Invasive Species of the Pacific Northwest Flowering Rush

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Species of the Pacific Northwest Flowering Rush Invasive Species of the Pacific Northwest Flowering Rush, Butomus umbellatus, Grassy Rush, Water Gladiolus Lilia Bannister FISH 423 // Olden Autumn 2014 Figure 1. Top: Flowering Rush, Butomus umbellatus, growing in a water garden (photo credit: Bennetts Water Gardens); Bottom: Flowering rush overtaking an irrigation stream (photo credit: Natural Resources Conservation Service, Montana, United States Department of Agriculture). Classification Control Association 2009). These flowers will either grow fruit that open at maturity Order: Alismatales and disperse seeds, or they will remain Family: Butomaceae sterile and reproduce through rhizomes and Genus: Butomus bulblets (Oregon Department of Agriculture Species: Butomus umbellatus 2014). These reproductive differences can Common names: Flowering Rush, Grassy also be assessed through their genes: Rush, Water Gladiolus diploid cells (2n = 2x = 26) produce a seeding plant and triploid cells (2n = 3x = Identification Key 36) produce a sterile plant (Department of Ecology of Washington State 2008). Seeds As a perennial Eurasian aquatic are adapted to float so they can be carried plant that exhibits characteristics from both along with the flow of the water (Center for the Cyperaceae and Juncaceae families Invasive Species and Ecosystem Health (Jacobs 2011), Butomus umbellatus is 2010). unique and identified as the only species of the Bitomaceae family. Although it is the sole species of this family, it remains a distinguished species in the Angiosperm and monocot groups. Monocots have parallel veins, flowers in 3 parts, a larger root system, and one cotyledon (Stevens 2012), all of which B. umbellatus can identify. It is generally found along the shoreline in the littoral zone of rivers and slow moving bodies of freshwater (Jacobs et al. 2011). B. umbellatus is commonly referred to as Figure 2. Petal, stamen and pistil arrangement flowering rush or grassy rush and is known to grow in waters up to 20 feet (6 meters) of B. umbellatus (photo credit: Christian deep. The stems are green and triangular in Fischer, Cofrin Center for Biodiversity, cross section (Figure 3), generally grow up University of Wisconsin-Green Bay). to five feet (1.5 meters) tall, and are grounded by an extensive system of fibrous rhizomes (Oregon Department of B. umbellatus is predominantly and most Agriculture 2014). easily identified by its flowers, but when Depending on the depth of where the plant the plant is rooted in deeper waters it is located, it will either emerge and flower remains underwater and will therefore not or remain submerged. If the plant is produce any buds or flowers, making growing in shallower waters, it will grow identification much more difficult. When above the surface and produce radially submerged, the plant grows narrow and symmetric 1-inch light pink flowers in an limp triangular leaves that can reach up to umbrella-shaped formation (Figures 1, 2). about 3 feet (1 meter) long (Center for Invasive Species and Ecosystem Health Each flower consists of six petals, six 2010). This is opposed to the stiffer and pistils, and nine stamens arranged in two more supported leaves of the variety that whorls (Jacobs et al. 2011), which blossom grows above the surface, since those leaves between June and August (Montana Weed can twist and spiral toward the top of the plant (Jacobs et al. 2011). Both types, the photosynthetic processes (US Fish & underwater variation specifically, can also Wildlife Service 2008). be identified by the bulblets that form on the roots. These bulblets are the primary Reproductive Strategies form of reproduction for the submerged and As a perennial, the life cycle of B. sterile plants, and when the rhizomes are umbellatus can last for many years, and disturbed the buds are able to break off and although it produces fewer seeds compared produce new plants (Jensen 2009). to other types of flowering plants, their seeds are more likely to be environmentally fit and successful in reproduction (US Fish & Wildlife Service 2008). The three main strategies of reproduction of B. umbellatus are sexual reproduction through seed production and dispersal, asexual reproduction through clonal means of bulblet production, and asexual reproduction through vegetative reproduction processes (Lui et al. 2005). When the inflorences of the plants blossom (Figure 1, Top), they can contain up to about 50 flowers each (Lui et al. 2005). If the plant is fertile, these flowers each Figure 3. Triangular cross section of B. produce a fruit containing seeds (Figure 4). When the flowers have reached their sexual umbellatus stems (photo credit: Gary maturity, the fruit opens and releases the Fewless, University of Wisconsin, seeds into the environment (Oregon Department of Agriculture 2014). Seeds Green Bay, Wisconsin). increase the distance of dispersal and establishment due to their adaptation to Life History float on the water’s surface (Center for Invasive Species and Ecosystem Health Life Cycle 2010). If the water is moving via a light The life cycle of B. umbellatus current, the seeds can be carried greater parallels that of any monocot in that it distances, which can lead to more begins as a seedling, grows and develops widespread invasions. In a case study of B. stems, leaves, and roots, and matures into a umbellatus, it was also found that each flowering plant. From there, the flowers flower is protandrous, therefore reducing produce seeds, which germinate once the risk of self-pollination (Bhardwaj and dispersed and become seedlings again (US Eckert 2001) and increasing successful Fish & Wildlife Service 2008). reproduction rates through seed production. Feeding Habits Vegetative reproduction is another Vascular plants such as flowering significant form of reproduction of B. rush feed through their root system and umbellatus. Vegetative reproduction occurs shoot system. The fibrous roots collect when a plant regrows from something that nutrients from intake from the soil and the has been separated from the original plant, shoot system uses its leaves to capture the in this case, fragments of the rhizomes or suns light and extract nutrients from bulblets. (US Fish & Wildlife Service 2008). Clonal reproduction follows the production of bulblets, small bulbs-like structures attached to the rhizome (Figure 5) that are broken off by anthropogenic disturbances in the substrate or water above (Rice 2008). Bulblets are a very important means of reproduction to the triploid sterile plants that do not produce flowers or seeds (Lui et al. 2005). Each bulblet is loosely attached to the rhizome. Once broken off, the bulblets themselves sprout and can establish a brand new plant. This allows new plants to grow easily and often because of Figure 5. B. umbellatus rhizome detail frequent disturbances in the environment (Jacobs et al. 2011). (photo credit: Bargeron 2008). The advantages of these two methods of asexual reproduction are the benefits of quick and immediate dispersal. Adjacent Environmental Tolerances plants can be established quickly and easily B. umbellatus is an indigenous plant since bulblets and rhizomes are already to Europe and Asia that thrives in areas of rooted in the substrate, and populations can slow-moving or relatively stagnant water grow rapidly without the waiting time for (Core 1941). It is known to be tolerant to a flowers to blossom and fruits to mature. great temperature range and therefore has a The disadvantage however, is the absence higher probability of establishing in of reproductive variation since no genes are differing climates (Center for Invasive being exchanged between individual plants. Species and Ecosystem Health 2010). It is This can reduce fitness if the plants are most commonly found in shallower waters facing changes in the ecosystem that require and especially areas with fluctuating water adaptation. With methods of sexual levels such as wetlands, irrigation ditches, reproduction, the plant is able to account and the shores of lakes. for these changes and can adapt to better These shallow areas of near-standing water suit the environment Disadvantages of . are more prone to the successful growth of sexual reproduction would include the rhizomes and bulblets because when the complications of pollination dependency water levels lower or when they completely and the chances of unsuccessful seed dissipate, the sun warms the ground. Since establishment. warmer temperatures enhance advantageous growth and sprouting conditions of the bulblets, once they are grounded well in the muddy substrate they can sprout more quickly and the population can spread (Hroudova 1996). Historically and in other regions of the world, specifically Eurasia, the expansion of flowering rush has been stifled by native species such as reeds. Interactions with native flora in the United States however are not yet known (Jacobs et al. 2011). Figure 4. B. umbellatus seed detail (photo credit: Bargeron 2008). Biotic Associations Current Geographic Distribution The parasite physoderma butomi Schroeter was discovered on leaves of B. Although widespread throughout umbellatus in 1883 in Lake Michigan Asia and Europe, B. umbellatus has (Sparrow 1974). The resting spores generally only been reported in the northern generally infect the plant on the part of the United States. It has been subepidermal level of the leaves rather than documented in Washington, Idaho, the epidermis layer itself, and were also Montana, North Dakota, South Dakota, noted to infect the stalks of inflorescences. Nebraska,
Recommended publications
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Status and Strategy for Flowering Rush (Butomus Umbellatus L.) Management
    State of Michigan’s Status and Strategy for Flowering Rush (Butomus umbellatus L.) Management Scope Invasive flowering rush (Butomus umbellatus L., hereafter FR) has invaded the shores of Michigan waterways since the early 1900’s (Core 1941; Stuckey 1968; Anderson et al. 1974). This document was developed by Central Michigan University and reviewed by Michigan Departments of Environmental Quality and Natural Resources for the purposes of: • Summarizing the current level of understanding on the biology and ecology of FR. • Summarizing current management options for FR in Michigan. • Identifying possible future directions of FR management in Michigan. This document used the current information available in journals, publications, presentations, and experiences of leading researchers and managers to meet its goals. Any chemical, company, or organization that is mentioned was included for its involvement in published, presented, or publically shared information, not to imply endorsement of the chemical, company, or organization. Biology and Ecology I. Identification Flowering rush is an emergent aquatic perennial plant with linear, sword-like leaves, triangular in cross-section, and a showy umble of pink flowers (Figure 1). Rhizomes (i.e. horizonal root-like stems) are fleshy, and leaves have parallel veination and can be submersed or emergent. Submersed leaves are linear and limp, unlike sword-like emergent leaves. Flowering rush blooms from June to August. Flowers are arranged in terminal umbels. Flower parts are found in multiples of three (e.g. six tepals, nine stamen, six carpels) with pink to purple tepals 0.25 – 0.5 in (6 - 11.5 mm) long (eFloras 2008). Each flower produces up to six beaked fruits.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Columbia Basin Flowering Rush Management Plan
    COLUMBIA BASIN COOPERATIVE WEED MANAGEMENT AREA COLUMBIA BASIN FLOWERING RUSH MANAGEMENT PLAN A regional strategy to address Butomus umbellatus throughout the Columbia Basin www.columbiabasincwma.org Statement of Collaboration: When possible, the partners of the Columbia Basin Cooperative Weed Management Area will strive to communicate and work collaboratively to develop a unified management effort for flowering rush throughout the Columbia Basin. The completion of this document was supported by funding from the National Fish and Wildlife Foundation Suggested citation: Columbia Basin Cooperative Weed Management Area. 2019. Columbia Basin Flowering Rush Management Plan: A regional strategy to address Butomus umbellatus throughout the Columbia Basin. pp 67 www.columbiabasincwma.org Pg. 1 CONTENT Tables ....................................................................................................................................... 3 Figures ..................................................................................................................................... 3 Preface ..................................................................................................................................... 5 Executive Summary .................................................................................................................. 6 Introduction ............................................................................................................................. 7 Scope and Purpose ........................................................................................................................7
    [Show full text]
  • Ecology and Phenology of Flowering Rush in the Detroit Lakes Chain of Lakes, Minnesota
    J. Aquat. Plant Manage. 53: 54–63 Ecology and phenology of flowering rush in the Detroit Lakes chain of lakes, Minnesota MICHELLE D. MARKO, JOHN D. MADSEN, R. A. SMITH, B. SARTAIN, AND C. L. OLSON* ABSTRACT al. 1974, Boutwell 1990, Brown and Eckert 2005). Flowering rush can form monotypic stands that crowd out native Flowering rush, Butomus umbellatus L., has been an plants and interfere with recreational water use and water increasing problem in the Detroit Lakes chain of lakes for flow (Boutwell 1990, Jacobs et al. 2011). In the St. Lawrence more than 40 yr. Flowering rush dominates ecosystems by River region, it was found to be more invasive than purple crowding out native species, including hardstem bulrush, loosestrife (Lythrum salicaria L.; Lavoie 2003). The spread of Schoenoplectus acutus (Muhl. ex Bigelow) A & D Love,¨ a vital flowering rush in irrigation ditches has affected water flow part of native ecosystems. Furthermore, flowering rush and become a management concern for native fish species, creates boating hazards and hampers recreational activities such as cutthroat and bull trout (Jacobs et al. 2011). One on the lakes. The phenological differences between flower- region in Minnesota, the Pelican River Watershed, has been ing rush and the native hardstem bulrush were examined as struggling with flowering rush for over 40 yr as it has spread part of a project to determine best management practices through the Detroit Lakes chain of lakes since the 1960s (T. for controlling this invasive species. Biomass allocation, Guetter, Pelican River Watershed District, pers. comm.). plant height, carbohydrate allocation, and reproductive Since its introduction as an ornamental species in Lake structures of flowering rush were examined in the Detroit Sallie (Becker County, Minnesota), different methods of Lakes system.
    [Show full text]
  • Butomus Umbellatus L.) Management
    State of Michigan’s Status and Strategy for Flowering Rush (Butomus umbellatus L.) Management Scope Invasive flowering rush (Butomus umbellatus L., hereafter FR) has invaded the shores of Michigan waterways since the early 1900’s (Core 1941; Stuckey 1968; Anderson et al. 1974). This document was developed by Central Michigan University and reviewed by Michigan Departments of Environmental Quality and Natural Resources for the purposes of: • Summarizing the current level of understanding on the biology and ecology of FR. • Summarizing current management options for FR in Michigan. • Identifying possible future directions of FR management in Michigan. This document used the current information available in journals, publications, presentations, and experiences of leading researchers and managers to meet its goals. Any chemical, company, or organization that is mentioned was included for its involvement in published, presented, or publically shared information, not to imply endorsement of the chemical, company, or organization. Biology and Ecology I. Identification Flowering rush is an emergent aquatic perennial plant with linear, sword-like leaves, triangular in cross-section, and a showy umble of pink flowers (Figure 1). Rhizomes (i.e. horizonal root-like stems) are fleshy, and leaves have parallel veination and can be submersed or emergent. Submersed leaves are linear and limp, unlike sword-like emergent leaves. Flowering rush blooms from June to August. Flowers are arranged in terminal umbels. Flower parts are found in multiples of three (e.g. six tepals, nine stamen, six carpels) with pink to purple tepals 0.25 – 0.5 in (6 - 11.5 mm) long (eFloras 2008). Each flower produces up to six beaked fruits.
    [Show full text]
  • Flowering Rush
    IPANE - Catalog of Species Search Results http://www.lib.uconn.edu/webapps/ipane/browsing.cfm?descriptionid=16 Home | Early Detection | IPANE Species | Data & Maps | Volunteers | About the Project | Related Information Catalog of Species Search Results Butomus umbellatus (Flowering rush ) :: Catalog of Species Search Common Name(s) | Full Scientific Name | Family Name Common | Family Scientific Name | Images | Synonyms | Description | Similar Species | Reproductive/Dispersal Mechanisms | Distribution | History of Introduction in New England | Habitats in New England | Threats | Early Warning Notes | Management Links | Documentation Needs | Additional Information | References | Data Retrieval | Maps of New England Plant Distribution COMMON NAME Flowering rush FULL SCIENTIFIC NAME Butomus umbellatus L. FAMILY NAME COMMON Flowering rush family FAMILY SCIENTIFIC NAME Butomaceae IMAGES Flowers Habit Flowers Fruit Incursion Roots 1 of 5 9/24/2007 3:36 PM IPANE - Catalog of Species Search Results http://www.lib.uconn.edu/webapps/ipane/browsing.cfm?descriptionid=16 Habitat NOMENCLATURE/SYNONYMS Synonyms: Butomus umbellatus f. vallisneriifolius (Sagorski) Gluck DESCRIPTION Botanical Glossary Butomus umbellatus is a perennial, aquatic herb that grows from a fleshy rhizome on freshwater shorelines. It can be found in water several meters deep, and its flowering stem can reach up to 1 m (3.3 ft.) above the surface of the water. The 0.6-0.9 m (2-3 ft.) long ensiform leaves can be erect or floating on the water's surface. The leaves are three angled, fleshy and have twisted ends. The plants flower from the summer to the fall depending on the depth of the water. The flowers are arranged in a bracted umbel. The bracts are purple-tinged, and numerous flowers are on long, slender ascending pedicels.
    [Show full text]
  • Experimental Assessment of Butomus Umbellatus L
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2014 Experimental Assessment of Butomus Umbellatus L. Growth and Expansion Using a Mesocosm Approach Christian Carter Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Carter, Christian, "Experimental Assessment of Butomus Umbellatus L. Growth and Expansion Using a Mesocosm Approach" (2014). Theses and Dissertations. 2137. https://scholarsjunction.msstate.edu/td/2137 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Automated Template C: Created by James Nail 2013V2.1 Experimental assessment of Butomus umbellatus L. growth and expansion using a mesocosm approach By Christian Carter A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences in the Department of Biological Sciences Mississippi State, Mississippi August 2014 Copyright by Christian Carter 2014 Experimental assessment of Butomus umbellatus L. growth and expansion using a mesocosm approach By Christian Carter Approved: ____________________________________ Gary N. Ervin (Major Professor/Graduate Coordinator) ____________________________________ Lisa Wallace (Committee Member) ____________________________________ John D. Madsen (Committee Member) ____________________________________ R. Gregory Dunaway Professor and Dean College of Arts and Sciences Name: Christian Carter Date of Degree: August 15, 2014 Institution: Mississippi State University Major Field: Biological Sciences Major Professor: Gary N. Ervin Title of Study: Experimental assessment of Butomus umbellatus L.
    [Show full text]
  • Management Experiments on Lake Erie Flowering Rush
    Bowling Green State University ScholarWorks@BGSU Honors Projects Honors College Spring 4-29-2013 Management Experiments on Lake Erie Flowering Rush Alyssa Dietz Follow this and additional works at: https://scholarworks.bgsu.edu/honorsprojects Repository Citation Dietz, Alyssa, "Management Experiments on Lake Erie Flowering Rush" (2013). Honors Projects. 19. https://scholarworks.bgsu.edu/honorsprojects/19 This work is brought to you for free and open access by the Honors College at ScholarWorks@BGSU. It has been accepted for inclusion in Honors Projects by an authorized administrator of ScholarWorks@BGSU. 1 Management Experiments on Lake Erie Flowering Rush Alyssa Dietz HONORS PROJECT Submitted to the University Honors Program at Bowling Green State University in partial fulfillment of the requirements for graduation with UNIVERSITY HONORS April 29 th , 2013 Advisors: Dr. Helen J. Michaels, Department of Biological Sciences Dr. Enrique Gomezdelcampo, Department of Environment and Sustainability 2 Summary: The issue of invasive species has been a major concern for many Great Lakes ecosystems over the past several decades. Since the first noted invasive animal, the sea lamprey, these fresh water ecosystems have been invaded by over 180 different plants and animals that create over $100 million worth of damage a year (Rosaen et al . 2012). Because the five Great Lakes, along with their rivers, streams, and wetlands are such an interconnected series, the introduction of any invasive species to one of the Great Lakes, such as Lake Erie, means that invaders are likely to spread to all other freshwater ecosystems in the area (Rosaen et al . 2012). With the various ways that many introduced species can alter the nutrient availability, habitat quality, and species richness, many wildlife managers are continuing to develop management strategies that remove or greatly limit the further spread of invasive species.
    [Show full text]
  • DRAFT: WRITTEN FINDINGS of the WASHINGTON STATE NOXIOUS WEED CONTROL BOARD Updated in 2020, Original Draft from 2008
    DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD Updated in 2020, original draft from 2008 Scientific Name: Butomus umbellatus L. Synonyms: Butomus junceus Turcz, Butomus umbellatus L. f. vallisneriifolius (Sagorski) Glnck Common Name: Flowering-rush (sometimes known as grass rush) Family: Butomaceae (Flowering-rush family) Legal Status: Class A noxious weed; Quarantine List (WAC 16-752) Images: left, flowering rush with emergent leaves growing along a shoreline; center, rhizome with leaf bases and developing bud; right, piece of flowering rush rhizome with leaves, all images by Greg Haubrich. Introduction: Flowering rush is an invasive aquatic perennial monocot that is able to exploit a wide range of aquatic habitats. It grows emergent along the shoreline of lakes and rivers out to water depths of 7 m (24 ft.) or more where it is fully submersed. It will grow in still water with muddy substrate to flowing water with rocky substrate and everything in between. It thrives in areas with fluctuating water levels, but also persists and spreads in stable water conditions (Hroudova ́ 1989, Hroudova ́ et al. 1996). It will invade and dominate native plant beds (Madsen et al. 2012, Harms 2020) and can also colonize habitats previously barren of plant growth (Parkinson et al. 2010). When growing submersed, the leaves are stiff relative to other submersed plants, and thus in flowing water they are present higher in the water column. It has been termed an ecosystem engineer for its ability to alter habitat by sediment accretion (Gunderson et al. 2016). These characteristics, along with the rapidly expanding population, have raised concern about potential impacts on habitat and water delivery if flowering rush becomes well established throughout its potential range in western North America.
    [Show full text]