Offshore Drilling in Cuba and the Bahamas: the U.S

Total Page:16

File Type:pdf, Size:1020Kb

Offshore Drilling in Cuba and the Bahamas: the U.S OFFSHORE DRILLING IN CUBA AND THE BAHAMAS: THE U.S. COAST GUARD’S OIL SPILL READINESS AND RESPONSE PLANNING (112–70) HEARING BEFORE THE SUBCOMMITTEE ON COAST GUARD AND MARITIME TRANSPORTATION OF THE COMMITTEE ON TRANSPORTATION AND INFRASTRUCTURE HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS SECOND SESSION JANUARY 30, 2012 Printed for the use of the Committee on Transportation and Infrastructure ( Available online at: http://www.gpo.gov/fdsys/browse/ committee.action?chamber=house&committee=transportation U.S. GOVERNMENT PRINTING OFFICE 72–582 PDF WASHINGTON : 2012 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN COMMITTEE ON TRANSPORTATION AND INFRASTRUCTURE JOHN L. MICA, Florida, Chairman DON YOUNG, Alaska NICK J. RAHALL II, West Virginia THOMAS E. PETRI, Wisconsin PETER A. DEFAZIO, Oregon HOWARD COBLE, North Carolina JERRY F. COSTELLO, Illinois JOHN J. DUNCAN, JR., Tennessee ELEANOR HOLMES NORTON, District of FRANK A. LOBIONDO, New Jersey Columbia GARY G. MILLER, California JERROLD NADLER, New York TIMOTHY V. JOHNSON, Illinois CORRINE BROWN, Florida SAM GRAVES, Missouri BOB FILNER, California BILL SHUSTER, Pennsylvania EDDIE BERNICE JOHNSON, Texas SHELLEY MOORE CAPITO, West Virginia ELIJAH E. CUMMINGS, Maryland JEAN SCHMIDT, Ohio LEONARD L. BOSWELL, Iowa CANDICE S. MILLER, Michigan TIM HOLDEN, Pennsylvania DUNCAN HUNTER, California RICK LARSEN, Washington ANDY HARRIS, Maryland MICHAEL E. CAPUANO, Massachusetts ERIC A. ‘‘RICK’’ CRAWFORD, Arkansas TIMOTHY H. BISHOP, New York JAIME HERRERA BEUTLER, Washington MICHAEL H. MICHAUD, Maine FRANK C. GUINTA, New Hampshire RUSS CARNAHAN, Missouri RANDY HULTGREN, Illinois GRACE F. NAPOLITANO, California LOU BARLETTA, Pennsylvania DANIEL LIPINSKI, Illinois CHIP CRAVAACK, Minnesota MAZIE K. HIRONO, Hawaii BLAKE FARENTHOLD, Texas JASON ALTMIRE, Pennsylvania LARRY BUCSHON, Indiana TIMOTHY J. WALZ, Minnesota BILLY LONG, Missouri HEATH SHULER, North Carolina BOB GIBBS, Ohio STEVE COHEN, Tennessee PATRICK MEEHAN, Pennsylvania LAURA RICHARDSON, California RICHARD L. HANNA, New York ALBIO SIRES, New Jersey JEFFREY M. LANDRY, Louisiana DONNA F. EDWARDS, Maryland STEVE SOUTHERLAND II, Florida JEFF DENHAM, California JAMES LANKFORD, Oklahoma REID J. RIBBLE, Wisconsin CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, Tennessee SUBCOMMITTEE ON COAST GUARD AND MARITIME TRANSPORTATION FRANK A. LOBIONDO, New Jersey, Chairman DON YOUNG, Alaska RICK LARSEN, Washington HOWARD COBLE, North Carolina ELIJAH E. CUMMINGS, Maryland ANDY HARRIS, Maryland CORRINE BROWN, Florida FRANK C. GUINTA, New Hampshire TIMOTHY H. BISHOP, New York CHIP CRAVAACK, Minnesota MAZIE K. HIRONO, Hawaii BLAKE FARENTHOLD, Texas MICHAEL H. MICHAUD, Maine JEFFREY M. LANDRY, Louisiana, NICK J. RAHALL II, West Virginia Vice Chair (Ex Officio) JOHN L. MICA, Florida (Ex Officio) (II) VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN CONTENTS Page Summary of Subject Matter .................................................................................... iv TESTIMONY Baumgartner, Rear Admiral William, Commander, Seventh District, United States Coast Guard .............................................................................................. 10 Carroll, Hon. Jennifer, Lieutenant Governor, State of Florida ........................... 10 Herbst, Lars, Regional Director, Gulf of Mexico Region, Bureau of Safety and Environmental Enforcement, U.S. Department of the Interior ................ 10 Payton, Debbie, Chief, Emergency Response Division, Office of Response and Restoration, National Ocean Service, National Oceanic and Atmospheric Administration ..................................................................................................... 10 Proni, John R., Ph.D., Executive Director, Florida International University Applied Research Center (ARC) .......................................................................... 10 Thomas, Rear Admiral Cari, Director of Response Policy, United States Coast Guard .................................................................................................................... 10 PREPARED STATEMENTS SUBMITTED BY WITNESSES Baumgartner, Rear Admiral William, and Thomas, Rear Admiral Cari, joint statement .............................................................................................................. 39 Carroll, Hon. Jennifer ............................................................................................. 44 Herbst, Lars ............................................................................................................. 47 Payton, Debbie ......................................................................................................... 51 Proni, John R., Ph.D. ............................................................................................... 56 (III) VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00003 Fmt 5904 Sfmt 5904 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN iv VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00004 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 1 here 72582.001 v VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00005 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 2 here 72582.002 vi VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00006 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 3 here 72582.003 vii VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00007 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 4 here 72582.004 viii VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00008 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 5 here 72582.005 ix VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00009 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 6 here 72582.006 x VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00010 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 7 here 72582.007 xi VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00011 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 8 here 72582.008 xii VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00012 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 9 here 72582.009 xiii VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00013 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN Insert offset folio 10 here 72582.010 VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00014 Fmt 6602 Sfmt 6602 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN OFFSHORE DRILLING IN CUBA AND THE BAHAMAS: THE U.S. COAST GUARD’S OIL SPILL READINESS AND RESPONSE PLANNING MONDAY, JANUARY 30, 2012 HOUSE OF REPRESENTATIVES COMMITTEE ON THE TRANSPORTATION AND INFRASTRUCTURE, SUBCOMMITTEE ON COAST GUARD AND MARITIME TRANSPORTATION, Washington, DC. The subcommittee met, pursuant to call, at 10:04 a.m., in The Atlantic Room, Double Tree by Hilton Ocean Point Resort and Spa, 17375 Collins Avenue, Sunny Isles Beach, Florida, Hon. John Mica (Chairman of the committee) presiding. Present: Representatives Mica, Hultgren, Long, and Gibbs. Also Present: Representatives Ros-Lehtinen, Diaz-Balart, Rivera, and West. Mr. MICA. Good morning. I would like to call this hearing of the United States House of Representatives Transportation and Infra- structure Committee, and the Subcommittee on the United States Coast Guard hearing to order. I am pleased to be here in South Florida, and first want to wel- come my colleagues who have come from across the country to be with us today, and I will introduce them in just a second. The order of business today is we will be conducting a hearing that will focus on Cuban and Bahamanian oil drilling off of Florida shores. The order of business will be opening statements by Members of Congress, then we will turn to the distinguished panel who has been assembled to assist our subcommittee. And we will then move to questions after we have heard from all the witnesses. I want to particularly welcome members of the committee that have traveled from colder climates to be with us, it is a very in- tense time in Washington and I know in their districts right now. But I am very pleased that they have joined us. I will introduce them: Randy Hultgren, and Randy is from the 14th District of Illi- nois. That is east of Chicago. Pleased to have him in this sub- committee hearing today. And Billy Long next to him, the Seventh District of Missouri, and southwestern Missouri, Springfield, and some of that area. Bob Gibbs, Bob is also the chair of the Water Resources Subcommittee in the House of Representatives, and he is the 18th District of Ohio, central Ohio. (1) VerDate Aug 31 2005 13:17 Mar 12, 2012 Jkt 000000 PO 00000 Frm 00015 Fmt 6633 Sfmt 6633 P:\HEARINGS\112\CG\1-30-1~1\72582.TXT JEAN 2 Then we are very pleased with the response we have had from Members of South Florida to attend and also participate in this hearing today.
Recommended publications
  • The Fluctuations of the Florida Current!
    BULLETIN OF MARINE SCIENCE OF THE GULF AND CARIBBEAN VOLUME 1 1952 NUMBER 4 THE FLUCTUATIONS OF THE FLORIDA CURRENT! ILMO HELA The Marine Laboratory, University of Miami ABSTRACT Correlations between the annual variations of the drift current of the Straits of Florida, of sea-level, and of the wind stress data are established. The annual march of the sea-level difference between Cat Cay and Miami Beach is computed. It is shown to have a close relation to the annual march of the average charted drift current in the Straits of Florida. The relatively few observations used for these computations are nevertheless shown to be representative. In order to extend the use of the sea-level data, the connection between the S-N component of the mean wind stress in the area of the Florida Straits and the mean sea-level of the same section is studied and a relatively close connection is found. Thus it is shown that, after a proper correction due to the variations of the local wind stress, the sea-level observations at Miami Beach may be used as an index of the year by year fluctuations in the Florida Current. INTRODUCTION Since the northeast trades and westerlies, from which the Gulf Stream system obtains its energy, fluctuate in position and velocity with the different seasons of the year, and probably to some extent from year to year, it is generally assumed that this system of water currents similarly fluctuates in strength. The considerable theoretical and practical importance of an accurate knowledge of these fluctua- tions is well known to oceanographers.
    [Show full text]
  • Climate & Currents Introduction
    Introduction to Climate and Currents Wind is air moving across the surface of the Earth. Ultimately all winds are generated by unequal heating of the Earth by the sun. Because the sun is millions of miles away from the earth, the rays of light and heat from the sun that reach the surface of the Earth are parallel to one another. But the Earth is round, and only at the equator does energy from the sun fall on a flat surface at a right angle to the sun. At the poles solar radiation fall on surfaces that curve sharply away from the sun. To demonstrate this, shine a flashlight on a flat surface so that the beam of light is perpendicular (at a right angle) to the surface. Draw a circle around the spot of light. Now tilt the flat surface so that it is at a 45o angle to the flashlight. Now the spot of light shining on the surface is oblong, not round, and it is now almost two times larger that the first spot. The spot of light is also dimmer now because the light of the flashlight beam is spread over a larger area than before. This same principle applies to the Earth and sun. The equator will always receive more energy from the sun than will comparable areas north or south of the equator. Also, the surface of the Earth directly beneath the sun at high noon also receives more energy than do areas to the east or west. Thus the Earth’s surface along the equator is always warmer than are the polar regions, and it is always warmer at noon than at dawn and dusk.
    [Show full text]
  • Accurately Monitoring the Florida Current with Motionally Induced
    Journal of Marine Research, 45, 843-870, 1987 Accurately monitoring the Florida Current with motion ally induced voltages by Peter Spain) and Thomas B. Sanford) ABSTRACT A new experimental technique for appraising how accurately submarine-cable (subcable) voltages monitor oceanic volume transport is presented and then used to study voltages induced by the northern Florida Current. Until recently, subcable voltages have been largely dismissed as an oceanographic tool because their interpretation can be ambiguous. They depend upon the transport field, the electrical conductance of the environment, and the mutual spatial distribu- tion of these two quantities. To examine how these three factors affect subcable voltages at a particular site, we combine data from two different velocity profilers: XCP and PEGASUS. These instruments provide vertical profiles of velocity, temperature, and motionally induced voltage at several sites across a transect. From this information, we determine if and why subcable voltages track volume transport. We conclude that subcable voltages measured in the northern Florida Straits accurately monitor the Florida Current transport because they are insensitive to the spatial distribution of the flow-a result that stems from a large and rather uniform seabed conductance. Subcable voltages should be reconsidered for oceanic monitoring elsewhere because the validity of their interpretation can now be assessed. 1. Introduction Significant fluctuations in volume transport accompany the seasonal and inter- annual variability of many oceanic phenomena. Some examples include the annual reversal of the Somali Current in response to the transition of the monsoons (Leetmaa et aI., 1980), the interannual movement of the Kuroshio between its bimodal paths (Taft, 1972), and the attenuation of the Pacific equatorial undercurrent during an EI Nino (Firing et al., 1983).
    [Show full text]
  • Ocean Circulation and Climate: a 21St Century Perspective
    Chapter 13 Western Boundary Currents Shiro Imawaki*, Amy S. Bower{, Lisa Beal{ and Bo Qiu} *Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan {Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA {Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA }School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, USA Chapter Outline 1. General Features 305 4.1.3. Velocity and Transport 317 1.1. Introduction 305 4.1.4. Separation from the Western Boundary 317 1.2. Wind-Driven and Thermohaline Circulations 306 4.1.5. WBC Extension 319 1.3. Transport 306 4.1.6. Air–Sea Interaction and Implications 1.4. Variability 306 for Climate 319 1.5. Structure of WBCs 306 4.2. Agulhas Current 320 1.6. Air–Sea Fluxes 308 4.2.1. Introduction 320 1.7. Observations 309 4.2.2. Origins and Source Waters 320 1.8. WBCs of Individual Ocean Basins 309 4.2.3. Velocity and Vorticity Structure 320 2. North Atlantic 309 4.2.4. Separation, Retroflection, and Leakage 322 2.1. Introduction 309 4.2.5. WBC Extension 322 2.2. Florida Current 310 4.2.6. Air–Sea Interaction 323 2.3. Gulf Stream Separation 311 4.2.7. Implications for Climate 323 2.4. Gulf Stream Extension 311 5. North Pacific 323 2.5. Air–Sea Interaction 313 5.1. Upstream Kuroshio 323 2.6. North Atlantic Current 314 5.2. Kuroshio South of Japan 325 3. South Atlantic 315 5.3. Kuroshio Extension 325 3.1.
    [Show full text]
  • Observations of the Gulf Stream in the N. Atlantic
    Observations of the Gulf Stream in the N. Atlantic Florida Strait Transport Probably the best & most continuous record of ocean transport is in the Florida Strait where cable measurements between the coast of Florida (Miami) and the Bahamas (Bimini) have been “calibrated” (Baringer & Larsen, 2001, GRL, 3179-3182). The time series started in 1982 and in the above reference is reported through 1998. Daily estimates of Florida Current transport have been examined over the course of many years (fig. 2, below) and clear interannual variations have been detected that are related to the strength of the wind-driving in the N. Atlantic (the NAO Index is used in the figure, see Ocean Circulation text, p. 139 for NAO schematic). This transport is one main “benchmark” against which all numerical models of the ocean can be judged: do they get the transport correct or not? Do they get the same temporal variability? Do they get the correct seasonal cycle? The transport is seen to vary seasonally (see fig. 3, above reference, below) There is a suggestion of a different annual cycle in the first half of the record compared to the second half. The range of the annual cycle (2-3 Sv.) is about the same as the range of interannual changes. The mean value (32.2 Sv.) is somewhat larger than we would expect from the Sverdrup transport at this latitude (26N, homework problem). The discrepancy can in part be related to the fact that some water flowing thru Florida Strait is from the South Atlantic and is required by the thermohaline circulation, which we will discuss in a later part of the course.
    [Show full text]
  • Year Four Annual Report
    U.S. Department of Homeland Security National Center of Excellence Center for Secure and Resilient Maritime Commerce (CSR) YEAR FOUR REPORT September 2012 Cooperative Agreement 2008-ST-061-ML0001 Department of Homeland Security 1 U.S. Department of Homeland Security National Center of Excellence Center for Secure and Resilient Maritime Commerce (CSR) DHS Leadership Dr. Matthew Clark, Director, University Programs, Science and Technology Directorate Mr. Theophilos C. Gemelas, Program Manager, University Programs Team Participants University Partners Massachusetts Institute of Technology Monmouth University Rutgers University Stevens Institute of Technology (lead institution) University of Miami University of Puerto Rico at Mayaguez Non-University Partners Mattingley Group Nansen Environmental Remote Sensing Center Pacific Basin Development Council Port Authority of New York and New Jersey 2 TABLE OF CONTENTS Executive Summary …………………………… 4 I. Introduction …………………………… 8 II. Description of the CSR …………………………… 15 Ø CSR Team Members …………………………… 15 Ø Advisory Board …………………………… 16 Ø Cooperating Programs …………………………… 16 Ø Collaboration with co-lead CIMES …………………………… 18 Ø Communications and outreach …………………………… 19 Ø Collaborations with other COEs …………………………… 19 III. Research Project Reports …………………………… 20 Ø Description of Research Areas …………………………… 20 Ø Task 1.1 Space-Based Wide Area Surveillance …………………… 21 Ø Task 1.2 Investigation of HF Radar for Multiple Applications: Over-The-Horizon Vessel Detection and Tracking, Search and Rescue, and Environmental
    [Show full text]
  • Simulating the Variability of Florida Current Frontal Eddies
    Simulating the variability of Florida Current frontal eddies HeeSook Kang and Villy H. Kourafalou RSMAS/UM LOM09 The Complex South Florida Coastal System COMPLEX TOPOGRAPHY Broad SW Florida shelf Narrow Atlantic Florida Keys shelf Shallow Florida Bay Deep Straits of Florida COMPLEX DYNAMICS Wind-driven shelf flows Buoyancy-driven shelf flows (river runoffs) Intense coastal to offshore interactions (Loop Current /Florida Current front CUBA and eddies) Adapted from Lee et al. (2002) FKEYS-HYCOM nested in GOM-HYCOM GOM-HYCOM With DATA ASSIMILATION SoFLAWith 20 layers Resolution ~ 3-4 km 1 deg NOGAPS FKEYS FKEYS FKEYS-HYCOM With desired topographic de ta ils in s hall ow Fl orid a Keys areas With river line source along the Ten Thousand Islands With 26 layers Resolution ~ 1km COAMPS-27km Simulation for 5 years from 2004 to 2008 GOM-HYCOM from Ole Martin Smedstad minimum water depth: 2m FKEYS-HYCOM domain with Topography It covers: SWFS: Southwest Florida Shelf WERA SEFS: Southeast Florida Shelf AFKS: Atlantic Florida Keys Shelf FB:FloridaBay: Florida Bay FK: Florida Keys National Marine Sanctuary DT: Dry Tortugas Ecological Reserve The FKEYS-HYCOM can simulate (i) the spontftitaneous formation of front al eddi es with realistic bottom topography and (ii) their subsequent evolution as they interact with coastal boundaries and varying shelf width. GOM-HYCOM vs. SeaWiFs vs. FKEYS-HYCOM GOM-HYCOM Appr 21 2004 FKEYS-HYCOM Apr 21 2004 Apr 21 2004 SeaWiFs:http://imars.usf.edu/ (Chuanmin Hu, USF) FKEYS-HYCOM vs. WERA vs. GOM-HYCOM WERA : http://iwave.rsmas.miami.edu/wera/ (Nick Shay, RSMAS) Florida Current Meander & Eddies (SSH + Currents) Mar 06 00Z Apr 19 00Z 2004 2004 Apr 10 12Z Jan 22 00Z 2006 2006 Mar 14 12Z Nov 07 00Z 2007 2007 Cross-sectional Temperature @ 25.5oN (2004) Billfish Program (Bob Cowen, RSMAS) Temperature change over the period of Observation V-velocity (Jun) V-velocity (Aug) FC FC 01 10 02 11 03 12 Okubo-Weiss parameter (Q) represents a balance between the magnitude of vorticity and deformation (Veneziani et al., 2005).
    [Show full text]
  • On the Sources of the Florida Current
    Dttp.S.a Rrsrarch. Vol 3M . Suppl I. pp 5379-S409. 1991. OtQ~1141j19t $3 no + (l.OO Pnnted in Great Bntaln. © I~t Pergamon Press pic On the sources of the Florida Current WILLIAM J. SCHMITZ, JR* and PHILIP L. RICHARDSON* (Received 3 February 1989: in revised form 14 June 1990: accepted 15 June 1990) Abstract-In our opinion roughly 13 Sv or 45% of the transport of the Florida Current is of South Atlantic origin. as compensation for the cross-equatorial flow of North Atlantic Deep Water. Of the R. 9 Sv moving through the Straits of Florida with temperatures above 24°C in the upper 100 m of the water column, 7.1 Sv is composed of comparatively fresh water coming through the southern Caribbean passages from the tropical South Atlantic. Saltier surface water. 1.8 Sv. enters from the North Atlantic through Windward Passage. as does most of the 18° Water in the Rorida Current. A South Atlantic contribution for the uppermost layer is clear-cut because the surface water in the open Atlantic north of the Caribbean is comparatively cold and salty and intrudes south as Subtropical Underwater or Salinity-Maximum Water below a comparatively warm and fresh layer 50-toO m thick. which could hardly he transported from the North Atlantic. Of the 13.8 Sv transported through the Caribbean in the 12-24°C temperature range. 13.0 Sv is of North Atlantic origin. with about 0.8 Sv of comparatively fresh South Atlantic water on the western side of the Florida Straits having entered the Caribbean on the southern side of St.
    [Show full text]
  • Pathways of Oil Spills from Potential Cuban Offshore Exploration
    Journal of Marine Science and Engineering Article Pathways of Oil Spills from Potential Cuban Offshore Exploration: Influence of Ocean Circulation Yannis Androulidakis 1,2,*, Vassiliki Kourafalou 1 , Lars Robert Hole 2 , Matthieu Le Hénaff 3,4 and HeeSook Kang 1 1 Department of Ocean Sciences, University of Miami/Rosenstiel School of Marine and Atmospheric Science (RSMAS), Miami, FL 33149, USA; [email protected] (V.K.); [email protected] (H.K.) 2 Norwegian Meteorological Institute, 5007 Bergen, Norway; [email protected] 3 Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami, Miami, FL 33149, USA; mlehenaff@rsmas.miami.edu 4 NOAA/Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL 33149, USA * Correspondence: [email protected] Received: 26 June 2020; Accepted: 15 July 2020; Published: 18 July 2020 Abstract: The DeepWater Horizon oil spill in the Gulf of Mexico (GoM) in 2010 raised the public awareness on potential spills from offshore exploration activities. It became apparent that knowledge of potential oil pathways in the case of a spill is important for preparedness and response. This study focuses on such scenarios from potential oil spills in the Cuban Exclusive Economic Zone (EEZ), a vast area in the GoM and the Straits of Florida that has not received much attention in oil spill studies, even though this region has been under evaluation for oil exploration. The Cuban EEZ is also in the crossroads of heavy tanker traffic, from the areas of intense oil exploration in the Northern GoM to the adjacent Caribbean Sea and Atlantic Ocean. The study also evaluates how the oil transport and fate are influenced by the main circulation patterns of the GoM, such as the Loop Current (LC) system and the mesoscale dynamics inside the Straits of Florida, such as the Florida Current (FC) and the accompanying cyclonic (along the northern Straits) and anticyclonic (along the Cuban coasts) eddies.
    [Show full text]
  • Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
    JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G.
    [Show full text]
  • Bridging the Gulf Finding Common Ground on Environmental and Safety Preparedness for Offshore Oil and Gas in Cuba
    Bridging the Gulf Finding Common Ground on Environmental and Safety Preparedness for Offshore Oil and Gas in Cuba Bridging the Gulf Finding Common Ground on Environmental and Safety Preparedness for Offshore Oil and Gas in Cuba Authors Emily A. Peterson Daniel J. Whittle, J.D. Douglas N. Rader, Ph.D. Acknowledgments The authors of this report gratefully acknowledge the support of Dr. Jonathan Benjamin-Alvarado (University of Nebraska), Dr. Lee Hunt (International Association of Drilling Contractors), Paul Kelway (International Bird Rescue), Jorge Piñón (University of Texas at Austin), Skip Przelomski (Clean Caribbean & Americas), William K. Reilly (National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling), Richard Sears (National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling), Captain John Slaughter (U.S. Coast Guard), Robert Muse (Washington, DC attorney), and Dr. John W. Tunnell, Jr. (Harte Research Institute at Texas A&M University) for providing input on this report. The final report reflects the views of its authors and not necessarily that of those interviewed. This report has been made possible thanks to the generous support of the John D. and Catherine T. MacArthur Foundation and the J.M. Kaplan Fund. Environmental Defense Fund Environmental Defense Fund is dedicated to protecting the environmental rights of all people, including the right to clean air, clean water, healthy food and flourishing ecosystems. Guided by science, we work to create practical solutions that win lasting political, economic and social support because they are nonpartisan, cost-effective and fair. Cover photo: Vidar Løkken ©2012 Environmental Defense Fund The complete report is available online at edf.org/oceans/cuba.
    [Show full text]
  • Florida Offshore Winds and Ocean
    MAST-667 - Offshore Wind Power - Final Project Wind and ocean power resources off the Florida coast, USA University of Delaware – Spring 2005 Students: Felipe M. Pimenta, Berit Rabe, Ângela Spengler and Tiago Miranda Prof. (Research leaders): Willett Kempton, Richard Garvine, Jeremy Firestone 1) Introduction (Berit, Angela, Felipe) 2) Offshore wind power resource 2.1) Methods (Felipe) 2.1.1) Wind and bathymetric data 2.1.2) Logarithmic wind speed profile (log law) 2.1.3) Available wind power 2.1.4) Rayleigh distribution 2.1.5) Wind turbine characteristics 2.1.6) Turbine power production from wind data 2.2) Results 2.2.1) Spatial analysis of wind resource (Berit and Tiago) 2.2.2) Spatial and probability analysis of power production (Felipe) 3) Extreme meteorological events (Berit and Tiago) 4) Ocean currents as a source of energy (Berit) 4.1) Equipment and available technology 4.2) Currents off the coast of Florida 4.3) Calculations regarding energy sources from currents 5) Marine protected areas (Angela) 6) Summary and Conclusion (Felipe, Berit, Tiago and Angela) 7) References (Final edition by: Felipe and Berit) 1) Introduction In the last few years several scientific studies have emphasized the risks from anthropogenic greenhouse gases on the earth’s climate and ecosystems. Recent studies show extreme changes where different scenarios are achieved using either models or experiments. For example, with an average temperature increase of Greenland by more than 3°C the global average sea level would rise 7 meters within the next 1000 years (Gregory et. al 2004). Larger pH changes than in the past 300 million years can occur over the next several centuries due to the ocean’s absorption of CO2, making the ocean more acidic.
    [Show full text]