr`esgrand plaisir d'apprendre `ases c^ot´es. Je souhaite aussi remercier mes rapporteurs, Hanno Sahlmann et Etera Livine, pour le temps qu'ils ont pris pour la lecture de ce manuscrit et pour leurs retours et suggestions qui m'ont permis de clarifier plusieurs points. Je remercie Marc Geiller pour ses conseils (hautement recommand´es!),son hospitalit´eet sa bonne humeur. Ce fut un tr`esgrand plaisir de faire mes premiers pas en physique th´eorique dans le bureau 424A en compagnie de Florian, Marc, Alexis ... et de poursuivre aux c^ot´es de Maxime et Alexis. Un grand merci `avous pour toutes ces discussions, de physique ou autre, et pour les doux craquages de fin de journee. Une pens´eeva ´evidemment `atous les compagnons de route, Julien, Ileyk, Georges, Pierre, Vivien, Julian, Ben, Maica, Romain, Lea et `atoute l'´equipe QUPUC plus g´en´eralement ! Une pens´eetoute particuli`ereva aux tortues de feu, sans qui rien n'aurait pu arriver. Je tiens `aremercier Julien Grain, Antonin Coutant, Daniele Pranzetti et Boris Bolliet pour les bons moments pass´esen conference, et pour la d´ecouverte de Berlin ... et tous les amis, connaissances et rencontres inattendues de Paris qui ont fait de ces trois ann´eesune exp´eriencedes plus riche ! Finalement, une pens´eetoute particuli`ereva `ama famille, pour leur ind´efectiblesoutien tout au long de cette aventure et depuis si longtemps, un grand merci pour tout. Abstract In this PhD thesis, we introduced a new strategy to investigate the kinematical and physical predictions of self dual Loop Quantum Gravity (LQG) and by-passed the old problem of implementing quantum mechanically the so called reality conditions inherent to the self dual phase space. Since our first motivations come from black holes thermodynamics, we first review, in the third chapter, the loop quantization of spherically isolated horizon based on the SU(2) Ashtekar-Barbero variables leading to the micro-canonical entropy. This approach is based on the effective model of a Chern-Simons connection coupled to point-like particles living on the horizon. Then we present the so called \gas of punctures" model for the isolated horizon, which provides the framework to go beyond the micro-canonical ensemble and compute the canonical and grand-canonical entropy. In the context of this model, we investigate how the assumption of a Bose-Einstein statistic for the punctures impacts the semi-classical result and underline a relation between the condensation phenomenon and the presence of purely logarithmic quantum corrections to the entropy. The presentation of this model enable us to point the different limits and drawbacks of the SU(2) loop quantization of spherically isolated horizon. First, one needs to proceed to an unnatural fine tuning on the Immirzi parameter to obtain the right semi-classical limit in the micro-canonical ensemble. Moreover, this quantization does not predict a holographic behavior for the degeneracy of the hole, as one could expect. Therefore, if one wants to avoid to precedent fine tuning on γ, one is led to assume the so called holographic hypothesis to obtain the right semi classical limit in the context of the gas of puncture model. The fourth chapter is devoted to studying to what extend the loop quantization based on the self dual variables could cure those problems. Obviously, since no one knows how to quantize the self dual Ashtekar phase space of General Relativity, because of the so called reality conditions, we are led to introduce a new strategy, based on an analytic continuation of the degeneracy from γ 2 R to γ = ±i. We review in details the construction of the procedure, and present the results. The self dual degeneracy turns out to be naturally holographic, supplemented with some power law corrections which conspired, at the semi classical limit, to provide the expected logarithmic quantum corrections to the entropy. At the leading term, we recover the Bekenstein-Hawking area law. The discrete real area spectrum is turned into a continuous real area spectrum, even if we are now working with γ = ±i. Finally, we recognize that our procedure is a well known map which send the Casimir and the character of the SU(2) compact group into the Casimir and character of the continuous representations of the SU(1; 1) non compact group. A detailed discussion on the status of our procedure is 8 provided at the end of the chapter. The fifth chapter is devoted to understanding more precisely the interplay between the disappearance of γ in the physical predictions of the quantum theory, the appearance of the SU(1; 1) group and the relation with the self dual variables. To to so, we introduce a new toy model of three dimensional gravity admitting a Barbero-immirzi like parameter and SL(2; C) as its symmetry group. The canonical analysis of the toy model in two different gauges, one selecting the compact group SU(2), the second one selecting the non compact SU(1; 1) group, allows us to conclude that at least in three dimensional gravity, the presence of γ in the SU(2) phase space is a pure gauge artifact. Finally, the loop quantization of the two phases spaces results in two different kinematical area spectrums, which turn out to be related through our analytic continuation procedure. At the end, we show that it is possible to reformulated the SU(2) phase space in terms of new one, based on a complex SL(2; C) connection, supplemented with some reality constraints. Once solved, the reality conditions reduces the complex SL(2; C) phase space to the SU(1; 1) phase space as expected. This chapter allows us to exhibit an interesting mechanism concerning the disappearance of the Immirzi parameter in the predictions of three dimensional loop quantum gravity.
Recommended publications
  • Universal Thermodynamics in the Context of Dynamical Black Hole
    universe Article Universal Thermodynamics in the Context of Dynamical Black Hole Sudipto Bhattacharjee and Subenoy Chakraborty * Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India; [email protected] * Correspondence: [email protected] Received: 27 April 2018; Accepted: 22 June 2018; Published: 1 July 2018 Abstract: The present work is a brief review of the development of dynamical black holes from the geometric point view. Furthermore, in this context, universal thermodynamics in the FLRW model has been analyzed using the notion of the Kodama vector. Finally, some general conclusions have been drawn. Keywords: dynamical black hole; trapped surfaces; universal thermodynamics; unified first law 1. Introduction A black hole is a region of space-time from which all future directed null geodesics fail to reach the future null infinity I+. More specifically, the black hole region B of the space-time manifold M is the set of all events P that do not belong to the causal past of future null infinity, i.e., B = M − J−(I+). (1) Here, J−(I+) denotes the causal past of I+, i.e., it is the set of all points that causally precede I+. The boundary of the black hole region is termed as the event horizon (H), H = ¶B = ¶(J−(I+)). (2) A cross-section of the horizon is a 2D surface H(S) obtained by intersecting the event horizon with a space-like hypersurface S. As event the horizon is a causal boundary, it must be a null hypersurface generated by null geodesics that have no future end points. In the black hole region, there are trapped surfaces that are closed 2-surfaces (S) such that both ingoing and outgoing congruences of null geodesics are orthogonal to S, and the expansion scalar is negative everywhere on S.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • The First Law for Slowly Evolving Horizons
    PHYSICAL REVIEW LETTERS week ending VOLUME 92, NUMBER 1 9JANUARY2004 The First Law for Slowly Evolving Horizons Ivan Booth* Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada A1C 5S7 Stephen Fairhurst† Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1 (Received 5 August 2003; published 6 January 2004) We study the mechanics of Hayward’s trapping horizons, taking isolated horizons as equilibrium states. Zeroth and second laws of dynamic horizon mechanics come from the isolated and trapping horizon formalisms, respectively. We derive a dynamical first law by introducing a new perturbative formulation for dynamic horizons in which ‘‘slowly evolving’’ trapping horizons may be viewed as perturbatively nonisolated. DOI: 10.1103/PhysRevLett.92.011102 PACS numbers: 04.70.Bw, 04.25.Dm, 04.25.Nx The laws of black hole mechanics are one of the most Hv, with future-directed null normals ‘ and n. The ex- remarkable results to emerge from classical general rela- pansion ‘ of the null normal ‘ vanishes. Further, both tivity. Recently, they have been generalized to locally the expansion n of n and L n ‘ are negative. defined isolated horizons [1]. However, since no matter This definition captures the local conditions by which or radiation can cross an isolated horizon, the first and we would hope to distinguish a black hole. Specifically, second laws cannot be treated in full generality. Instead, the expansion of the outgoing light rays is zero on the the first law arises as a relation on the phase space of horizon, positive outside, and negative inside.
    [Show full text]
  • Neutrino Mass Models: a Road Map
    Neutrino Mass Models: a road map S.F.King School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK E-mail: [email protected] Abstract. In this talk we survey some of the recent promising developments in the search for the theory behind neutrino mass and mixing, and indeed all fermion masses and mixing. The talk is organized in terms of a neutrino mass models road map according to which the answers to experimental questions provide sign posts to guide us through the maze of theoretical models eventually towards a complete theory of flavour and uni¯cation. 1. Introduction It has been one of the long standing goals of theories of particle physics beyond the Standard Model (SM) to predict quark and lepton masses and mixings. With the discovery of neutrino mass and mixing, this quest has received a massive impetus. Indeed, perhaps the greatest advance in particle physics over the past decade has been the discovery of neutrino mass and mixing involving two large mixing angles commonly known as the atmospheric angle θ23 and the solar angle θ12, while the remaining mixing angle θ13, although unmeasured, is constrained to be relatively small [1]. The largeness of the two large lepton mixing angles contrasts sharply with the smallness of the quark mixing angles, and this observation, together with the smallness of neutrino masses, provides new and tantalizing clues in the search for the origin of quark and lepton flavour. However, before trying to address such questions, it is worth recalling why neutrino mass forces us to go beyond the SM.
    [Show full text]
  • Quantum Gravity from the QFT Perspective
    Quantum Gravity from the QFT perspective Ilya L. Shapiro Universidade Federal de Juiz de Fora, MG, Brazil Partial support: CNPq, FAPEMIG ICTP-SAIFR/IFT-UNESP – 1-5 April, 2019 Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 Lecture 5. Advances topics in QG Induced gravity concept. • Effective QG: general idea. • Effective QG as effective QFT. • Where we are with QG?. • Bibliography S.L. Adler, Rev. Mod. Phys. 54 (1982) 729. S. Weinberg, Effective Field Theory, Past and Future. arXive:0908.1964[hep-th]; J.F. Donoghue, The effective field theory treatment of quantum gravity. arXive:1209.3511[gr-qc]; I.Sh., Polemic notes on IR perturbative quantum gravity. arXiv:0812.3521 [hep-th]. Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 I. Induced gravity. The idea of induced gravity is simple, while its realization may be quite non-trivial, depending on the theory. In any case, the induced gravity concept is something absolutely necessary if we consider an interaction of gravity with matter and quantum theory concepts. I. Induced gravity from cut-off Original simplest version. Ya.B. Zeldovich, Sov. Phys. Dokl. 6 (1967) 883. A.D. Sakharov, Sov. Phys. Dokl. 12 (1968) 1040. Strong version of induced gravity is like that: Suppose that the metric has no pre-determined equations of motion. These equations result from the interaction to matter. Main advantage: Since gravity is not fundamental, but induced interaction, there is no need to quantize metric. Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 And we already know that the semiclassical approach has no problems with renormalizability! Suppose we have a theory of quantum matter fields Φ = (ϕ, ψ, Aµ) interacting to the metric gµν .
    [Show full text]
  • Arxiv:2006.03939V1 [Gr-Qc] 6 Jun 2020 in flat Spacetime Regions
    Horizons in a binary black hole merger I: Geometry and area increase Daniel Pook-Kolb,1, 2 Ofek Birnholtz,3 Jos´eLuis Jaramillo,4 Badri Krishnan,1, 2 and Erik Schnetter5, 6, 7 1Max-Planck-Institut f¨urGravitationsphysik (Albert Einstein Institute), Callinstr. 38, 30167 Hannover, Germany 2Leibniz Universit¨atHannover, 30167 Hannover, Germany 3Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel 4Institut de Math´ematiquesde Bourgogne (IMB), UMR 5584, CNRS, Universit´ede Bourgogne Franche-Comt´e,F-21000 Dijon, France 5Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada 6Physics & Astronomy Department, University of Waterloo, Waterloo, ON N2L 3G1, Canada 7Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA Recent advances in numerical relativity have revealed how marginally trapped surfaces behave when black holes merge. It is now known that interesting topological features emerge during the merger, and marginally trapped surfaces can have self-intersections. This paper presents the most detailed study yet of the physical and geometric aspects of this scenario. For the case of a head-on collision of non-spinning black holes, we study in detail the world tube formed by the evolution of marginally trapped surfaces. In the first of this two-part study, we focus on geometrical properties of the dynamical horizons, i.e. the world tube traced out by the time evolution of marginally outer trapped surfaces. We show that even the simple case of a head-on collision of non-spinning black holes contains a rich variety of geometric and topological properties and is generally more complex than considered previously in the literature.
    [Show full text]
  • Vacuum GR in Chang--Soo Variables: Hilbert Space Structure In
    Vacuum GR in Chang–Soo variables: Hilbert space structure in anisotropic minisuperspace Eyo Eyo Ita III January 20, 2009 Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road Cambridge CB3 0WA, United Kingdom [email protected] Abstract In this paper we address the major criticism of the pure Kodama state, namely its normalizability and its existence within a genuine Hilbert space of states, by recasting Ashtekar’s general relativity into set of new variables attributed to Chang–Soo/CDJ. While our results have been shown for anisotropic minisuperspace, we reserve a treat- ment of the full theory for a following paper which it is hoped should finally bring this issue to a close. We have performed a canonical treat- ment of these new variables from the level of the classical/quantum algebra of constraints, all the way to the construction of the Hilbert space of states, and have demonstrated their relevance to the principle arXiv:0901.3041v1 [gr-qc] 20 Jan 2009 of the semiclassical-quantum correspondence. It is hoped that these new variables and their physical interpretation should provide a new starting point for investigations in classical and quantum GR and in the construction of a consistent quantum theory. 1 1 Introduction The main focus of the present paper to establish a new Hilbert space struc- ture for quantum gravity by recasting general relativity in terms of a set of new variables. The traditional approach in loop variables utilizes the spin network states, which have been rigorously shown to meet the requirements of a Hilbert space [1].
    [Show full text]
  • A Fermi National Accelerator Laboratory
    a Fermi National Accelerator Laboratory FERMILAB-Pub-83/l&THY January, 1983 Composite Model with Confining SU(N) x SU(2)L x SU(2)K Hypercolor Carl H. Albright Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 and Department of Physics, Northern Illinois University* DeKalb, Illinois 60115 ABSTRACT A model of composite quarks and leptons is constructed with confining SU(N) x SU(2jL x SU(2)R hypercolor interactions such that only standard quark and lepton families appear in global SU(2)L x SU(2)K doublets. Several generations are admitted by the anomaly-matching conditions and labeled by a discrete axial symmetry. The SU(N) interactions are N independent and play the role Of technicolor. Three conserved U(l)" charges identified with Q, B - L and B + L prohibit qqq + Lc transitions. 3 Oparatrd by Unlvsrsitiae Research Association Inc. under contract with the United States Department of Energy -2- FERMILAB-Pub-83/16-THY With little or no support from the experimental realm, an extensive literature fl on the subject of composite quarks and leptons has emerged over the past few years. Many of the papers are based on the pioneering work of 't Hooft who formulated several criteria which composite models should satisfy in order to explain why quarks and leptons are nearly massless on the large energy scale where the hypercolor forces become sufficiently strong to bind the massless preons together. General searches for candidate preon models have been carried out, or specfific models themselves have been proposed, in which the fundamental preons are either all spinors or spinors and scalars and the weak gauge fields are either fundamental or composite.
    [Show full text]
  • Spontaneous Symmetry Breaking and Mass Generation As Built-In Phenomena in Logarithmic Nonlinear Quantum Theory
    Vol. 42 (2011) ACTA PHYSICA POLONICA B No 2 SPONTANEOUS SYMMETRY BREAKING AND MASS GENERATION AS BUILT-IN PHENOMENA IN LOGARITHMIC NONLINEAR QUANTUM THEORY Konstantin G. Zloshchastiev Department of Physics and Center for Theoretical Physics University of the Witwatersrand Johannesburg, 2050, South Africa (Received September 29, 2010; revised version received November 3, 2010; final version received December 7, 2010) Our primary task is to demonstrate that the logarithmic nonlinearity in the quantum wave equation can cause the spontaneous symmetry break- ing and mass generation phenomena on its own, at least in principle. To achieve this goal, we view the physical vacuum as a kind of the funda- mental Bose–Einstein condensate embedded into the fictitious Euclidean space. The relation of such description to that of the physical (relativis- tic) observer is established via the fluid/gravity correspondence map, the related issues, such as the induced gravity and scalar field, relativistic pos- tulates, Mach’s principle and cosmology, are discussed. For estimate the values of the generated masses of the otherwise massless particles such as the photon, we propose few simple models which take into account small vacuum fluctuations. It turns out that the photon’s mass can be naturally expressed in terms of the elementary electrical charge and the extensive length parameter of the nonlinearity. Finally, we outline the topological properties of the logarithmic theory and corresponding solitonic solutions. DOI:10.5506/APhysPolB.42.261 PACS numbers: 11.15.Ex, 11.30.Qc, 04.60.Bc, 03.65.Pm 1. Introduction Current observational data in astrophysics are probing a regime of de- partures from classical relativity with sensitivities that are relevant for the study of the quantum-gravity problem [1,2].
    [Show full text]
  • Magnetic Moment (G-2) and New Physics
    Magnetic moment (g − 2)µ and new physics Dominik Stöckinger Dresden Lepton Moments, July 2010 Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction exp SM A3σ deviation for aµ − aµ has been established! Currently: exp SM −11 aµ − aµ = (255 ± 63 ± 49) × 10 Expected with new Fermilab exp. (and th. progress): exp SM −11 aµ − aµ = (?? ± 16 ± 30) × 10 Which types of physics beyond the SM could explain this? What is the impact of aµ on physics beyond the SM? Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Outline 1 Introduction 2 Different types of new physics 3 aµ, parameter measurements and model discrimination SUSY could explain the deviation Littlest Higgs (T-parity) cannot explain the deviation Randall-Sundrum models could explain the deviation 4 Conclusions Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Outline 1 Introduction 2 Different types of new physics 3 aµ, parameter measurements and model discrimination SUSY could explain the deviation Littlest Higgs (T-parity) cannot explain the deviation Randall-Sundrum models could explain the deviation 4 Conclusions Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Muon magnetic moment Quantum field theory: Operator: aµ µ¯ σ qνµ mµ L µν R CP-, Flavour-conserving, chirality-flipping, loop-induced 2 Heavy particles contribute ∝ mµ Mheavy Sensitive to all SM interactions Sensitive to TeV-scale new physics in a unique way Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Why new physics? Big questions EWSB, Higgs, mass generation? hierarchy MPl/MW ? Naturalness? Unification of the Coupling Constants in the SM and the minimal MSSM i i α 60 α 60 1/α 1/ 1/ 1 MSSM 50 50 40 40 α 1/ 2 30 30 20 20 10 10 α 1/ 3 0 0 0 5 10 15 0 5 10 15 10log Q 10log Q dark matter? Grand Unification? .
    [Show full text]
  • Arxiv:Gr-Qc/0511017 V3 20 Jan 2006 Xml,I a Ugse Yerly[] Hta MTS an That [6], Eardley by for Suggested Spacetimes
    AEI-2005-161 Non-symmetric trapped surfaces in the Schwarzschild and Vaidya spacetimes Erik Schnetter1,2, ∗ and Badri Krishnan2,† 1Center for Computation and Technology, 302 Johnston Hall, Louisiana State University, Baton Rouge, LA 70803, USA 2Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany (Dated: January 2, 2006) Marginally trapped surfaces (MTSs) are commonly used in numerical relativity to locate black holes. For dynamical black holes, it is not known generally if this procedure is sufficiently reliable. Even for Schwarzschild black holes, Wald and Iyer constructed foliations which come arbitrarily close to the singularity but do not contain any MTSs. In this paper, we review the Wald–Iyer construction, discuss some implications for numerical relativity, and generalize to the well known Vaidya space- time describing spherically symmetric collapse of null dust. In the Vaidya spacetime, we numerically locate non-spherically symmetric trapped surfaces which extend outside the standard spherically symmetric trapping horizon. This shows that MTSs are common in this spacetime and that the event horizon is the most likely candidate for the boundary of the trapped region. PACS numbers: 04.25.Dm, 04.70.Bw Introduction: In stationary black hole spacetimes, there can be locally perturbed in an arbitrary spacelike direc- is a strong correspondence between marginally trapped tion to yield a 1-parameter family of MTSs. A precise surfaces (MTSs) and event horizons (EHs) because cross formulation of this idea and its proof follows from re- sections of stationary EHs are MTSs. MTSs also feature cent results of Andersson et al. [7].
    [Show full text]
  • Black Holes and Black Hole Thermodynamics Without Event Horizons
    General Relativity and Gravitation (2011) DOI 10.1007/s10714-008-0739-9 RESEARCHARTICLE Alex B. Nielsen Black holes and black hole thermodynamics without event horizons Received: 18 June 2008 / Accepted: 22 November 2008 c Springer Science+Business Media, LLC 2009 Abstract We investigate whether black holes can be defined without using event horizons. In particular we focus on the thermodynamic properties of event hori- zons and the alternative, locally defined horizons. We discuss the assumptions and limitations of the proofs of the zeroth, first and second laws of black hole mechan- ics for both event horizons and trapping horizons. This leads to the possibility that black holes may be more usefully defined in terms of trapping horizons. We also review how Hawking radiation may be seen to arise from trapping horizons and discuss which horizon area should be associated with the gravitational entropy. Keywords Black holes, Black hole thermodynamics, Hawking radiation, Trapping horizons Contents 1 Introduction . 2 2 Event horizons . 4 3 Local horizons . 8 4 Thermodynamics of black holes . 14 5 Area increase law . 17 6 Gravitational entropy . 19 7 The zeroth law . 22 8 The first law . 25 9 Hawking radiation for trapping horizons . 34 10 Fluid flow analogies . 36 11 Uniqueness . 37 12 Conclusion . 39 A. B. Nielsen Center for Theoretical Physics and School of Physics College of Natural Sciences, Seoul National University Seoul 151-742, Korea [email protected] 2 A. B. Nielsen 1 Introduction Black holes play a central role in physics. In astrophysics, they represent the end point of stellar collapse for sufficiently large stars.
    [Show full text]