Glossary Appendix A) Glossary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
23 a CROP ROTATION PLANNING PROCEDURE Note
23 A CROP ROTATION PLANNING PROCEDURE Note: this chapter is modified from Chapter 5 of Crop Rotation on Organic Farms: a Planning Manual by Charles L. Mohler and Sue Ellen Johnson, NRAES Press. It is intended to be used in conjunction with that manual, not as a substitute for it. General instructions This chapter provides a step –by-step procedure for planning crop rotations on an individual farm. The procedure is based on methods used by the panel of expert farmers discussed in Chapter 2 supplemented with other sources. The procedure distills what experienced growers do based on experience, knowledge and intuition into a systematic method. For the sake of simplicity, the instructions are written as if the person doing the planning is the manager of the farm. The crop rotation planning procedure works through a series of steps. You will (i) organize your information, (ii) develop a general rotation plan (optional), (iii) construct a crop rotation planning map, (iv) plan future crop sequences for each section of the farm, and (v) refine your crop sequence plan. The procedure is easiest for a farm that produces only a few crops and has uniform field conditions. Examples include cash grain farms and some wholesale vegetable operations where all of the crops can be grown on all of the fields. The procedure can be used to plan rotations with more crops and multiple soil types, but the process is time consuming. The rewards of systematic crop rotation planning increase, however, with the number of crops and complexity of the fields. On farms that grow only a few crops, reasonable rotations can be maintained using a few rules of thumb. -
MECHANIZATION and TECHNOLOGY Overview
MECHANIZATION AND TECHNOLOGY Overview Mechanization of agriculture is an essential input in modern agriculture. It enhances productivity, besides reducing human drudgery and cost of cultivation. Mechanization also helps in improving utilization efficiency of other inputs , safety and comfort of the agricultural worker , improvements in the quality and value addition of the produce. Efficient machinery helps in increasing production and productivity, besides enabling the farmers to raise a second crop or multi crop making the Indian agriculture attractive and a way of life by becoming commercial instead of subsistence. Increased production will require more use of agricultural inputs and protection of crops from various stresses. This will call for greater engineering inputs which will require developments and introduction of high capacity, precision, reliable and energy efficient equipment. Looking at the pattern of land holding in India, it may be noted that about 84 % of the holdings are below 1 ha. There is a need for special efforts in farm mechanization for these categories of farmers to enhance production and productivity of agriculture. In the existing scenario of land fragmentation and resulting continued shrinkage of average size of operational holdings, percentage of marginal, small and semi-medium operational holdings is likely to increase. Such small holding makes individual ownership of agricultural machinery uneconomic and operationally unviable. ‘Custom Hiring Centers of Agricultural Machineries’ operated by Co- operative Societies, Self Help Groups and private/rural entrepreneur are the best alternative in enabling easy availability of farm machineries to the farmers and bringing about improvement of farm productivity for the benefits of Small & Marginal farmers. -
Agricultural Machinery--Power
REPORT RESUMES ED 013 892 VT 001 140 AGRICULTURAL MACHINERYPOWER.TEACHERS COPY. BY- VENACLE, BENNY MAC HILL, DURWIN TEXAS A AND M UNIV., COLLEGESTATION TEXAS EDUCATION AGENCY, AUSTIN FUB DATE 66 EDRS PRICE MF-$1.25HC NOT AVAILABLE FROM EDRS. 337F; DESCRIPTORS- *VOCATIONAL AGRICULTURE,*COOPERATIVE EDUCATION, -.AGRICULTURAL MACHINERY OCCUPATIONS,*STUDY GUIDES, TESTS, ANSWER KEYS, *AGRICULTURAL MACHINERY, THE PURPOSE Cc THIS DOCUMENT ISTO PROVIDE A STUDY GUILE FUR STUDENTS PREPARING, FORAGRICULTURAL MACHINERY OCCUPATIONS IN A VOCATIONAL AGRICULTURECC OPERATIVE EDUCATION PROGRAM. THE MATERIAL WAS DESIGNED EYSUBJECT MATTER SrECIALISTS CN THE BASIS OF STATE ADVISORYCOMMITTEE RECOMMENDATIONS, TRIED IN OPERATIONAL PROGRAMS, ANDREFINED EY A TEACHER. TOPICAL UNITS IN THE COURSE INCLUDE-- (1) INTRODUCTION,(2) INTERNAL COMOUSTION ENGINES,(3) LUBRICANTS AND LUBRICATING SYSTEMS, (4) FUEL SYSTEMS,(5) CCCLING SYSTEMS,(6) ELECTRICAL SYSTEMS, AND (7) HYDRAULICS. UNIT MATERIALSINCLUDE INFORMATION SHEETS, ASSIGNMENTSHEETS, ASSIGNMENT ANSWER SHEETS, TOPIC TESTS, AND TOPIC TESTAN:Jw7RS. THE MATERIAL IS SUITABLE FOR READING AND AS A GUIDETO STUDY FOR STUDENTS WHO ARE EMPLOYED, MALE OR FEMALE, AND16 TO 20 YEARS OLD. TH11 COURSE REQUIRES 175 PERIODS OF 50MINUTES. OTHER TEXTBOXS, BULLETINS, AND COMMERCIAL DATA ARE NECESSARYAND ARE SPECIFICALLY RECOMMENDED ON THE ASSIGNMENTSHEETS. THE DOCUMENT IS IN PRINTED AND LCOSELEAF FORM.THIS DOCUMENT IS AVAILABLE IN LIMITED NUMBERS FOR $4.00EACH mom AGRICULTURAL EDUCATION TEACHING MATERIALS CENTER, TEXASAGRICULTURAL AND MECHANICAL UNIVERSITY, COLLEGE STATION,TEXAS 77843. (JM) AGRICULTURAL Agricultural CooperativeTraining t \NNW VOCAT-IONAL AGRICULTURE_ EDUCATION U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE e\I OFFICE OF EDUCATION co Pr\ THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVEDFROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS CD STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE Of EDUCATION POSITION OR POLICY. -
Ecoregions of the Mississippi Alluvial Plain
92° 91° 90° 89° 88° Ecoregions of the Mississippi Alluvial Plain Cape Girardeau 73cc 72 io Ri Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of This level III and IV ecoregion map was compiled at a scale of 1:250,000 and depicts revisions and Literature Cited: PRINCIPAL AUTHORS: Shannen S. Chapman (Dynamac Corporation), Oh ver environmental resources; they are designed to serve as a spatial framework for the research, subdivisions of earlier level III ecoregions that were originally compiled at a smaller scale (USEPA Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Omernik, J.M., 1987, Ecoregions of the conterminous United States (map Barbara A. Kleiss (USACE, ERDC -Waterways Experiment Station), James M. ILLINOIS assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing 2003, Omernik, 1987). This poster is part of a collaborative effort primarily between USEPA Region Ecoregions and subregions of the United States (map) (supplementary supplement): Annals of the Association of American Geographers, v. 77, no. 1, Omernik, (USEPA, retired), Thomas L. Foti (Arkansas Natural Heritage p. 118-125, scale 1:7,500,000. 71 the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the VII, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), table of map unit descriptions compiled and edited by McNab, W.H., and Commission), and Elizabeth O. Murray (Arkansas Multi-Agency Wetland Bailey, R.G.): Washington, D.C., U.S. Department of Agriculture - Forest Planning Team). 37° environment by its probable response to disturbance (Bryce and others, 1999). -
Agricultural Mechanization and Agricultural Transformation
www.acetforafrica.org Agricultural Mechanization and Agricultural Transformation Paper written by Xinshen Diao, Jed Silver and Hiroyuki Takeshima INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE BACKGROUND PAPER FOR African Transformation Report 2016: Transforming Africa’s Agriculture FEBRUARY 2016 Joint research between: African Center for Economic Transformation (ACET) and Japan International Cooperation Agency Research institute (JICA-RI) Background Paper for African Transformation Report 2016: Transforming Africa’s Agriculture Agricultural Mechanization and Agricultural Transformation Xinshen Diao, Jed Silver and Hiroyuki Takeshima (International Food Policy Research Institute) February 2016 Joint research between African Center for Economic Transformation (ACET) and Japan International Cooperation Agency Research institute (JICA-RI) Contents Executive Summary ............................................................................................................................................. 3 1. Introduction ............................................................................................................................................... 5 2. Definitions and Concepts ....................................................................................................................... 6 Definitions of Mechanization ............................................................................................................... 6 Mechanization and Agricultural Intensification .............................................................................. -
Maintenance in Agriculture - a Safety and Health Guide
European Agency for Safety and Health at Work Maintenance in Agriculture - A Safety and Health Guide Authors (Members of the TC OSH): Mónica Águila Martínez-Casariego, INSHT, Spain Kirsty Ormerod, Mark Liddle, HSL, United Kingdom Gediminas Vilkevicius, LZUU, Lithuania Ellen Schmitz-Felten, KOOP, Germany Edited by Katalin Sas, European Agency for Safety and Health at Work (EU-OSHA) This report was commissioned by the European Agency for Safety and Health at Work (EU- OSHA). Its contents, including any opinions and/or conclusions expressed, are those of the author(s) alone and do not necessarily reflect the views of EU-OSHA. Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu). Cataloguing data can be found at the end of this publication. Cover photo by Verislav Stancheventry – Entry to the EU-OSHA photo competition 2009 “What’s your image of safety & health at work?” Luxembourg: Publications Office of the European Union, 2011 ISBN 978-92-9191-667-2 doi 10.2802/54188 © European Agency for Safety and Health at Work (EU-OSHA), 2011 Reproduction is authorised provided the source is acknowledged. Maintenance in Agriculture - A Safety and Health Guide Table of contents 1. An introduction to maintenance in agriculture ............................................................................. 3 2. -
Geographies of Competitive Advantage: an Examination of the US Farm Machinery Industry
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2011 Geographies of Competitive Advantage: An Examination of the US Farm Machinery Industry Dawn M. Drake University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Human Geography Commons Recommended Citation Drake, Dawn M., "Geographies of Competitive Advantage: An Examination of the US Farm Machinery Industry. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/963 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Dawn M. Drake entitled "Geographies of Competitive Advantage: An Examination of the US Farm Machinery Industry." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geography. Ronald V. Kalafsky, Major Professor We have read this dissertation and recommend its acceptance: Thomas L. Bell, Bruce A. Ralston, Anne D. Smith Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Dawn M. -
2021 Row Crop Plant-Back Intervals for Common Herbicides
DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System Footnotes (continued) Authors 10 Replant only with Concep-treated or screen-treated seed. 2021 11 Needs 15 inches cumulative precipitation from application to planting rotational crop. Leah Collie, Program Associate - Weed Science 12 Needs 30 inches cumulative precipitation from application to planting rotational crop. Aaron Ross, Program Associate - Weed Science Tom Barber, Professor - Weed Science 13 Timeintervalisbasedon8oz/Aapplicationrateanddoesnotbeginuntil1inchof Row Crop Plant-Back rainfall is received. Tommy Butts, Assistant Professor - Weed Science 14If4oz/Aorlessusedand1inchofrainfall/irrigationreceivedafterapplication. Jason Norsworthy, Distinguished Professor - Weed Science 15 Days listed are based on University data and after receiving 1 inch of rainfall. 16 Enlist corn, cotton and soybeans can be planted immediately. University of Arkansas System, Division of Agriculture Intervals for 17 STS Soybeans can be planted immediately. Weed Science Program 18 Soil PH below 7.5. 19 ForNewpath/Prefaceuseratesgreaterthan8oz/Aperseason;onlysoybeansmaybe Common Herbicides planted the following year. 20 Rotation interval for soybean is 2 months where pH is less than 7.5. 21 Immediately if Poast Protected Crop. 22 If less than 15 inches of rainfall received since application, extend replant intervals to 18 months. If pH greater than 6.5, do not plant rice the following year. 23 18monthsforcottonifrateisgreaterthan5oz/AandpH>7.2. 24 Rotationtograinsorghumis18monthswhenSpartanisappliedat8oz/A. -
Section Five
SECTION FIVE irrigation Water ManageMent Planning Georgia’s agriculture industry utilizes millions of gallons of water each year for irrigation purposes. Ir- rigated agriculture ranges from row crop farming to plant nurseries to orchards. Much of the concern with irrigation is with regard to efficiency, runoff and the capture and collection of runoff. Many irrigation systems are inefficient and essentially waste water during the irrigating process. Ir- rigation efficiency may seem complicated; many producers may feel that their systems are simply too old to modify. In today’s agricultural industry, producers have numerous opportunities to improve the efficiency of their system in a cost efficient way. Improved nozzles, metering, and computer software are all readily available to provide producers with a more efficient means of irrigating their cropland and monitoring plant water use. Planning an irrigation schedule that best utilizes available water can reduce waste and runoff. Irrigation systems need to be routinely checked to ensure that water is being distributed uniformly and that there are no damaged pipes, sprinklers or nozzles. Irrigation meters provide producers with an accurate measurement of the amount of water that is applied to their crops and can also help identify pumping problems within their system. More information on the benefits of metering can be found in the UGA CES document, Water Meters as a Water Management Tool on Georgia Farms. An efficient system should range between 80 and 92% efficient. If a system is less than 80% efficient, producers should consider a system upgrade. There are several government sponsored irrigation system audit programs available and most system manufacturers can assist with an audit program. -
Tech Note: Plant Materials for Conservation Buffers
United States Department of Agriculture Natural Resources Conservation Service Plant Materials Technical Note No: TX-PM-12-03 April 2012 Plant Materials for Conservation Buffers Plant Materials Technical Note Background Conservation buffers play an important role in helping conserve our natural resources. These areas of vegetation protect our soil resources, improve air quality, improve water quality and quantity, enhance fish and wildlife habitat and beautify our landscape. Unfortunately, conservation buffers are not planned and applied to the extent that they should be. Purpose The purpose of this technical note is to provide information for the support and application of conservation buffers across the landscape. Provided within this document is a listing of plant material and the corresponding buffer practice for which they can be used. Types of Conservation Buffers Contour Buffer Strips (CP 332) Contour buffer strips are narrow strips of permanent, herbaceous vegetative cover established along a hill slope in conjunction with contoured farming between the strips. The primary purpose of contour buffer strips is to reduce sheet and rill erosion, reduce sediment and water-borne contaminant transportation and increase water infiltration. A secondary benefit can be providing wildlife habitat. Grass, forbs and legumes are used in contour buffer strip plantings. Special consideration must be given to ensure that the appropriate stem densities are planned and established to meet the resource need. For areas with maximum row grades, the established vegetation should be permanent sod-forming vegetation with stiff, upright stems. Refer to the Vegetation List below and Appendix 1 in eFOTG for more plant species and site adaptability information. -
Capital Intensive Farming
The Impact of Capital Intensive Farming in Thailand: A Computable General Equilibrium Approach Anuwat Pue-on Dept of Accounting, Economics and Finance Lincoln University, New Zealand Bert D. Ward Dept of Accounting, Economics and Finance Lincoln University, New Zealand Christopher Gan Dept of Accounting, Economics and Finance Lincoln University, New Zealand Paper presented at the 2010 NZARES Conference Tahuna Conference Centre – Nelson, New Zealand. August 26-27, 2010. Copyright by author(s). Readers may make copies of this document for non-commercial purposes only, provided that this copyright notice appears on all such copies. The Impact of Capital Intensive Farming in Thailand: A Computable General Equilibrium Approach Anuwat Pue-on, Bert D. Ward, Christopher Gan Dept of Accounting, Economics and Finance Lincoln University, New Zealand Abstract The aim of this study is to explore whether efforts to encourage producers to use agricultural machinery and equipment will significantly improve agricultural productivity, income distribution amongst social groups, as well as macroeconomic performance in Thailand. A 2000 Social Accounting Matrix (SAM) of Thailand was constructed as a data set, and then a 20 production-sector Computable General Equilibrium (CGE) model was developed for the Thai economy. The CGE model is employed to simulate the impact of capital-intensive farming on the Thai economy under two different scenarios: technological change and free trade. Four simulations were conducted. Simulation 1 increased the share parameter of capital in the agricultural sector by 5%. Simulation 2 shows a 5% increase in agricultural capital stock. A removal in import tariffs for agricultural machinery sector forms the basis for Simulation 3. -
An Analysis of Transformations from Labour Intensive Farming to Capital Intensive Farming Naresh Kumar
Economic Affairs, Vol. 64, No. 2, pp. 431-439, June 2019 DOI: 10.30954/0424-2513.2.2019.20 ©2019 New Delhi Publishers. All rights reserved Agriculture Situation in Punjab: An Analysis of Transformations from Labour Intensive Farming to Capital Intensive Farming Naresh Kumar Department of Economics, Punjabi University, Patiala, Punjab, India Corresponding author: [email protected] ABSTRACT There is no doubt that Punjab farming is capital intensive and agricultural production increased with the use of machinery, high yielding varieties of seeds, pesticides and fertilizers. But the use of technology made agriculture more capital intensive. Punjab farmers are suffering from stagnated agricultural production and their expenditure on agricultural inputs are increasing over the time. This situation creates financial problems for the farming class. The present paper tried to shows the current situation of Punjab’s agriculture in terms of operational land holding, productivity, irrigational sources, marketing of agricultural produced, and transformation from labour intensive to capital intensive farming etc. Highlights m Punjab farmers are suffering from stagnated agricultural production and their expenditure on agricultural inputs are increasing over the time. m This situation creates financial problems for the farming class. To overcome the losses and meet the expenditure farmers needs to take loans. m To return the loans many times farmers sell their land and moving outside the agriculture to support their livelihood. Keywords: Agriculture Sector, Punjab Economy, Production, Crops, Large Small, Marginal Framers Indian economy has witnessed significant change all over the country. Impact of green revolution can since independence in every sector especially be seen in the development of agriculture in Punjab in agriculture.