Characteristics and Implications of Brief
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N. -
Muricidae, from Palk Strait, Southeast Coast of India
Nature Environment and Pollution Technology Vol. 8 No. 1 pp. 63-68 2009 An International Quarterly Scientific Journal Original Research Paper New Record of Muricanthus kuesterianus (Tapparone-Canefri, 1875) Family: Muricidae, from Palk Strait, Southeast Coast of India C. Stella and C. Raghunathan* Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi-623 409, Ramnad district, Tamil Nadu, India *Zoological Survey of India, Andaman and Nicobar Regional Station, Haddo, Port Blair-744 102, Andaman & Nicobar Islands, India Key Words: ABSTRACT Gastropoda The present study reported the occurrence of Muricanthus kuesterianus in the Palk Muricidae Strait region of southeast coast of India as a first hand record. The detailed description Muricanthus kuesterianus of this species has been given with the comparison of its close resembled species Chicoreus virgineus Chicoreus virgineus. INTRODUCTION Muricidae, the largest and varied taxonomic family among marine gastropods has small to large predatory sea snails in the Order Neogastropoda. At least 1,000 species of muricids under numerous subfamilies are known. Many muricids have unusual shells which are considered attractive by shell collectors. The spire and body whorl of the muricids are often ornamental with knobs, tubercules, ribbing or spines. Muricids have episodic growth which means that the shell grows in spurts, remain- ing in the same size for a while before rapidly growing to the next size stage resulting in a series of varices on each whorl. Most species of muricids are carnivorous, feeding on other gastropods, bivalves and barnacles. In March 2007, during the course of faunistic surveys along the Palk Strait region of southeast coast of India (Fig. -
Black Oystercatcher Diet and Provisioning 2014 Annual Report
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Black Oystercatcher Chick Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 ON THIS PAGE Nest camera captures a black oystercatcher provisioning chick on Natoa Island. Photograph Courtesy: NPS/Kenai Fjords National Park ON THE COVER Black oystercatchers at nest in Aialik Bay, Kenai Fjords National Park Photograph by: NPS/Katie Thoresen Black Oystercatcher Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 Sam Stark1, Brian Robinson2 and Laura M. Phillips1 1National Park Service Kenai Fjords National Park PO Box 1727 Seward, AK 99664 2 University of Alaska, Fairbanks Department of Biology and Wildlife PO Box 756100 Fairbanks, AK 99775 January 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
The Systematics and Ecology of the Mangrove-Dwelling Littoraria Species (Gastropoda: Littorinidae) in the Indo-Pacific
ResearchOnline@JCU This file is part of the following reference: Reid, David Gordon (1984) The systematics and ecology of the mangrove-dwelling Littoraria species (Gastropoda: Littorinidae) in the Indo-Pacific. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24120/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24120/ THE SYSTEMATICS AND ECOLOGY OF THE MANGROVE-DWELLING LITTORARIA SPECIES (GASTROPODA: LITTORINIDAE) IN THE INDO-PACIFIC VOLUME I Thesis submitted by David Gordon REID MA (Cantab.) in May 1984 . for the Degree of Doctor of Philosophy in the Department of Zoology at James Cook University of North Queensland STATEMENT ON ACCESS I, the undersigned, the author of this thesis, understand that the following restriction placed by me on access to this thesis will not extend beyond three years from the date on which the thesis is submitted to the University. I wish to place restriction on access to this thesis as follows: Access not to be permitted for a period of 3 years. After this period has elapsed I understand that James Cook. University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All uses consulting this thesis will have to sign the following statement: 'In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it.' David G. -
ECOLOGICAL ENERGETICS of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA
Journal of Coastal Deveolpment ISSN : 1410-5217 Volume 11, Number 2, February 2008 : 89-96 ECOLOGICAL ENERGETICS OF TROPICAL LIMPET Cellana testudinaria (Linnaeus, 1758) LIVING ON THE ROCKY SHORE OF OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA Abraham Seumel Khouw Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon Indonesia Received : November, 2, 2007 ; Accepted :January,4, 2008 ABSTRACT Study on ecological energetics of tropical limpet C. testudinaria has been carried out at approximately one year from October 2001 to September 2002. Population energy budgets estimated on the assumption of steady state conditions for C. testudinaria (Linnaeus, 1758) on the rocky shore of Ohoiwait, are presented. Large difference in population structure, and hence energetics, occurred at different localities along the rocky shore. Relatively high proportions (98 %) of the assimilated energy was lost via metabolism. Assimilation efficiency is 39 %, net growth efficiency is 1.8 %, and ecological efficiency 0.3 %. Production (P), energy flow (A) and total energy consumption (C) were expressed as functions of animal size, in order to facilitate gross estimations of the energy component for which data on size frequency and density are available. Key words: ecological energetics, cellana testudinaria, energy components Correspondence: Phone : +6281343044295, e-mail: [email protected] INTRODUCTION Cellana testudinaria is intertidal, grazing Little has been published on the gastropod abundant on medium to very ecology of C. testudinaria. Khouw (2002) exposed rocky shores of Ohoiwait. The discussed their growth pattern and shell species shows marked zonation, with only a shape variation in relation to zonal little overlap between zones. C. testudinaria distribution. Distribution, abundance, and occurs at several spatial and temporal scales biomass were investigated by Khouw from the extreme low water spring tide (2006a) and presented evidence for the (ELWST) to the extreme high water spring effects of drying. -
Title Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere
Biogeography in Cellana (Patellogastropoda, Nacellidae) with Title Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species González-Wevar, Claudio A.; Nakano, Tomoyuki; Palma, Author(s) Alvaro; Poulin, Elie Citation PLOS ONE (2017), 12(1) Issue Date 2017-01-18 URL http://hdl.handle.net/2433/218484 © 2017 González-Wevar et al. This is an open access article distributed under the terms of the Creative Commons Right Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Type Journal Article Textversion publisher Kyoto University RESEARCH ARTICLE Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species Claudio A. GonzaÂlez-Wevar1,2*, Tomoyuki Nakano3, Alvaro Palma4, Elie Poulin1 1 GAIA-AntaÂrtica, Universidad de Magallanes, Punta Arenas, Chile, 2 Instituto de EcologõÂa y Biodiversidad Ä a1111111111 (IEB), Departamento de Ciencias EcoloÂgicas, Facultad de Ciencias, Universidad de Chile, Nuñoa, Santiago, Chile, 3 Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto University, a1111111111 Nishimuro, Wakayama, Japan, 4 Universidad Gabriela Mistral, Facultad de IngenierõÂa y Negocios, a1111111111 Providencia, Santiago, Chile a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Oceanic islands lacking connections to other land are extremely isolated from sources of Citation: GonzaÂlez-Wevar CA, Nakano T, Palma A, potential colonists and have acquired their biota mainly through dispersal from geographi- Poulin E (2017) Biogeography in Cellana cally distant areas. Hence, isolated island biota constitutes interesting models to infer bio- (Patellogastropoda, Nacellidae) with Special geographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species. -
E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
!e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore. -
Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs. -
BIO 313 ANIMAL ECOLOGY Corrected
NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment). -
The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia Gigantea
THE BEHAVIORAL ECOLOGY AND TERRITORIALITY OF THE OWL LIMPET, LOTTIA GIGANTEA by STEPHANIE LYNN SCHROEDER A DISSERTATION Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy March 2011 DISSERTATION APPROVAL PAGE Student: Stephanie Lynn Schroeder Title: The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia gigantea This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Biology by: Barbara (“Bitty”) Roy Chairperson Alan Shanks Advisor Craig Young Member Mark Hixon Member Frances White Outside Member and Richard Linton Vice President for Research and Graduate Studies/Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded March 2011 ii © 2011 Stephanie Lynn Schroeder iii DISSERTATION ABSTRACT Stephanie Lynn Schroeder Doctor of Philosophy Department of Biology March 2011 Title: The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia gigantea Approved: _______________________________________________ Dr. Alan Shanks Territoriality, defined as an animal or group of animals defending an area, is thought to have evolved as a means to acquire limited resources such as food, nest sites, or mates. Most studies of territoriality have focused on vertebrates, which have large territories and even larger home ranges. While there are many models used to examine territories and territorial interactions, testing the models is limited by the logistics of working with the typical model organisms, vertebrates, and their large territories. An ideal organism for the experimental examination of territoriality would exhibit clear territorial behavior in the field and laboratory, would be easy to maintain in the laboratory, defend a small territory, and have movements and social interactions that were easily followed. -
Miller L. P. & M. W. Denny. (2011)
Reference: Biol. Bull. 220: 209–223. (June 2011) © 2011 Marine Biological Laboratory Importance of Behavior and Morphological Traits for Controlling Body Temperature in Littorinid Snails LUKE P. MILLER1,* AND MARK W. DENNY Hopkins Marine Station, Stanford University, Pacific Grove, California 93950 Abstract. For organisms living in the intertidal zone, Introduction temperature is an important selective agent that can shape species distributions and drive phenotypic variation among Within the narrow band of habitat between the low and populations. Littorinid snails, which occupy the upper limits high tidemarks on seashores, the distribution of individual of rocky shores and estuaries worldwide, often experience species and the structure of ecological communities are extreme high temperatures and prolonged aerial emersion dictated by a variety of biotic and abiotic factors (Connell, during low tides, yet their robust physiology—coupled with 1961, 1972; Lewis, 1964; Paine, 1974; Dayton, 1975; morphological and behavioral traits—permits these gastro- Menge and Branch, 2001). Biological interactions such as pods to persist and exert strong grazing control over algal predation, competition, and facilitation play out on a back- communities. We use a mechanistic heat-budget model to ground of constantly shifting environmental conditions driven primarily by the action of tides and waves (Stephen- compare the effects of behavioral and morphological traits son and Stephenson, 1972; Denny, 2006; Denny et al., on the body temperatures of five species of littorinid snails 2009). Changes in important environmental parameters under natural weather conditions. Model predictions and such as light, temperature, and wave action can alter the field experiments indicate that, for all five species, the suitability of the habitat for a given species at both small relative contribution of shell color or sculpturing to temper- and large spatial scales (Wethey, 2002; Denny et al., 2004; ature regulation is small, on the order of 0.2–2 °C, while Harley, 2008). -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................