<<

Magnetic moment (g − 2)µ and new

Dominik Stöckinger

Dresden

Lepton Moments, July 2010

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction

exp SM A3σ deviation for aµ − aµ has been established!

Currently: exp SM −11 aµ − aµ = (255 ± 63 ± 49) × 10 Expected with new Fermilab exp. (and th. progress):

exp SM −11 aµ − aµ = (?? ± 16 ± 30) × 10

Which types of physics beyond the SM could explain this?

What is the impact of aµ on physics beyond the SM?

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Outline

1 Introduction

2 Different types of new physics

3 aµ, parameter measurements and model discrimination SUSY could explain the deviation Littlest Higgs (T-parity) cannot explain the deviation Randall-Sundrum models could explain the deviation

4 Conclusions

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Outline

1 Introduction

2 Different types of new physics

3 aµ, parameter measurements and model discrimination SUSY could explain the deviation Littlest Higgs (T-parity) cannot explain the deviation Randall-Sundrum models could explain the deviation

4 Conclusions

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Muon magnetic moment

Quantum field theory: Operator:

aµ µ¯ σ qνµ mµ L µν R

CP-, Flavour-conserving, chirality-flipping, loop-induced

2 Heavy particles contribute ∝ mµ  Mheavy  Sensitive to all SM interactions Sensitive to TeV-scale new physics in a unique way

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Why new physics? Big questions EWSB, Higgs, generation?

hierarchy MPl/MW ? Naturalness?

Unification of the Coupling Constants in the SM and the minimal MSSM i i α 60 α 60 1/α 1/ 1/ 1 MSSM 50 50

40 40 α 1/ 2 30 30

20 20

10 10 α 1/ 3 0 0 0 5 10 15 0 5 10 15 10log Q 10log Q dark matter? Grand Unification?

. . . point to the TeV scale. . . and to new physics

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Why new physics? Big questions EWSB, Higgs, mass generation?

hierarchy MPl/MW ? Naturalness?

Unification of the Coupling Constants in the SM and the minimal MSSM i i α 60 α 60 1/α 1/ 1/ 1 MSSM 50 50

40 40 α 1/ 2 30 30

20 20

10 10 α 1/ 3 0 0 0 5 10 15 0 5 10 15 10log Q 10log Q dark matter? Grand Unification?

Tevatron, LHC = era of TeV-scale physics Quest: discover new physics, solve big questions, understand EWSB

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Why new physics?

Big questions motivate radically new ideas —

How can EWSB, light Higgs, MPl/MW be natural? Supersymmetry? Fermi-Bose symmetry

≈10 TeV strong dyn.

≈1 TeV Little Higgs? states WH , lH . . .

≈250 GeV Higgs=Pseudo SM, Higgs Goldstone Boson Randall-Sundrum? Warped extra dim.

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Introduction Why new physics?

Big questions motivate radically new ideas —

How can EWSB, light Higgs, MPl/MW be natural? Supersymmetry? Fermi-Bose symmetry

≈10 TeV strong dyn.

≈1 TeV Little Higgs? states WH , lH . . .

≈250 GeV Higgs=Pseudo SM, Higgs Goldstone Boson Randall-Sundrum? Warped extra dim.

all these models predict aµ and are constrained by it

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Outline

1 Introduction

2 Different types of new physics

3 aµ, parameter measurements and model discrimination SUSY could explain the deviation Littlest Higgs (T-parity) cannot explain the deviation Randall-Sundrum models could explain the deviation

4 Conclusions

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Theory: g − 2 and chirality flips

g − 2 = chirality-flipping interaction µR µL

mµ = chirality-flipping interaction as well µR µL

are the two related?

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Theory: g − 2 and chirality flips

g − 2 = chirality-flipping interaction µR µL

mµ = chirality-flipping interaction as well µR µL

are the two related?

New physics loop contributions to aµ, mµ related by chiral symmetry! [Czarnecki, Marciano ’01]

2 mµ δmµ(N.P.) generally: δaµ(N.P.)= O(C) , C =  M  mµ

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Classification of new physics

2 mµ δmµ(N.P.) generally: δaµ(N.P.)= O(C) , C =  M  mµ α Allows to classify new physics: C = O( 4π ), O(1), O(intermediate)

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Classification of new physics

2 mµ δmµ(N.P.) generally: δaµ(N.P.)= O(C) , C =  M  mµ α Allows to classify new physics: C = O( 4π ), O(1), O(intermediate)

α C = O( ), Z ′, W ′, UED, Littlest Higgs (LHT). . . 4π (UED, LHT can mimic SUSY at the LHC) −11 δaµ ∼ 255 × 10 for M < 100GeV → very small!

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Classification of new physics

2 mµ δmµ(N.P.) generally: δaµ(N.P.)= O(C) , C =  M  mµ α Allows to classify new physics: C = O( 4π ), O(1), O(intermediate)

α C = O( ), Z ′, W ′, UED, Littlest Higgs (LHT). . . 4π (UED, LHT can mimic SUSY at the LHC) −11 δaµ ∼ 255 × 10 for M < 100GeV → very small!

such models already disfavoured by aµ, ruled out if deviation persists in new exp.

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Classification of new physics

2 mµ δmµ(N.P.) generally: δaµ(N.P.)= O(C) , C =  M  mµ α Allows to classify new physics: C = O( 4π ), O(1), O(intermediate)

C = O(1), radiative muon mass generation , . . . [Czarnecki,Marciano ’01] −11 δaµ ∼ 255 × 10 for M > 1TeV → can be large!

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Classification of new physics

2 mµ δmµ(N.P.) generally: δaµ(N.P.)= O(C) , C =  M  mµ α Allows to classify new physics: C = O( 4π ), O(1), O(intermediate)

C = O(1), radiative muon mass generation technicolor, . . . [Czarnecki,Marciano ’01] −11 δaµ ∼ 255 × 10 for M > 1TeV → can be large!

lower mass bounds from aµ

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Classification of new physics

2 mµ δmµ(N.P.) generally: δaµ(N.P.)= O(C) , C =  M  mµ α Allows to classify new physics: C = O( 4π ), O(1), O(intermediate)

α C = O(tan β ), supersymmetry 4π 1 C = O(nc 2 ), extra dimensions (Randall/Sundrum) 16π [Davoudiasl, Hewett, Rizzo ’00] large ED, unparticles,. . . [Park et al ’01] [Kim et al ’01] [Graesser,’00] [Cheung, Keung, Yuan ’07] −11 δaµ >, <, ∼ 255 × 10 possible → can fit well!

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics Classification of new physics

2 mµ δmµ(N.P.) generally: δaµ(N.P.)= O(C) , C =  M  mµ α Allows to classify new physics: C = O( 4π ), O(1), O(intermediate)

α C = O(tan β ), supersymmetry 4π 1 C = O(nc 2 ), extra dimensions (Randall/Sundrum) 16π [Davoudiasl, Hewett, Rizzo ’00] large ED, unparticles,. . . [Park et al ’01] [Kim et al ’01] [Graesser,’00] [Cheung, Keung, Yuan ’07] −11 δaµ >, <, ∼ 255 × 10 possible → can fit well! strong constraints on model parameters and model building

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics g − 2 and new physics

Different types of new physics can lead to very different contributions to aµ SUSY, RS, ADD, . . . : constrain parameters Z ′, UED, LHT, . . . : ruled out if deviation confirmed

aµ can sharply distinguish between different types of new physics

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics g − 2 and new physics

Different types of new physics can lead to very different contributions to aµ SUSY, RS, ADD, . . . : constrain parameters Z ′, UED, LHT, . . . : ruled out if deviation confirmed

aµ can sharply distinguish between different types of new physics

This will be even more the case with a new, improved measurement!

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Different types of new physics g − 2 and new physics

Different types of new physics can lead to very different contributions to aµ SUSY, RS, ADD, . . . : constrain parameters Z ′, UED, LHT, . . . : ruled out if deviation confirmed

aµ can sharply distinguish between different types of new physics

And even for models we haven’t yet thought of!

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination Outline

1 Introduction

2 Different types of new physics

3 aµ, parameter measurements and model discrimination SUSY could explain the deviation Littlest Higgs (T-parity) cannot explain the deviation Randall-Sundrum models could explain the deviation

4 Conclusions

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation SUSY and the MSSM

Big question: Why is there a Higgs scalar, why is it light? Answer: SUSY needs scalars, protects their , can even generate Higgs potential

free parameters: p˜ masses and mixings, hH i tan β = 2 → structure of EWSB hH1i µ = H2 − H1 transition → SUSY parameter, much discussed

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation g − 2 and SUSY

g − 2 = chirality-flipping interaction

aµ ν µ¯Lσµνq µR mµ

How is this generated in SUSY?

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation g − 2 and SUSY

g − 2 = chirality-flipping interaction

aµ ν µ¯Lσµνq µR mµ

How is this generated in SUSY?

chiral symmetry broken by λµ and mµ = λµhH1i

hH2i two Higgs doublets: tan β = , µ = H2 − H1 transition hH1i

⇒ all terms ∝ λµ but two options:

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation g − 2 and SUSY

∝ λµhH1i = mµ

∝ λµ µhH2i = mµ µ tan β

potential enhancement ∝ λµ ∝ tan β = 1 . . . 50 (and ∝sign(µ)) sensitive to muon mass generation mechanism structure of Higgs sector

2 aSUSY ≈ 130 × 10−11 tan β sign(µ) 100GeV µ  MSUSY 

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation g − 2 and SUSY

∝ hH1i, ⇐ SUSY ↓

∝ λµhH1i = mµ ˜ + + H1 W˜

∝ λµ µhH2i = mµ µ tan β µR ν˜µ µL

potential enhancement ∝ λµ ∝ tan β = 1 . . . 50 (and ∝sign(µ)) sensitive to muon mass generation mechanism structure of Higgs sector

2 aSUSY ≈ 130 × 10−11 tan β sign(µ) 100GeV µ  MSUSY 

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation g − 2 and SUSY

∝ hH2i, ⇐ SUSY ˜ + ↓ H2 W˜ +

∝ λµhH1i = mµ ˜ + + H1 W˜

∝ λµ µhH2i = mµ µ tan β µR ν˜µ µL

potential enhancement ∝ λµ ∝ tan β = 1 . . . 50 (and ∝sign(µ)) sensitive to muon mass generation mechanism structure of Higgs sector

2 aSUSY ≈ 130 × 10−11 tan β sign(µ) 100GeV µ  MSUSY 

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation Numerical results

tan β = 10 , µ > 0 800

700 mh = 114 GeV

600 mχ± = 104 GeV

500 (GeV) 0

m 400

300

200

100

0 100 200 300 400 500 600 700 800 900 1000

SPS benchmark points m1/2 (GeV) cf. SUSY without prejudice [Berger, Hewett, Gainer, Rizzo ’08] Constrained MSSM [Ellis, Olive, et al, update K. Olive] SUSY could be the origin of the observed deviation

aµ distinguishes SUSY models central, complementary in global analyses of SUSY parameters

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation Numerical results

tan β = 10 , µ > 0 800

700 mh = 114 GeV

600 mχ± = 104 GeV

500 (GeV) 0

m 400 new exp.

300

200

100

0 100 200 300 400 500 600 700 800 900 1000

SPS benchmark points m1/2 (GeV) cf. SUSY without prejudice [Berger, Hewett, Gainer, Rizzo ’08] Constrained MSSM [Ellis, Olive, et al, update K. Olive] SUSY could be the origin of the observed deviation

aµ distinguishes SUSY models central, complementary in global analyses of SUSY parameters

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation SUSY parameter measurements in the LHC era

aµ will remain central, complementary in SUSY parameter analyses a -predictions differ! Sfitter-analysis for µ global fit to LHC-data: degenerate χ2 minima for

[Sfitter: Adam, Kneur, Lafaye, Plehn, Rauch, Zerwas ’10] (µ, M1, M2) ≈ (+400, 200, 100) (−400, 200, 100) (+100, 400, 200) . . . aµ breaks degeneracies

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation SUSY parameter measurements in the LHC era

aµ will remain central, complementary in SUSY parameter analyses Measure tan β (case SPS1a) Sfitter-analysis for global fit to LHC-data: bad precision for tan β!

[Sfitter: Lafaye, Plehn, Rauch, Zerwas ’08] (tan β)LHC,masses = 10 ± 4.5 aµ improves precision: 2-fold (current g − 2) 4-fold (future g − 2) [Hertzog, Miller, de Rafael, Roberts, DS ’07]

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination SUSY could explain the deviation SUSY parameter measurements in the LHC era

aµ will remain central, complementary in SUSY parameter analyses Measure tan β (case SPS1a) Why important? tan β = v2 central for v1 understanding EWSB, mass generation we will want many measurements!

[Hertzog, Miller, de Rafael, Roberts, DS ’07]

MW vision: test universality of tan β, like for cos θW = in the SM: MZ aµ LHC,masses H b (tβ) = (tβ) = (tβ) = (tβ) ?

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination Littlest Higgs (T-parity) cannot explain the deviation Littlest Higgs (with T-parity)

Big question: Why is the Higgs light? ≈10 TeV strong dyn. Answer: it’s a Pseudo Goldstone Boson! [Georgi; Arkani-Hamed,Cohen,Georgi] Concrete LHT model: [Cheng, Low ’03] [Hubisz, Meade, Noble, Perelstein ’06] ≈1 TeV

Bosonic SUSY! states WH , lH . . . partner states, same spin cancel quadratic div.s T-parity⇒lightest partner ≈250 GeV stable SM, Higgs

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination Littlest Higgs (T-parity) cannot explain the deviation g − 2 in LHT

2 a ∝ α mµ µ 4π f 

MWH = (f /v)MW

no enhancement factor exists ⇒ prediction [Blanke, Buras, et al ’07]

LHT −11 aµ < 12 × 10

Clear-cut prediction, sharp distinction from SUSY possible

[Blanke, Buras, et al ’07]

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination Randall-Sundrum models could explain the deviation Randall-Sundrum models

17 Big question: Where does the hierarchy MPl : MW ∼ 10 come from? Answer: beautifully explained by warp factor e−kL

TeV-scale determined by:

coupling k/MPl −kL scale Λπ = e MPl

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination Randall-Sundrum models could explain the deviation Randall-Sundrum models

17 Big question: Where does the hierarchy MPl : MW ∼ 10 come from? Answer: beautifully explained by warp factor e−kL

TeV-scale determined by:

coupling k/MPl −kL scale Λπ = e MPl

Gravity propagates in extra dimension

→ KK-Gravitons mn ∼ 0.76(1 + 4n) × (coupling) × (scaleΛπ)

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination Randall-Sundrum models could explain the deviation g − 2 and Randall-Sundrum models

Gravity propagates in extra dimension

µR KK-Graviton µL

each KK-Graviton contributes equally, weakly, no decoupling!

theory breaks down at scale ∼ Λπ, nc KK-gravitons up to that scale 2 RS 5nc mµ → aµ ∼ 2 2 16π Λπ

potential enhancement ∝ nc = O(1 . . . 100 ∼ 1/coupling) feels all KK-gravitons very sensitive to UV-completion of theory

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics aµ, parameter measurements and model discrimination Randall-Sundrum models could explain the deviation g − 2 and Randall-Sundrum models

Complementarity: LHC lowest KK-gravitons determines model parameters

aµ tells us what the cutoff is hint to full 5-dim dynamics guides model building of [Kim, Kim, Song’01] full theory

potential enhancement ∝ nc = O(1 . . . 100 ∼ 1/coupling) feels all KK-gravitons very sensitive to UV-completion of theory

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Conclusions Outline

1 Introduction

2 Different types of new physics

3 aµ, parameter measurements and model discrimination SUSY could explain the deviation Littlest Higgs (T-parity) cannot explain the deviation Randall-Sundrum models could explain the deviation

4 Conclusions

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics Conclusions Conclusions

Big questions of TeV-scale (EWSB) motivate radically new ideas

N.P. −11 aµ very model-dependent, typically O(10 . . . 500) × 10 Today: e.g. SUSY fits well, aµ is central in global analyses

−11 Measurement of aµ, in particular if improved to ±16 × 10 , can sharply distinguish models exclude some models, pin down important details of others

Understanding TeV-scale phenomena discovered at the LHC/Tevatron requires input from complementary experiments. aµ will provide critical input and sharp constraints and will help in establishing a New .

Dominik Stöckinger Magnetic moment (g − 2)µ and new physics