Idaho Special Status Animal Species: 2014 Change 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
12. Owyhee Uplands Section
12. Owyhee Uplands Section Section Description The Owyhee Uplands Section is part of the Columbia Plateau Ecoregion. The Idaho portion, the subject of this review, comprises southwestern Idaho from the lower Payette River valley in the northwest and the Camas Prairie in the northeast, south through the Hagerman Valley and Salmon Falls Creek Drainage (Fig. 12.1, Fig. 12.2). The Owyhee Uplands spans a 1,200 to 2,561 m (4,000 to 8,402 ft) elevation range. This arid region generally receives 18 to 25 cm (7 to 10 in) of annual precipitation at lower elevations. At higher elevations, precipitation falls predominantly during the winter and often as snow. The Owyhee Uplands has the largest human population of any region in Idaho, concentrated in a portion of the section north of the Snake River—the lower Boise and lower Payette River valleys, generally referred to as the Treasure Valley. This area is characterized by urban and suburban development as well as extensive areas devoted to agricultural production of crops for both human and livestock use. Among the conservation issues in the Owyhee Uplands include the ongoing conversion of agricultural lands to urban and suburban development, which limits wildlife habitat values. In addition, the conversion of grazing land used for ranching to development likewise threatens wildlife habitat. Accordingly, the maintenance of opportunity for economically viable Lower Deep Creek, Owyhee Uplands, Idaho © 2011 Will Whelan ranching operations is an important consideration in protecting open space. The aridity of this region requires water management programs, including water storage, delivery, and regulation for agriculture, commercial, and residential uses. -
Habitat Usage by the Page Springsnail, Pyrgulopsis Morrisoni (Gastropoda: Hydrobiidae), from Central Arizona
THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(1):8–16 (June 30, 2006) Habitat Usage by the Page Springsnail, Pyrgulopsis morrisoni (Gastropoda: Hydrobiidae), from Central Arizona MICHAEL A. MARTINEZ* U.S. Fish and Wildlife Service, 2321 W. Royal Palm Rd., Suite 103, Phoenix, Arizona 85021, USA (*Correspondent: mike[email protected]) AND DARRIN M. THOME U.S. Fish and Wildlife Service, 2800 Cottage Way, Rm. W-2605, Sacramento, California 95825, USA Abstract. We measured habitat variables and the occurrence and density of the Page springsnail, Pyrgulopsis mor- risoni (Hershler & Landye, 1988), in the Oak Creek Springs Complex of central Arizona during the spring and summer of 2001. Occurrence and high density of P. morrisoni were associated with gravel and pebble substrates, and absence and low density with silt and sand. Occurrence and high density were also associated with lower levels of dissolved oxygen and low conductivity. Occurrence was further associated with shallower water depths. Water velocity may play an important role in maintaining springsnail habitat by influencing substrate composition and other physico-chemical variables. Our study constitutes the first empirical effort to define P. morrisoni habitat and should be useful in assessing the relative suitability of spring environments for the species. The best approach to manage springsnail habitat is to maintain springs in their natural state. INTRODUCTION & Landye, 1988), is medium-sized relative to other con- geners, 1.8 to 2.9 mm in shell height, endemic to the The role that physico-chemical habitat variables play in Upper Verde River drainage of central Arizona (Williams determining the occurrence and density of aquatic micro- et al., 1985; Hershler & Landye, 1988; Hershler, 1994), invertebrates in spring ecosystems has been poorly stud- with all known populations existing within a complex of ied. -
Endangered and Threatened Animals of Utah
Endangered and Threatened Animals of Utah Quinney Professorship for Wildlife Conflict Management Jack H. Berryman Institute U.S. Fish and Wildlife Service Utah Department of Natural Resources Division of Wildlife Resources Utah State University Extension Service Endangered and Threatened Animals of Utah 1998 Acknowledgments This publication was produced by Utah State University Extension Service Department of Fisheries and Wildlife The Jack H. Berryman Institute Utah Division of Wildlife U.S. Fish and Wildlife Service Office of Extension and Publications Contributing Authors Purpose and Introduction Terry Messmer Marilet Zablan Mammals Boyde Blackwell Athena Menses Birds Frank Howe Fishes Leo Lentsch Terry Messmer Richard Drake Reptiles and Invertebrates Terry Messmer Richard Drake Utah Sensitive Species List Frank Howe Editors Terry Messmer Richard Drake Audrey McElrone Publication Publication Assistance by Remani Rajagopal Layout and design by Gail Christensen USU Publication Design and Production Quinney Professorship for Wildlife Conflict Management This bulletin was developed under the auspices of the Quinney Professorship for Wildlife Conflict Management through the sponsorship of the S. J. and Jessie E. Quinney Foundation in partnership with the College of Natural Resources, Jack H. Berryman Institute for Wild- life Damage Management, U.S. Fish and Wildlife Service, Utah Department of Natural Resources, and Utah Division of Wildlife Resources. i Contents Purpose of this Guide . iii Introduction . v What are endangered and threatened species? . vi Why some species become endangered or threatened? . vi Why protect endangered species? . vi The Federal Endangered Species Act of 1973 (ESA) . viii Mammals Black-footed Ferret . 1 Grizzly Bear . 5 Gray Wolf . 9 Utah Prairie Dog . 13 Birds Bald Eagle . -
Version 2020-04-20 Bear Lake Whitefish (Prosopium Abyssicola
Version 2020-04-20 Bear Lake Whitefish (Prosopium abyssicola) Species Status Statement. Distribution Bear Lake whitefish is one of four fish species naturally found only in Bear Lake, which straddles the Utah-Idaho border. This species has also never been transplanted elsewhere, and occurs nowhere else in the world (Sigler and Sigler 1987). Table 1. Utah counties currently occupied by this species. Bear Lake Whitefish RICH Abundance and Trends Prior to 1999, there was simply no reliable method for fishery biologists to differentiate Bear Lake whitefish from Bonneville whitefish at lengths less than approximately 10 inches outside of their respective spawning seasons (Tolentino and Thompson 2004). Therefore, the Utah Division of Wildlife Resources (UDWR) monitored both species combined as the “whitefish complex”. In 1999, Ward (2001) along with UDWR biologists (Tolentino and Thompson 2004) finally described a reliable method to distinguish the two whitefish species in Bear Lake. From 1999-2018 the UDWR has monitored gill net catch rates and composition of Bonneville and Bear Lake whitefish separately (Tolentino 2007). The population of Bear Lake whitefish has appeared to remain stable from 1999-2017, comprising an average of 26% of the whitefish species caught in survey nets each year. Statement of Habitat Needs and Threats to the Species. Habitat Needs Bear Lake whitefish spend a majority of their life near the bottom of the lake’s deep waters. For most of each year, they live at depths ranging from 130 to 200 feet (Thompson 2003, Tolentino 2007). However, during the months of February and March the adult fish move into rocky, somewhat shallower areas (20-100 feet) to spawn (Tolentino and Albrecht 2007). -
Bear Lake Sculpin Cottus Extensus
Bear Lake Sculpin Cottus extensus Actinopterygii — Scorpaeniformes — Cottidae CONSERVATION STATUS / CLASSIFICATION Rangewide: Critically imperiled (G1) Statewide: Critically imperiled (S1) ESA: No status USFS: Region 1: No status; Region 4: No status BLM: Rangewide/Globally imperiled (Type 2) IDFG: Protected nongame BASIS FOR INCLUSION Endemic to Bear Lake. TAXONOMY No subspecies has been proposed. DISTRIBUTION AND ABUNDANCE This species is endemic to Bear Lake. The population is estimated to be in the millions. POPULATION TREND Monitoring for >10 years suggests the population is stable. HABITAT AND ECOLOGY The Bear Lake sculpin occurs throughout the lake in benthic areas. Individuals spawn near shore in mid–April to mid–May and attach eggs to the undersides of rocks where males guard egg masses (Sigler and Sigler 1987). Adults return to deeper water after spawning. After hatching, fry utilize currents to disperse from the rocky spawning areas. Sculpins are opportunistic bottom feeders on benthic invertebrates and ostracods. ISSUES A decline in lake levels due to drought and water management could limit spawning and rearing habitat. Increasing human development around the lake could lead to lowering of water quality due to waste water discharges. Legal and illegal introductions of piscivorous fish could affect populations through an increased predation rate. RECOMMENDED ACTIONS Continue programs that (1) monitor the population status and trend; (2) evaluate the relationship between water quality and level and fish populations; (3) stock sterile triploid lake trout; and (4) removal of illegally introduced non–native fish (e.g., walleye) in conjunction with adjacent states. Bear Lake Sculpin Cottus extensus Ecological Section Species Range 10 August 2005 Fish information is from Idaho Fish and Wildlife 0 20 40 80 Kilometers Information System, Idaho Deptartment of Fish and Game and displayed at the 6th code hydrologic unit. -
2009 Bear Lake Comprehensive Management Plan
Bear Lake Comprehensive Management Plan May 2009 ACKNOWLEDGEMENTS AGENCY REPRESENTATIVES Mike Styler, Executive Director, Utah Department of Natural Resources Richard J. Buehler, Director, Utah Division of Forestry, Fire, & State Lands Dave Grierson, Planner/Sovereign Lands Coordinator, Utah Division of Forestry, Fire, & State Lands Jennifer Wiglama, Mineral Lease Analyst, Utah Division of Forestry, Fire, & State Lands Kelly Allen, Area Sovereign Lands Coordinator, Utah Division of Forestry, Fire, & State Lands Kevin Wells, GIS Specialist, Utah Division of Forestry, Fire, & State Lands PLANNING WORKGROUP MEMBERS Elke Brown, Representative, Lakota Estates Home Owners Association Dave and Claudia Cottle, Executive Directors, Bear Lake Watch Richard Droesbeke, Park Manager, Utah Division of Parks & Recreation Blain Hamp, Area Manager, Division of Forestry, Fire, & State Lands Ken Hansen, Mayor, Garden City Allen Harrison, Executive Director, Bear Lake Regional Commission Judy Holbrook, Tourism Director, Bear Lake Convention and Visitor’s Bureau Mitch Poulsen, Deputy Director, Bear Lake Regional Commission Allen Ruberry, Senior Resources Specialist, Idaho Department of Lands Laraine Schnetzer, Garden City Council Member, Garden City Ken Short, Senior Engineer, Utah Division of Water Resources Scott Tolentino, Fisheries Biologist, Utah Division of Wildlife Resources Thomas Weston, Commissioner, Rich County McKay Willis, Mayor, Laketown BIO-WESTSTAFF Christopher Sands, Project Manager, BIO-WEST, Inc. Brandon Albrecht, Fisheries Biologist, BIO-WEST, Inc. Bridget Atkin, Botanist, BIO-WEST, Inc. Aaron Crookston, CAD/GIS Specialist, BIO-WEST, Inc. Sandra Davenport, Environmental Planner, BIO-WEST, Inc. Shannon Herstein, Water Quality Specialist, BIO-WEST, Inc. Sandra Livingston Turner, Managing Editor, BIO-WEST, Inc. Mike Sipos, Wildlife Biologist, BIO-WEST, Inc. Chadd VanZanten, Editor, BIO-WEST, Inc. -
1 CWU Comparative Osteology Collection, List of Specimens
CWU Comparative Osteology Collection, List of Specimens List updated November 2019 0-CWU-Collection-List.docx Specimens collected primarily from North American mid-continent and coastal Alaska for zooarchaeological research and teaching purposes. Curated at the Zooarchaeology Laboratory, Department of Anthropology, Central Washington University, under the direction of Dr. Pat Lubinski, [email protected]. Facility is located in Dean Hall Room 222 at CWU’s campus in Ellensburg, Washington. Numbers on right margin provide a count of complete or near-complete specimens in the collection. Specimens on loan from other institutions are not listed. There may also be a listing of mount (commercially mounted articulated skeletons), part (partial skeletons), skull (skulls), or * (in freezer but not yet processed). Vertebrate specimens in taxonomic order, then invertebrates. Taxonomy follows the Integrated Taxonomic Information System online (www.itis.gov) as of June 2016 unless otherwise noted. VERTEBRATES: Phylum Chordata, Class Petromyzontida (lampreys) Order Petromyzontiformes Family Petromyzontidae: Pacific lamprey ............................................................. Entosphenus tridentatus.................................... 1 Phylum Chordata, Class Chondrichthyes (cartilaginous fishes) unidentified shark teeth ........................................................ ........................................................................... 3 Order Squaliformes Family Squalidae Spiny dogfish ........................................................ -
Listing Decisions Under the Endangered Species Act: Why Better Science Isn't Always Better Policy
Washington University Law Review Volume 75 Issue 3 January 1997 Listing Decisions Under the Endangered Species Act: Why Better Science Isn't Always Better Policy Holly Doremus University of California, Berkeley Follow this and additional works at: https://openscholarship.wustl.edu/law_lawreview Part of the Environmental Law Commons, Evidence Commons, and the Science and Technology Law Commons Recommended Citation Holly Doremus, Listing Decisions Under the Endangered Species Act: Why Better Science Isn't Always Better Policy, 75 WASH. U. L. Q. 1029 (1997). Available at: https://openscholarship.wustl.edu/law_lawreview/vol75/iss3/1 This Article is brought to you for free and open access by the Law School at Washington University Open Scholarship. It has been accepted for inclusion in Washington University Law Review by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. Washington University Law Quarterly VOLUME 75 NUMBER 3 1997 ARTICLES LISTING DECISIONS UNDER THE ENDANGERED SPECIES ACT: WHY BETTER SCIENCE ISN'T ALWAYS BETTER POLICY HOLLY DOREMUS* TABLE OF CONTENTS I. INTRODUCTION ........................................................................................ 1031 II. DEVELOPMENT OF THE LEGISLATIVE SCIENCE MANDATE .................. 1037 A. Background................................................................................. 1037 1. Ambivalence Toward Science ............................................ 1037 2. The HistoricDominance ofScience -
Unique Fish of Bear Lake
Unique Fish of Bear Lake Bear Lake is estimated to be over 28,000 years old. For at least 8,000 years, the lake was permanently isolated from the Bear River by earthquake activity. This isolation resulted in unique water chemistry and the evolution of five species of fish that are found nowhere else in the world. BEAR LAKE CUTTHROAT TROUT- The only trout native to Bear Lake evolved as a predator in a large lake system. It was originally called a “Bluenose” because of the brilliant azure, blue coloration of the head during the winter, but typically it is silvery with a few black spots and faint red slashes under the lower jaw. They spawn in the streams during the springs, but spend the majority of their life in the lake. The Bear Lake cutthroat feed primarily on Bonneville Cisco, Bear Lake Sculpin, and insects on the lake surface. They are most catchable during the winter and may live ten years and grow to 15 pounds. BONNEVILLE CISCO – This fish is a long, slender, pearly silver, thin fish. It rarely grows beyond nine inches. It has a dusky blue back and a band along its flanks at spawning time. The snout is sharply pointed. It is noted for its mid winter spawning along the rocky beach on the east side of Bear Lake in mid January where it is found in large numbers. It is a prolific fish that is an important forage for the predatory species in Bear Lake. BEAR LAKE WHITEFISH AND BONNEVILLE WHITE FISH – These fish are indistinguishable beyond 10 inches in length. -
Biological Opinion for the Idaho Water Quality Standards for Numeric Water Quality Criteria for Toxic Pollutants
United States Department of the Interior FISH AND WILDLIFE SERVICE 911NE11 th Avenue Portland, Oregon 97232-4181 In Reply Refer To: FWS/Rl/AES Dan Opalski, Director JUN 2 5 2015 Office of Water and Watersheds U.S. Environmental Protection Agency 1200 Sixth A venue Seattle, Washington 98101 Dear Mr. Opalski: Enclosed are the U.S. Fish and Wildlife Service's (Service) Biological Opinion (Opinion) and concurrence determinations on the Idaho Water Quality Standards for Numeric Water Quality Criteria for Toxic Pollutants (proposed action). The Opinion addresses the effects of the proposed action on the following listed species and critical habitats: the endangered Snake River physa snail (Physa natricina), threatened Bliss Rapids snail (Taylorconcha serpenticola), endangered Banbury Springs lanx (Laroe sp.; undescribed), the endangered Bruneau hot springsnail (Pyrgulopsis bruneauensis), the threatened bull trout (Salvelinus confluenlus) and its critical habitat, and the endangered Kootenai River white sturgeon (Acipenser transmontanus) and its critical habitat. The concurrence determinations address the following listed species: the threatened grizzly bear (Ursus arctos horribilis), endangered Southern Selkirk Mountains woodland caribou (Rangifer tarandus caribou), threatened Canada lynx (Lynx canadensis), threatened northern Idaho ground squirrel (Spermophilus brunneus brunneus), threatened MacFarlane's four-o'clock (Mirabilis macfarlanei), threatened water howellia (Howellia aquatilis), threatened Ute ladies' -tresses (Spiranthes diluvialis), -
Ostracode Endemism in Bear Lake, Utah and Idaho
The Geological Society of America Special Paper 450 2009 Ostracode endemism in Bear Lake, Utah and Idaho Jordon Bright Department of Geology, Box 4099, Northern Arizona University, Flagstaff, Arizona 86011, USA ABSTRACT Bear Lake, Utah and Idaho, is one of only a few lakes worldwide with endemic ostracode species. In most lakes, ostracode species distributions vary systemati- cally with depth, but in Bear Lake, there is a distinct boundary in the abundances of cosmopolitan and endemic valves in surface sediments at ~7 m water depth. This boundary seems to coincide with the depth distribution of endemic fi sh, indicating a biological rather than environmental control on ostracode species distributions. The cosmopolitan versus endemic ostracode species distribution persisted through time in Bear Lake and in a neighboring wetland. The endemic ostracode fauna in Bear Lake implies a complex ecosystem that evolved in a hydrologically stable, but not invariant, environmental setting that was long lived. Long-lived (geologic time scale) hydrologic stability implies the lake persisted for hundreds of thousands of years despite climate variability that likely involved times when effective moisture and lake levels were lower than today. The hydrologic budget of the lake is dominated by snowpack meltwater, as it likely was during past climates. The fractured and karstic bedrock in the Bear Lake catchment sustains local stream fl ow through the dry summer and sustains stream and ground- water fl ow to the lake during dry years, buffering the lake hydrology from climate variability and providing a stable environment for the evolution of endemic species. INTRODUCTION also contains four endemic fi sh species (Sigler and Sigler, 1996), which, excluding the Great Lakes basin (Smith, 1981; Smith and Bear Lake, Utah and Idaho, is an interesting lake for sev- Todd, 1984; Reed et al., 1998), is the largest number of endemic eral reasons. -
Bruneau Hot-Spring Springsnail (Pyrgulopsis Bruneauensis)
BLM LIBRARY xy-A MONITORING REPOR1 BRUNEAU HOT-SPRING SPRINGSNA (PYRGULOPSIS BRUNEAUENSIS) by Jeffrey T. Varricchione G. Wayne Minshall A mobile home doesn't guarantee a place to live. (The Nature Conservancy) IDAHO BUREAU OF LAND MANAGEMENT TECHNICAL BULLETIN NO. 95-14 JUNE 1995 w ...i- ,. "imnTrw— wMmam Itf ^ ANNUAL MONITORING REPORT Bruneau Hot-spring Springsnail (Pyrgulopsis bruneauensis) Jeffrey T. Varricchione and G. Wayne Minshall Stream Ecology Center Department of Biological Sciences Idaho State University Pocatello, Idaho 83209 31 December 1994 Table of Contents List of Figures ii Summary 1 Introduction 1 Results 2 Size Distribution 2 Population Fluctuations 8 Temperature And Water Chemistry Fluctuations 11 Periphyton Levels 13 Conditions At Indian Bathtub And Hot Creek 16 Acknowledgements 19 Literature Cited 20 .. List of Figures Figure la-e. Size histograms for snail populations from the three study sites 3 Figure 2 Snail abundance at the study sites 10 Figure 3 Discharge and maximum temperature at Site 1 (Hot Creek) 12 Figure 4 Maximum/minimum water temperatures at the monitoring sites 14 Figure 5. Water chemistry of the monitoring sites 15 Figure 6. Chlorophyll a of periphyton for the study sites 17 Figure 7 Periphyton biomass (as AFDM) for the study sites 18 ii SUMMARY This report presents the 1994 monitoring results from four sites near the Indian Bathtub that contain populations, of the Bruneau Hot-spring Springsnail {Pyrgulopsls bruneauensis) . Three of these sites were monitored in 1990 and 1991 by Mladenka (1992), in 1992 by Robinson et al. (1992), and in 1993 by Royer and Minshall (1993) . An additional seep at Site 3 was included in the 1994 monitoring efforts.