An Update on the Neurological Short Tandem Repeat Expansion Disorders and the Emergence of Long-Read Sequencing Diagnostics

Total Page:16

File Type:pdf, Size:1020Kb

An Update on the Neurological Short Tandem Repeat Expansion Disorders and the Emergence of Long-Read Sequencing Diagnostics Chintalaphani et al. acta neuropathol commun (2021) 9:98 https://doi.org/10.1186/s40478-021-01201-x REVIEW Open Access An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics Sanjog R. Chintalaphani1,2, Sandy S. Pineda3,4 , Ira W. Deveson2,5 and Kishore R. Kumar2,6* Abstract Background: Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 diferent phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington’s disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. Main body: STR expansions are difcult to detect and may explain unsolved diseases, as highlighted by recent fnd- ings including: the discovery of a biallelic intronic ‘AAGGG’ repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular arefexia syndrome (CANVAS); and the fnding of ‘CGG’ repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory tech- niques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacifc Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-efective fashion. Conclusion: We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery. Keywords: Tandem, Repeats, Expansion, Neurological, Clinical, Genetics, Disease, Diagnosis, Long-read, Sequencing Introduction during DNA replication, due to slippage events on mis- A large proportion of the human genome is comprised aligned strands, errors in DNA repair during synthesis of repetitive DNA sequences known as microsatellites and formation of secondary hairpin structures [43]. As a or short tandem repeats (STRs). STRs are small sec- result, STR lengths are relatively unstable, with their fre- tions of DNA, usually 2–6 nucleotides in length, that quent mutation providing a source of genetic variation in are repeated consecutively at a given locus. STRs make human populations. STRs have a mutation rate orders of up at least 6.77% of the human genome and are highly magnitude higher than single nucleotide polymorphisms polymorphic [143]. STR lengths are prone to alteration (SNPs) in non-repetitive contexts [58]. Larger repeats, in general, are more unstable and have an increased pro- pensity to expand during DNA replication. *Correspondence: [email protected] 2 Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Large STR expansions may become pathogenic, under- Research, Darlinghurst, NSW 2010, Australia pinning various forms of primary neurological disease. Full list of author information is available at the end of the article Tere are currently 47 known STR genes that can cause © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Chintalaphani et al. acta neuropathol commun (2021) 9:98 Page 2 of 20 disease when expanded; 37 of these exhibit primary (RAN) translation, increased promoter activity, coding neurological presentations (see Table 1) while 10 pre- tract expansions and polyglutamine aggregation [85, sent with developmental abnormalities (see Table 2). 154, 180]. Repeat expansions in coding and non-coding With increased interest and improving molecular tech- regions may disrupt RNA function in many ways, with niques for detecting repeat expansions, the list of known multiple coexisting mechanisms potentially contribut- repeat expansion disorders is growing rapidly, with new ing to pathogenicity. For example, post-mortem exami- genes such as RFC1, GIPC1, LRP12, NOTCH2NLC and nation of brain tissue in patients with an expanded VWA1 recently implicated. Furthermore, STR expan- ‘GGG GCC ’ repeat in the 5’ region of C9orf72 ALS/ sions have been linked to complex polygenic diseases FTD, revealed multiple potential pathogenic RNA spe- such as heart disease, bipolar disorder, major depressive cies: RNA that had been stalled at repeat locations, disorder and schizophrenia [59]. Some theories also sug- RAN proteins, antisense transcription of repeat regions gest STR variability may account for normal brain and and alternative splicing of intron 1 containing the behavioural traits such as anxiety, cognitive function, repeat [48]. Tese species are considered “toxic” as they emotional memory and altruism [41]. Similarly, somatic accumulate as RNA foci within the neurons, astrocytes, instability at STR regions is a hallmark of many cancers microglia and oligodendrocytes and form complexes such as Lynch syndrome-related cancers, gastric cancers, with RNA-binding proteins to dysregulate translation colorectal cancers and endometrial cancers [174]. In this and modify transcription [48, 49]. review, we provide an overview of the primary neurologi- Te other common toxic GOF mechanism is expan- cal repeat expansion diseases, discuss limitations in cur- sion of homopolymer amino acid tracts resulting in rent diagnostic methods and developments in long-read misfolding and proteinopathy. In neurological repeat sequencing technologies that promise to improve the dis- expansion diseases, exonic ‘CAG’ repeat expansions covery and diagnosis of STR expansions. code for the amino acid glutamine; when expanded, they create polyglutamine tract expansions which can General characteristics of repeat expansion reach hundreds of amino acids long. Tis is thought disorders to alter and expand the transcribed protein creat- Molecular mechanisms ing insoluble protein aggregates within neuronal cells Repeat expansion diseases have a wide range of patho- (primarily in the cerebellum), leading to perturbations genic mechanisms, which depend on the location of the of intracellular homeostasis and cell death [81]. Tis expanded STR within a gene loci, and the nature and mechanism is commonly seen in the hereditary spi- function of the gene. It is often hard to determine the nocerebellar ataxias. In congenital and developmental specifc mechanism as multiple may occur simultane- repeat expansion diseases, exonic ‘GCG’ coding tracts ously and all may contribute to the disease form. Te expand to create polyalanine tract expansions (Table 2). mechanisms may be broadly categorised as loss-of-func- However, they are quite diferent to polyglutamine tract tion (LOF) or toxic gain-of-function (GOF). expansions seen in neurological repeat expansion dis- LOF mechanisms include hypermethylation and gene orders; they are smaller and generally meiotically sta- silencing [43, 132], defective transcription, and increased ble when transmitted between generations, thus they messenger RNA (mRNA) degradation [154]; all efects do not exhibit the same large pathogenic range seen in that can be elicited by an STR expansion within a gene neurological repeat expansion disorders. For example, a locus. DNA methylation is an epigenetic process that normal allele in HOXA13 contains 15–18 alanine resi- contributes to genome stability and maintenance, and dues while a pathogenic allele only contains between regulation of gene expression during development, with 7 and 15 extra residues [50]. Tus, the mechanism of aberrant methylation profles often implicated in disease mutation in polyalanine disorders is thought to be dif- [2]. Large expanded STRs may induce local hypermethyl- ferent and hypothesised to be due to unequal crossing ation, thereby silencing gene expression. One such classic between mispaired alleles and duplication during rep- example is an expanded STR in the promoter region of lication rather than dynamic trinucleotide expansions FMR1, seen in Fragile X syndrome (FXS). Te expansion [164]. Tis would explain the relative stability of trans- causes hypermethylation of the FMR1 promoter region mission and small pathogenic ranges. Furthermore, leading to silencing of transcription and LOF in the these polyalanine tract repeat expansion disorders FMR1 gene. Terefore, the methylation state of relevant are more commonly
Recommended publications
  • Polyq Disease: Misfiring of a Developmental Cell Death Program?
    Review PolyQ disease: misfiring of a developmental cell death program? * * Elyse S. Blum , Andrew R. Schwendeman , and Shai Shaham Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA Polyglutamine (polyQ) repeat diseases are neurodegen- death [10]. The linker cell dies in the normal course of erative ailments elicited by glutamine-encoding CAG nu- C. elegans development, during gonadal morphogenesis of cleotide expansions within endogenous human genes. the male [11–13] (Figure 1). Linker cell death is indepen- Despite efforts to understand the basis of these diseases, dent of caspases and all other known apoptotic and necrotic the precise mechanism of cell death remains stubbornly C. elegans cell-death genes [13,14]. Mutations in the pqn- unclear. Much of the data seem to be consistent with a 41 gene block linker cell death, suggesting an important model in which toxicity is an inherent property of the role in linker cell demise. Furthermore, transcription of polyQ repeat, whereas host protein sequences surround- pqn-41 is induced immediately before the onset of cell ing the polyQ expansion modulate severity, age of onset, death, suggesting that this locus may be intimately con- and cell specificity. Recently, a gene, pqn-41, encoding a nected with the killing process [10]. pqn-41 encodes multi- glutamine-rich protein, was found to promote normally ple alternative transcripts, most of which can encode a occurring non-apoptotic cell death in Caenorhabditis ele- domain of 427 amino-acids, of which 35% are glutamines, gans. Here we review evidence for toxic and modulatory arranged in tracts of 1–8 residues in length [10].
    [Show full text]
  • Datasheet: VMA00301KT Product Details
    Datasheet: VMA00301KT Description: TATA-BOX-BINDING PROTEIN ANTIBODY WITH CONTROL LYSATE Specificity: TATA-BOX-BINDING PROTEIN Format: Purified Product Type: PrecisionAb™ Monoclonal Isotype: IgG1 Quantity: 2 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Product Form Purified IgG - liquid Preparation 20μl Mouse monoclonal antibody prepared by affinity chromatography on Protein G from ascites Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN ) Stabilisers 3 Immunogen Purified His-tagged TATA-box-binding protein External Database Links UniProt: P20226 Related reagents Entrez Gene: 6908 TBP Related reagents Synonyms GTF2D1, TF2D, TFIID Specificity Mouse anti Human TATA-box-binding protein antibody recognizes the TATA-box-binding protein,
    [Show full text]
  • Modifiers and Mechanisms of Multi-System Polyglutamine
    c Indian Academy of Sciences REVIEW ARTICLE Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models MOUSHAMI MALLIK and SUBHASH C. LAKHOTIA* Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India Abstract Polyglutamine (polyQ) diseases, resulting from a dynamic expansion of glutamine repeats in a polypeptide, are a class of genetically inherited late onset neurodegenerative disorders which, despite expression of the mutated gene widely in brain and other tissues, affect defined subpopulations of neurons in a disease-specific manner. We briefly review the different polyQ- expansion-induced neurodegenerative disorders and the advantages of modelling them in Drosophila. Studies using the fly models have successfully identified a variety of genetic modifiers and have helped in understanding some of the molec- ular events that follow expression of the abnormal polyQ proteins. Expression of the mutant polyQ proteins causes, as a consequence of intra-cellular and inter-cellular networking, mis-regulation at multiple steps like transcriptional and post- transcriptional regulations, cell signalling, protein quality control systems (protein folding and degradation networks), axonal transport machinery etc., in the sensitive neurons, resulting ultimately in their death. The diversity of genetic modifiers of polyQ toxicity identified through extensive genetic screens in fly and other models clearly reflects a complex network effect of the presence of the mutated protein. Such network effects pose a major challenge for therapeutic applications. [Mallik M. and Lakhotia S. C. 2010 Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. J. Genet. 89, 497–526] Introduction of mutations which bring about expansion of unstable trinu- cleotide repeats in the genome.
    [Show full text]
  • Bhagwan Moorjani, MD, FAAP, FAAN • Requires Knowledge of Normal CNS Developmental (I.E
    1/16/2012 Neuroimaging in Childhood • Neuroimaging issues are distinct from Pediatric Neuroimaging in adults Neurometabolic-degenerative disorder • Sedation/anesthesia and Epilepsy • Motion artifacts Bhagwan Moorjani, MD, FAAP, FAAN • Requires knowledge of normal CNS developmental (i.e. myelin maturation) • Contrast media • Parental anxiety Diagnostic Approach Neuroimaging in Epilepsy • Age of onset • Peak incidence in childhood • Static vs Progressive • Occurs as a co-morbid condition in many – Look for treatable causes pediatric disorders (birth injury, – Do not overlook abuse, Manchausen if all is negative dysmorphism, chromosomal anomalies, • Phenotype presence (syndromic, HC, NCS, developmental delays/regression) systemic involvement) • Predominant symptom (epilepsy, DD, • Many neurologic disorders in children weakness/motor, psychomotor regression, have the same chief complaint cognitive/dementia) 1 1/16/2012 Congenital Malformation • Characterized by their anatomic features • Broad categories: based on embryogenesis – Stage 1: Dorsal Induction: Formation and closure of the neural tube. (Weeks 3-4) – Stage 2: Ventral Induction: Formation of the brain segments and face. (Weeks 5-10) – Stage 3: Migration and Histogenesis: (Months 2-5) – Stage 4: Myelination: (5-15 months; matures by 3 years) Dandy Walker Malformation Dandy walker • Criteria: – high position of tentorium – dysgenesis/agenesis of vermis – cystic dilatation of fourth ventricle • commonly associated features: – hypoplasia of cerebellum – scalloping of inner table of occipital bone • associated abnormalities: – hydrocephalus 75% – dysgenesis of corpus callosum 25% – heterotropia 10% 2 1/16/2012 Etiology of Epilepsy: Developmental and Genetic Classification of Gray Matter Heterotropia Cortical Dysplasia 1. Secondary to abnormal neuronal and • displaced masses of nerve cells • Subependymal glial proliferation/apoptosis (gray matter) heterotropia (most • most common: small nest common) 2.
    [Show full text]
  • Type II Familial Synpolydactyly: Report on Two Families with an Emphasis on Variations of Expression
    European Journal of Human Genetics (2011) 19, 112–114 & 2011 Macmillan Publishers Limited All rights reserved 1018-4813/11 www.nature.com/ejhg SHORT REPORT Type II familial synpolydactyly: report on two families with an emphasis on variations of expression Mohammad M Al-Qattan*,1 Type II familial synpolydactyly is rare and is known to have variable expression. However, no previous papers have attempted to review these variations. The aim of this paper was to review these variations and show several of these variable expressions in two families. The classic features of type II familial synpolydactyly are bilateral synpolydactyly of the third web spaces of the hands and bilateral synpolydactyly of the fourth web spaces of the feet. Several members of the two families reported in this paper showed the following variations: the third web spaces of the hands showing syndactyly without the polydactyly, normal feet, concurrent polydactyly of the little finger, concurrent clinodactyly of the little finger and the ‘homozygous’ phenotype. It was concluded that variable expressions of type II familial synpolydactyly are common and awareness of such variations is important to clinicians. European Journal of Human Genetics (2011) 19, 112–114; doi:10.1038/ejhg.2010.127; published online 18 August 2010 Keywords: type II familial syndactyly; inherited synpolydactyly; variations of expression INTRODUCTION CASE REPORTS Type II familial synpolydactyly is rare and it has been reported in o30 The first family families.1–12 It is characterized by bilateral synpolydactyly of the third The family had a history of synpolydactyly type II for several web spaces of the hands and bilateral synpolydactyly of the fourth web generations on the mother’s side (Table 1).
    [Show full text]
  • The Genetic Basis for Skeletal Diseases
    insight review articles The genetic basis for skeletal diseases Elazar Zelzer & Bjorn R. Olsen Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA (e-mail: [email protected]) We walk, run, work and play, paying little attention to our bones, their joints and their muscle connections, because the system works. Evolution has refined robust genetic mechanisms for skeletal development and growth that are able to direct the formation of a complex, yet wonderfully adaptable organ system. How is it done? Recent studies of rare genetic diseases have identified many of the critical transcription factors and signalling pathways specifying the normal development of bones, confirming the wisdom of William Harvey when he said: “nature is nowhere accustomed more openly to display her secret mysteries than in cases where she shows traces of her workings apart from the beaten path”. enetic studies of diseases that affect skeletal differentiation to cartilage cells (chondrocytes) or bone cells development and growth are providing (osteoblasts) within the condensations. Subsequent growth invaluable insights into the roles not only of during the organogenesis phase generates cartilage models individual genes, but also of entire (anlagen) of future bones (as in limb bones) or membranous developmental pathways. Different mutations bones (as in the cranial vault) (Fig. 1). The cartilage anlagen Gin the same gene may result in a range of abnormalities, are replaced by bone and marrow in a process called endo- and disease ‘families’ are frequently caused by mutations in chondral ossification. Finally, a process of growth and components of the same pathway.
    [Show full text]
  • Childhood Epilepsy: an Update on Diagnosis and Management
    American Journal of Neuroscience Review Childhood Epilepsy: An Update on Diagnosis and Management Khaled Saad Department of Pediatrics, Faculty of Medicine, University of Assiut, Assiut 71516, Egypt Article history Abstract: Within the past few years there is a rapid expansion in our Received: 23-10-2014 understanding of epilepsy. The development of new anti-epileptic drugs and Revised: 25-11-2014 refinements to epilepsy surgery are widening the therapeutic options for Accepted: 12-01-2015 epilepsy. In addition, the classification of the epilepsies continues to evolve based on an increased understanding of the molecular genetics of the condition and this includes the recognition of possible novel epilepsy syndromes. This review considers some of these exciting developments, as well as addressing the essential features of the diagnosis, investigations, management and impact of epilepsy in childhood. Keywords: Children, Epilepsy, Seizure, Anti-Epileptic Drugs Introduction guidelines for optimal practices, rational therapy and counseling (Aylwad, 2008; Tamber and Mountz, 2012; Epilepsy is a common heterogeneous neurological Sharma, 2013). problem in children. It exerts a significant physical, psychological, economic and social toll on children and Definitions their caregivers. Fifty million people have epilepsies A seizure is defined as an excessive burst of abnormal globally; more than half of them are children. In the synchronized neuronal activity affecting small or large USA; between 25,000 and 40,000 children will have a neuronal networks that results in clinical manifestations first non-febrile seizure each year. The problem is that are sudden, transient and usually brief. Epilepsy is further compounded in developing countries as they add defined as a disorder of the brain characterized by any of about 75-80% of new cases of epilepsy (Guerrini, 2006; the following conditions: (1) At least two unprovoked (or Tamber and Mountz, 2012; Sharma, 2013).
    [Show full text]
  • Neurodegenerative Triplet Repeat Expansion Disorders
    The Pharma Innovation Journal 2018; 7(11): 34-40 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Neurodegenerative triplet repeat expansion disorders: TPI 2018; 7(11): 34-40 © 2018 TPI A review www.thepharmajournal.com Received: 15-09-2018 Accepted: 20-10-2018 Mitesh Patel, RK Patel, Tushar Chauhan, Jigar Suthar and Sanjay Dave Mitesh Patel Genetics Group of Gujarat Abstract Diagnostic Centre, Mehsana, Epigenetic alterations are the major causes of triplet repeat expansion. The repetitive DNA expands of its Gujarat, India normal length results in sever neurodegenerative conditions. The common types of triplet repeat expansion (TNE) disorders are: Huntington disease, Friedreich ataxia, myotonic dystrophy, SBMA and RK Patel SCA1 out of which Huntington disease, SBMA and SCA1 are categorized as a poly glutamine disorder Sandor Animal Biogenics Pvt. due to the repeat of CAG. In contrast, the friedreich ataxia is occurred due to expansion of the GAA Ltd., Hyderabad, Telangana, whereas myotonic dystrophy is due to the expansion of CTG. The triplet disease follows the mechanism India of anticipation in which the onset of the disease increases with age. Conclusively, no clear mechanism can explain the origin of the disease. The pre mutation can be expanded in full mutation in successive Tushar Chauhan Genetics Group of Gujarat generations and the number of repeats increased with each generation. TNE can observe in both somatic Diagnostic Centre, Mehsana, as well as germ line tissues. Gujarat, India Keywords: triplet repeat expansion disorder, trinucleotide repeats, Huntington disease, SBMA, SCA1, Jigar Suthar friedreich ataxia Genetics Group of Gujarat Diagnostic Centre, Mehsana, Introduction Gujarat, India Since the early 1990s, a new class of molecular disease has been characterized based upon the Sanjay Dave presence of unstable and abnormal expansions of DNA-triplets (Trinucleotides).
    [Show full text]
  • Causes of Mortality in Early Infantile Epileptic Encephalopathy: a Systematic Review
    Epilepsy & Behavior 85 (2018) 32–36 Contents lists available at ScienceDirect Epilepsy & Behavior journal homepage: www.elsevier.com/locate/yebeh Review Causes of mortality in early infantile epileptic encephalopathy: A systematic review Graciane Radaelli a,b, Francisco de Souza Santos b, Wyllians Vendramini Borelli b,LeonardoPisanib, Magda Lahorgue Nunes b,d, Fulvio Alexandre Scorza c,d, Jaderson Costa da Costa b,d,⁎ a Federal University of São Paulo (UNIFESP)/Paulista School of Medicine, São Paulo, Brazil b Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil c Laboratory of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, SP, Brazil d CNPq, Brazil article info abstract Article history: Introduction: Early infantile epileptic encephalopathy syndrome (EIEE), also known as Ohtahara syndrome, is an Received 6 March 2018 age-dependent epileptic encephalopathy syndrome defined by clinical features and electroencephalographic Revised 25 April 2018 findings. Epileptic disorders with refractory seizures beginning in the neonatal period and/or early infancy Accepted 5 May 2018 have a potential risk of premature mortality, including sudden death. We aimed to identify the causes of death Available online xxxx in EIEE and conducted a literature survey of fatal outcomes. Methods: We performed a literature search in MEDLINE, EMBASE, and Web of Science for data from inception Keywords: “ ”“ ”“ ”“ ” “ ” Ohtahara syndrome until September 2017. The terms death sudden, unexplained death, SUDEP, lethal, and fatal and the “ ”“ ”“ ”“ Early infantile epileptic syndrome medical subject heading terms epileptic encephalopathy, mortality, death, sudden infant death syn- Suppression burst drome,” and “human” were used in the search strategy.
    [Show full text]
  • Genetics of Congenital Hand Anomalies
    G. C. Schwabe1 S. Mundlos2 Genetics of Congenital Hand Anomalies Die Genetik angeborener Handfehlbildungen Original Article Abstract Zusammenfassung Congenital limb malformations exhibit a wide spectrum of phe- Angeborene Handfehlbildungen sind durch ein breites Spektrum notypic manifestations and may occur as an isolated malforma- an phänotypischen Manifestationen gekennzeichnet. Sie treten tion and as part of a syndrome. They are individually rare, but als isolierte Malformation oder als Teil verschiedener Syndrome due to their overall frequency and severity they are of clinical auf. Die einzelnen Formen kongenitaler Handfehlbildungen sind relevance. In recent years, increasing knowledge of the molecu- selten, besitzen aber aufgrund ihrer Häufigkeit insgesamt und lar basis of embryonic development has significantly enhanced der hohen Belastung für Betroffene erhebliche klinische Rele- our understanding of congenital limb malformations. In addi- vanz. Die fortschreitende Erkenntnis über die molekularen Me- tion, genetic studies have revealed the molecular basis of an in- chanismen der Embryonalentwicklung haben in den letzten Jah- creasing number of conditions with primary or secondary limb ren wesentlich dazu beigetragen, die genetischen Ursachen kon- involvement. The molecular findings have led to a regrouping of genitaler Malformationen besser zu verstehen. Der hohe Grad an malformations in genetic terms. However, the establishment of phänotypischer Variabilität kongenitaler Handfehlbildungen er- precise genotype-phenotype correlations for limb malforma- schwert jedoch eine Etablierung präziser Genotyp-Phänotyp- tions is difficult due to the high degree of phenotypic variability. Korrelationen. In diesem Übersichtsartikel präsentieren wir das We present an overview of congenital limb malformations based Spektrum kongenitaler Malformationen, basierend auf einer ent- 85 on an anatomic and genetic concept reflecting recent molecular wicklungsbiologischen, anatomischen und genetischen Klassifi- and developmental insights.
    [Show full text]
  • Angeborene Fehlbildungen Der Extremitäten
    Aus der Klinik für Orthopädie (Direktor: Prof. Dr. med. J. Hassenpflug) der Medizinischen Fakultät der Christian-Albrechts-Universität zu Kiel Die angeborenen Fehlbildungen der oberen und unteren Extremitäten in der Orthopädischen Universitätsklinik Kiel von 1974-2001 Inauguraldissertation zur Erlangung der Doktorwürde vorgelegt von Karsten Naused aus Wolfenbüttel Kiel 2014 1. Berichterstatter: Prof. Dr. J. Hassenpflug, Klinik für Orthopädie 2. Berichterstatter: Prof. Dr. M. Schrappe, Klinik für Allgemeine Pädiatrie Tag der mündlichen Prüfung: 12.06.2014 Zum Druck genehmigt, Kiel, den 12.06.2014 gez.: PD Dr. S. Lippross, Klinik Unfallchirurgie (Prüfer) Prof. Dr. A. Seekamp, Klinik Unfallchirurgie (Beisitzer) Prof. Dr. Johann Roider, Vorsitzender des Ausschusses für Promotion Inhaltsverzeichnis 1. Einleitung Seite 1.1 Vorbemerkung.................................................................................................1 1.2 Historisches.....................................................................................................2 1.3 Embryologie.....................................................................................................3 1.4 Ätiologie und Pathogenese..............................................................................6 2. Patientengut und Methode 2.1 Quellen der Patientendaten...........................................................................10 2.2 Dokumentation der Daten..............................................................................12 2.3 Datenabfrage.................................................................................................13
    [Show full text]
  • Neonatal Seizures Revisited
    children Review Neonatal Seizures Revisited Konrad Kaminiów 1 , Sylwia Kozak 1 and Justyna Paprocka 2,* 1 Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; [email protected] (K.K.); [email protected] (S.K.) 2 Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland * Correspondence: [email protected] Abstract: Seizures are the most common neurological disorder in newborns and are most prevalent in the neonatal period. They are mostly caused by severe disorders of the central nervous system (CNS). However, they can also be a sign of the immaturity of the infant’s brain, which is characterized by the presence of specific factors that increase excitation and reduce inhibition. The most common disorders which result in acute brain damage and can manifest as seizures in neonates include hypoxic-ischemic encephalopathy (HIE), ischemic stroke, intracranial hemorrhage, infections of the CNS as well as electrolyte and biochemical disturbances. The therapeutic management of neonates and the prognosis are different depending on the etiology of the disorders that cause seizures which can lead to death or disability. Therefore, establishing a prompt diagnosis and implementing appropriate treatment are significant, as they can limit adverse long-term effects and improve outcomes. In this review paper, we present the latest reports on the etiology, pathomechanism, clinical symptoms and guidelines for the management of neonates with acute symptomatic seizures. Keywords: neonatal seizures; pathophysiology; genetics; inborn errors of metabolism Citation: Kaminiów, K.; Kozak, S.; Paprocka, J.
    [Show full text]