Negative Refraction in Photonic Crystals and Metamaterials for Transformation Optics

Total Page:16

File Type:pdf, Size:1020Kb

Negative Refraction in Photonic Crystals and Metamaterials for Transformation Optics Negative Refraction in Photonic Crystals and Metamaterials for Transformation Optics A Dissertation Presented by Yongjian Huang to The Department of Physics In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In the field of Physics Northeastern University Boston, Massachusetts April, 2011 1 Copyright © 2011 by Yongjian Huang ALL RIGHTS RESERVED. 2 Negative Refraction in Photonic Crystals and Metamaterials for Transformation Optics by Yongjian Huang ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate School of Arts and Sciences of Northeastern University, April, 2011 3 Abstract This thesis is about metamaterials and its application in negative refraction, slow light and transformation optics. Metamaterials have properties not available in nature and are typically man-made. They have exciting applications such as invisible cloaking, modulators, band-pass filters, perfect lenses, subwavelength resolution, beam compressors, slow-light devices and so on. We demonstrated one-dimensional, two-dimensional photonic crystals negative lenses, prisms, flat lens theoretically and experimentally at both microwave and optical frequency. We proposed a new mechanism on surface grating to realize negative refraction in photonics crystals. This approach can be used to image large and/or far way objects. We studied the slow light effect in extremely anisotropic nano-wire and planar waveguide consisting of conventional dielectric cladding with single-negative materials. Super-resolution imaging in three-dimensional metamaterial nanolens consisting of nanowires template is also demonstrated. We also studied the optical transmission at the interface of two transformation optics media or between a transformation optics medium and free space. We derived the generalized reflectionless boundary condition for the interface, which makes possible to guide and focus light without reflection. Flat lens and non-magnetic beam concentrator are two examples of this new design. They showed great advantage to previous research results in literature. 4 Acknowledgements It is a great pleasure to thank all people who helped me to make this thesis possible. Foremost, I would like to express my sincere gratitude to my advisor Prof. Srinivas Sridhar for encouragement, guidance and support of my PhD study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I am especially grateful to Dr. Wentao Lu for his inspiration, and his great efforts to explain things clearly in theory. His familiarity in theory and simulation was very helpful during the research. It was a pleasure and a great opportunity to work with such a brilliant mind. I am also very grateful to thank the members of my thesis committee, Prof. Latika Menon and Prof. Jeffrey Sokoloff, for their valuable input and comments on my thesis. My sincere thanks also go to Dr. Bernard Didier F. Casse and Dr. Plarenta Vodo for their valuable experimental skills. I greatly benefited from collaborating with Dr. Dong Xiao and his excellent comments on my thesis. I also thank Dr. Ravinder Banyal and Dr. Salvatore Savo for the stimulating discussions and for all the fun we have had. I would to thank Miss Rita Kaderian for her consideration and to host group discussion each week. I would also like to thank my parents Jimin Huang and Meihua Huang for giving birth to me at the first place and supporting me spiritually throughout my life. 5 I owe my loving thanks to my wife Ding Wang for her understanding and love during last few years. Her support and encouragement was so important for me to finish this thesis. 6 Table of Contents Abstract .......................................................................................................................................... 3 Acknowledgements ....................................................................................................................... 5 Table of Contents .......................................................................................................................... 7 Introduction ................................................................................................................................. 11 Chapter 1 Negative Refraction in Photonic Crystals ............................................................. 17 I. Negative Refraction and Plano-Concave Lens Focusing in One-Dimensional Photonic Crystals ... 17 II. Optical Experiment of 2D PC Plano-concave Lens ......................................................................... 26 III. Subwavelength Imaging by 1D Photonic Crystals ......................................................................... 35 IV. Subwavelength Imaging by Superlens at Infrared Wavelengths .................................................... 41 Appendix: FDTD Simulation ............................................................................................................... 47 Chapter 2 New Mechanism of Negative Refraction ............................................................... 49 I. A New Mechanism for Negative Refraction and Focusing using Selective Diffraction from Surface Corrugation ..................................................................................................................... 49 A. Introduction .............................................................................................................................................. 49 B. Negative refraction with visible light and microwave............................................................................... 50 C. Focusing by a plano-concave grating lens ............................................................................................... 56 D. All-angle negative refraction and negative lateral shift through grating multilayered structure ............ 59 E. Discussion and conclusion ........................................................................................................................ 62 II. Alternative Approach to All-angle Negative Refraction in Two-dimensional Photonic Crystals ... 64 A. Introduction .............................................................................................................................................. 65 7 B. Another Approach to AANR ...................................................................................................................... 66 C. Flat Lens with Large σ ............................................................................................................................. 70 D. Discussion and Conclusion ...................................................................................................................... 76 III. Nanoengineering of a Negative-index Binary-staircase Lens for the Optics Regime ................... 77 Chapter 3 Slow Light of Extremely Anisotropic Nanowire .................................................. 85 I. Introduction ....................................................................................................................................... 85 II. Wave Propagation and Energy Flow on Anisotropic Cylindrical Waveguides ............................... 86 A. TE modes .................................................................................................................................................. 90 B. TM modes .................................................................................................................................................. 91 C. Hybrid modes .......................................................................................................................................... 102 III. Slow and Trapped Light ............................................................................................................... 110 IV. Realization of Extremely Anisotropic Nanowires ........................................................................ 112 V. Conclusions ................................................................................................................................... 116 Appendix: PADÉ Approximant of fn ()x ......................................................................................... 117 Chapter 4 Storing Light in Active Optical Waveguides with Single-Negative Metamaterials ............................................................................................................................ 121 I. Introduction ..................................................................................................................................... 121 II. Waveguide geometry and transverse wave modes ........................................................................ 122 A. Delay Bandwidth Product ....................................................................................................................... 131 B. Effect of gain saturation .......................................................................................................................... 131 C. TE modes ................................................................................................................................................ 132 III. Realizability of the waveguides .................................................................................................... 133 IV. Conclusion ...................................................................................................................................
Recommended publications
  • Slow and Stopped Light by Light-Matter Coherence Control
    Slow and stopped light by light-matter coherence control Jonas Tidström Doctoral Thesis in Photonics Stockholm, Sweden 2009 TRITA-ICT/MAP AVH Report 2009:09 KTH School of Information and ISSN 1653-7610 Communication Theory ISRN KTH/ICT-MAP/AVH-2009:09-SE SE-164 40 Kista ISBN 978-91-7415-429-0 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan framlägges till offentlig granskning för avläggande av filosofie doktorsexamen i fotonik, tors- dagen den 29 november 2009 kl 13:15 i sal 432, Forum, Kungl Tekniska Högskolan, Isafjordsgatan 39 Kista. c Jonas Tidström, September 2009 ° Typesset with LATEX 2ε on September 28, 2009 Universitetsservice US AB, September 2009, Abstract In this thesis we study light-matter coherence phenomena related to the interaction of a coherent laser field and the so-called Λ-system, a three-level quantum sys- tem (e.g., an atom). We observe electromagnetically induced transparency (EIT), slow and stored light in hot rubidium vapor. For example, a 6 µs Gaussian pulse 1 propagate at a velocity of 1kms− (to be compared with the normal velocity 1 ∼ of 300 000 km s− ). Dynamic changes of the control parameter allows us to slow down a pulse to a complete stop, store it for 100 µs, and then release it. During the storage time, and also during the release∼ process, some properties of the light pulse can be changed, e.g., frequency chirping of the pulse is obtained by means of Zeeman shifting the energy levels of the Λ-system. If, bichromatic continuous light fields are applied we observe overtone generation in the beating signal, and a narrow ‘dip’ in overtone generation efficiency on two-photon resonance, narrower than the ‘coherent population trapping’ transparency.
    [Show full text]
  • Optical Negative-Index Metamaterials
    REVIEW ARTICLE Optical negative-index metamaterials Artifi cially engineered metamaterials are now demonstrating unprecedented electromagnetic properties that cannot be obtained with naturally occurring materials. In particular, they provide a route to creating materials that possess a negative refractive index and offer exciting new prospects for manipulating light. This review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials. VLADIMIR M. SHALAEV designed and placed at desired locations to achieve new functionality. One of the most exciting opportunities for metamaterials is the School of Electrical and Computer Engineering and Birck Nanotechnology development of negative-index materials (NIMs). Th ese NIMs bring Center, Purdue University, West Lafayette, Indiana 47907, USA. the concept of refractive index into a new domain of exploration and e-mail: [email protected] thus promise to create entirely new prospects for manipulating light, with revolutionary impacts on present-day optical technologies. Light is the ultimate means of sending information to and from Th e arrival of NIMs provides a rather unique opportunity for the interior structure of materials — it packages data in a signal researchers to reconsider and possibly even revise the interpretation of zero mass and unmatched speed. However, light is, in a sense, of very basic laws. Th e notion of a negative refractive index is one ‘one-handed’ when interacting with atoms of conventional such case. Th is is because the index of refraction enters into the basic materials. Th is is because from the two fi eld components of light formulae for optics.
    [Show full text]
  • Chapter 5 Optical Properties of Materials
    Chapter 5 Optical Properties of Materials Part I Introduction Classification of Optical Processes refractive index n() = c / v () Snell’s law absorption ~ resonance luminescence Optical medium ~ spontaneous emission a. Specular elastic and • Reflection b. Total internal Inelastic c. Diffused scattering • Propagation nonlinear-optics Optical medium • Transmission Propagation General Optical Process • Incident light is reflected, absorbed, scattered, and/or transmitted Absorbed: IA Reflected: IR Transmitted: IT Incident: I0 Scattered: IS I 0 IT IA IR IS Conservation of energy Optical Classification of Materials Transparent Translucent Opaque Optical Coefficients If neglecting the scattering process, one has I0 IT I A I R Coefficient of reflection (reflectivity) Coefficient of transmission (transmissivity) Coefficient of absorption (absorbance) Absorption – Beer’s Law dx I 0 I(x) Beer’s law x 0 l a is the absorption coefficient (dimensions are m-1). Types of Absorption • Atomic absorption: gas like materials The atoms can be treated as harmonic oscillators, there is a single resonance peak defined by the reduced mass and spring constant. v v0 Types of Absorption Paschen • Electronic absorption Due to excitation or relaxation of the electrons in the atoms Molecular Materials Organic (carbon containing) solids or liquids consist of molecules which are relatively weakly connected to other molecules. Hence, the absorption spectrum is dominated by absorptions due to the molecules themselves. Molecular Materials Absorption Spectrum of Water
    [Show full text]
  • Quantum Metamaterials in the Microwave and Optical Ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3
    Zagoskin et al. EPJ Quantum Technology (2016)3:2 DOI 10.1140/epjqt/s40507-016-0040-x R E V I E W Open Access Quantum metamaterials in the microwave and optical ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3 *Correspondence: [email protected] Abstract 1Department of Physics, Loughborough University, Quantum metamaterials generalize the concept of metamaterials (artificial optical Loughborough, LE11 3TU, United media) to the case when their optical properties are determined by the interplay of Kingdom quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field 2Theoretical Physics and Quantum Technologies Department, Moscow modes in the system. The theoretical investigation of these structures demonstrated Institute for Steel and Alloys, that a number of new effects (such as quantum birefringence, strongly nonclassical Moscow, 119049, Russia states of light, etc.) are to be expected, prompting the efforts on their fabrication and Full list of author information is available at the end of the article experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. 1 Introduction The turn of the century saw two remarkable developments in physics. First, several types of scalable solid state quantum bits were developed, which demonstrated controlled quan- tum coherence in artificial mesoscopic structures [–] and eventually led to the devel- opment of structures, which contain hundreds of qubits and show signatures of global quantum coherence (see [, ] and references therein). In parallel, it was realized that the interaction of superconducting qubits with quantized electromagnetic field modes re- produces, in the microwave range, a plethora of effects known from quantum optics (in particular, cavity QED) with qubits playing the role of atoms (‘circuit QED’, [–]).
    [Show full text]
  • Negative Refractive Index in Artificial Metamaterials
    1 Negative Refractive Index in Artificial Metamaterials A. N. Grigorenko Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using effective field theory, we calculate effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nano-pillars with magnetic response in the visible spectrum. PACS: 73.20.Mf, 41.20.Jb, 42.70.Qs 2 The refractive index of an optical medium, n, can be found from the relation n2 = εμ , where ε is medium’s electric permittivity and μ is magnetic permeability.1 There are two branches of the square root producing n of different signs, but only one of these branches is actually permitted by causality.2 It was conventionally assumed that this branch coincides with the principal square root n = εμ .1,3 However, in 1968 Veselago4 suggested that there are materials in which the causal refractive index may be given by another branch of the root n =− εμ . These materials, referred to as left- handed (LHM) or negative index materials, possess unique electromagnetic properties and promise novel optical devices, including a perfect lens.4-6 The interest in LHM moved from theory to practice and attracted a great deal of attention after the first experimental realization of LHM by Smith et al.7, which was based on artificial metallic structures
    [Show full text]
  • Phase Reversal Diffraction in Incoherent Light
    Phase Reversal Diffraction in incoherent light Su-Heng Zhang1, Shu Gan1, De-Zhong Cao2, Jun Xiong1, Xiangdong Zhang1 and Kaige Wang1∗ 1.Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China 2.Department of Physics, Yantai University, Yantai 264005, China Abstract Phase reversal occurs in the propagation of an electromagnetic wave in a negatively refracting medium or a phase-conjugate interface. Here we report the experimental observation of phase reversal diffraction without the above devices. Our experimental results and theoretical analysis demonstrate that phase reversal diffraction can be formed through the first-order field correlation of chaotic light. The experimental realization is similar to phase reversal behavior in negatively refracting media. PACS numbers: 42.87.Bg, 42.30.Rx, 42.30.Wb arXiv:0908.1522v1 [quant-ph] 11 Aug 2009 ∗ Corresponding author: [email protected] 1 Diffraction changes the wavefront of a travelling wave. A lens is a key device that can modify the wavefront and perform imaging. The complete recovery of the wavefront is possible if its phase evolves backward in time in which case an object can be imaged to give an exact copy. A phase-conjugate mirror formed by a four-wave mixing process is able to generate the conjugate wave with respect to an incident wave and thus achieve lensless imaging[1]. A slab of negative refractive-index material can play a role similar to a lens in performing imaging[2, 3, 4, 5, 6, 7]. Pendry in a recent paper[8] explored the similarity between a phase-conjugate interface and negative refraction, and pointed out their intimate link to time reversal.
    [Show full text]
  • All-Angle Negative Refraction Without Negative Effective Index
    RAPID COMMUNICATIONS PHYSICAL REVIEW B, VOLUME 65, 201104͑R͒ All-angle negative refraction without negative effective index Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos* Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 J. B. Pendry Condensed Matter Theory Group, The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom ͑Received 22 January 2002; published 13 May 2002͒ We describe an all-angle negative refraction effect that does not employ a negative effective index of refraction and involves photonic crystals. A few simple criteria sufficient to achieve this behavior are presented. To illustrate this phenomenon, a microsuperlens is designed and numerically demonstrated. DOI: 10.1103/PhysRevB.65.201104 PACS number͑s͒: 78.20.Ci, 42.70.Qs, 42.30.Wb Negative refraction of electromagnetic waves in ‘‘left- We observe from Fig. 1 that due to the negative-definite ץ ץ 2␻ץ handed materials’’ has become of interest recently because it photonic effective mass / ki k j at the M point, the fre- is the foundation for a variety of novel phenomena.1–6 In quency contours are convex in the vicinity of M and have particular, it has been suggested that negative refraction leads inward-pointing group velocities. For frequencies that corre- to a superlensing effect that can potentially overcome the spond to all-convex contours, negative refraction occurs as diffraction limit inherent in conventional lenses.2 These phe- illustrated in Fig. 2. The distinct refracted propagating modes nomena have been described in the context of an effective- are determined by the conservation of the frequency and the medium theory with negative index of refraction, and at the wave-vector component parallel to the air/photonic-crystal moment only appear possible in the microwave regime.
    [Show full text]
  • Course Description Learning Objectives/Outcomes Optical Theory
    11/4/2019 Optical Theory Light Invisible Light Visible Light By Diane F. Drake, LDO, ABOM, NCLEM, FNAO 1 4 Course Description Understanding Light This course will introduce the basics of light. Included Clinically in discuss will be two light theories, the principles of How we see refraction (the bending of light) and the principles of Transports visual impressions reflection. Technically Form of radiant energy Essential for life on earth 2 5 Learning objectives/outcomes Understanding Light At the completion of this course, the participant Two theories of light should be able to: Corpuscular theory Electromagnetic wave theory Discuss the differences of the Corpuscular Theory and the Electromagnetic Wave Theory The Quantum Theory of Light Have a better understanding of wavelengths Explain refraction of light Explain reflection of light 3 6 1 11/4/2019 Corpuscular Theory of Light Put forth by Pythagoras and followed by Sir Isaac Newton Light consists of tiny particles of corpuscles, which are emitted by the light source and absorbed by the eye. Time for a Question Explains how light can be used to create electrical energy This theory is used to describe reflection Can explain primary and secondary rainbows 7 10 This illustration is explained by Understanding Light Corpuscular Theory which light theory? Explains shadows Light Object Shadow Light Object Shadow a) Quantum theory b) Particle theory c) Corpuscular theory d) Electromagnetic wave theory 8 11 This illustration is explained by Indistinct Shadow If light
    [Show full text]
  • PHYS 352 Electromagnetic Waves
    Part 1: Fundamentals These are notes for the first part of PHYS 352 Electromagnetic Waves. This course follows on from PHYS 350. At the end of that course, you will have seen the full set of Maxwell's equations, which in vacuum are ρ @B~ r~ · E~ = r~ × E~ = − 0 @t @E~ r~ · B~ = 0 r~ × B~ = µ J~ + µ (1.1) 0 0 0 @t with @ρ r~ · J~ = − : (1.2) @t In this course, we will investigate the implications and applications of these results. We will cover • electromagnetic waves • energy and momentum of electromagnetic fields • electromagnetism and relativity • electromagnetic waves in materials and plasmas • waveguides and transmission lines • electromagnetic radiation from accelerated charges • numerical methods for solving problems in electromagnetism By the end of the course, you will be able to calculate the properties of electromagnetic waves in a range of materials, calculate the radiation from arrangements of accelerating charges, and have a greater appreciation of the theory of electromagnetism and its relation to special relativity. The spirit of the course is well-summed up by the \intermission" in Griffith’s book. After working from statics to dynamics in the first seven chapters of the book, developing the full set of Maxwell's equations, Griffiths comments (I paraphrase) that the full power of electromagnetism now lies at your fingertips, and the fun is only just beginning. It is a disappointing ending to PHYS 350, but an exciting place to start PHYS 352! { 2 { Why study electromagnetism? One reason is that it is a fundamental part of physics (one of the four forces), but it is also ubiquitous in everyday life, technology, and in natural phenomena in geophysics, astrophysics or biophysics.
    [Show full text]
  • Fundamentals and Applications of Slow Light by Zhimin
    Fundamentals and Applications of Slow Light by Zhimin Shi Submitted in Partial Ful¯llment of the Requirements for the Degree Doctor of Philosophy Supervised by Professor Robert W. Boyd The Institute of Optics Arts, Sciences and Engineering Edmund A. Hajim School of Engineering and Applied Sciences University of Rochester Rochester, New York 2010 ii To Yuqi (Miles) and Xiang iii Curriculum Vitae Zhimin Shi was born in Hangzhou, Zhejiang, China in 1979. He completed his early education in Hangzhou Foreign Language School in 1997. Following that, He studied in Chu Ke Chen Honors College as well as the Department of Optical Engi- neering at Zhejiang University and received B.E. with highest honors in Information Engineering in 2001. He joined the Center for Optical and Electromagnetic Research at Zhejiang University under the supervision of Dr. Sailing He and Dr. Jian-Jun He in 1999, where he focused his study on integrated di®ractive devices for wavelength division multiplexing applications and the performance analysis of blue-ray optical disks. After receiving his M.E. with honors in Optical Engineering from the same university in 2004, he joined the Institute of Optics, University of Rochester and has been studying under the supervision of Prof. Robert W. Boyd. His current research interests include nonlinear optics, nano-photonics, spectroscopic interferometry, ¯ber optics, plasmonics, electromagnetics in nano-composites and meta-materials, etc. iv Publications related to the thesis 1. \Enhancing the spectral sensitivity of interferometers using slow-light media," Z. Shi, R. W. Boyd, D. J. Gauthier and C. C. Dudley, Opt. Lett. 32, 915{917 (2007).
    [Show full text]
  • Slow-Light Enhancement of Radiation Pressure in an Omnidirectional-Reflector Waveguide M
    APPLIED PHYSICS LETTERS VOLUME 85, NUMBER 9 30 AUGUST 2004 Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide M. L. Povinelli,a) Mihai Ibanescu, Steven G. Johnson, and J. D. Joannopoulos Department of Physics and the Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (Received 23 January 2004; accepted 6 July 2004) We study the radiation pressure on the surface of a waveguide formed by omnidirectionally reflecting mirrors. In the absence of losses, the pressure goes to infinity as the distance between the mirrors is reduced to the cutoff separation of the waveguide mode. This divergence at constant power input is due to the reduction of the modal group velocity to zero, which results in the magnification of the electromagnetic field. Our structure suggests a promising alternative, microscale system for observing the variety of classical and quantum-optical effects associated with radiation pressure in Fabry–Perot cavities. © 2004 American Institute of Physics. [DOI: 10.1063/1.1786660] The group velocity of light can be dramatically slowed low-dielectric layers with period a. For definiteness, we take in photonic crystals. Slow light enhances a variety of optical the refractive indices to be nhi=3.45 and nlo=1.45, corre- ␮ phenomena, including nonlinear effects, phase-shift sponding to Si and SiO2 at 1.55 m. The relative layer thick- 1 sensitivity, and low-threshold laser action due to distributed nesses are determined by the quarter-wave condition nhidhi 2,3 feedback gain enhancement. Here, we demonstrate that =nlodlo, which we later show to be an optimal case, along slow light can also enhance radiation pressure.
    [Show full text]
  • Physics and Applications of Negatively Refracting Electromagnetic Materials Steven M
    Physics and Applications of Negatively Refracting Electromagnetic Materials Steven M. Anlage, Michael Ricci, Nathan Orloff Work Funded by NSF/ECS-0322844 1 Outline What are Negative Index of Refraction Metamaterials? What novel properties do they have? How are they made? What new RF/microwave applications are emerging? Superconducting Metamaterials Caveats / Prospects for the future 2 Why Negative Refraction? n > 0 n >< 0 1 2 r r Hr refractedH H ray normalθ r Snell’s Law 2 k normalθ θ1 r 2 refracted r n1 sin(θ1) = n2 sin(θ2) k ray k incident r r r ray E EE PositiveNegative Index Index of of Refraction Refraction (PIR) (NIR) = =Right Left Handed Medium (RHM)(LHM) n1>0 n2<0>0 n n11>0>0 Two images! NIRPIR // RHMLHM source No real image Flat“Lens” Lens 3 How can we make refractive index n < 0? ”Use “Metamaterials ng materials withArtificially prepared dielectric and conducti negative values of both ε and μ r r r r DE= ε BH= μ ÎonNegative index of refracti! Many optical properties are reversed! Propagating Waves μ RHM Vac RHM Vac LHM n=εμ >0 ε n=εμ <0 Ordinary Negative Propagating Waves!Non-propagating Waves Refraction Refraction LHM 4 Negative Refraction: Consequences Left-Handed or Negative Index of Refraction Metamaterials ε < 0 AND μ < 0 Veselago, 1967 Propagating waves have index of refraction n < 0 ⇒ Phase velocity is opposite to Poynting vector direction Negative refraction in Snell’s Law: n1 sinθ1 = n2 sinθ2 Flat lens with no optical axis Converging Lens → Diverging Lens “Perfect” Lens (Pendry, 2000) and vice-versa Reverse Doppler Effect Reversed Čerenkov Effect Radiation Tension RHM LHM RHM Flat Lens Imaging Point source “perfect image” V.
    [Show full text]