The Mechanism of Action of Alkylating Agents G

Total Page:16

File Type:pdf, Size:1020Kb

The Mechanism of Action of Alkylating Agents G The Mechanism of Action of Alkylating Agents G. P. WARWICK (Chester Beatty Research In3tiiute, Institute of Cancer Research: Royal Cancer Hospital, @ Fuiham Road; S.W. 3, England) SUMMARY The term “alkylating agent― has been defined and a detailed discussion made of the mechanisms (Sni and Sn@) by which they interact with nucleophilic centers. The various nucleophiles likely to be encountered in vivo are discussed in terms of their relative reactivities toward alkylating agents. With regard to Sn@ reactors it was possible to group them into four sections on the basis of their chemical reactivity and the “spread―intheir affinity toward different nucleophiles. The groups comprised (a) the epoxides, ethyleneimines, and $-lactones; (b) the primary alkyl methanesulfonates; (c) primary alkyl halides; and (d) a-halo acids and ketones. An attempt has been made to correlate the reactivity of the Sn@ and Sni reactors with their known pharmacological properties and the likelihood of their reaction with the various cellular constituents. In particular, the effects of the alkylating agents on nuclear material and cell division, the blood components, male fertility, and the im mune response have been discussed in detail, and the chemistry involved in the inter action of the alkylating agents with compounds of biological importance such as the nucleic acids, proteins, and peptides has been critically examined. The importance and limitations of the alkylating agents as chemothenapeutic drugs and as tools for examining the basic mechanisms involved in carcinogenesis and muta tion have been considered in the light of recent findings. No attempt will be made to review the whole of in the elucidation of fundamental mechanisms of the literature relevant to the mode of action of action. alkylating agents, since this has been done many The term “alkylating agent―in its widest sense times in the past, and more recently by Ross (7@) denotes those compounds capable of replacing a and by Wheeler (87). Because of the growing com hydrogen atom in another molecule by an alkyl plexity of the field, it might be instructive to ex radical, and this of course involves electrophilic amine the chemical reactivities and alkylating po attack by the alkylating agent so that the defini tentials of some of the different classes of alkylat tion must be extended to include those reactions ing agents in relation to what is known about their involving addition of the radical to a molecule con pharmacological properties. The different types of taming an atom in a lower valency state—for ex compound which can function as alkylating agents ample, formation of a sulfonium compound from a or electrophilic reagents include alkyl halides, sulfide. The alkylating agents exhibit a diversity of alkyl methanesulfonates, alkyl sulfates, alkyl phos pharmacological properties including the capacity phates, halogenomethyl ethers, @2-chloroethyl sul to interfere with mitosis, to cause mutations, and fides, @-ch1oroethylamines, epoxides, @-lactones, to initiate and promote malignant tumors; some ethyleneimines and ethyleneimides, diazoalkanes, of them have a stimulatory action on the nervous activated ethylenic compounds, halogenomethyl system, and others are powerful vesicants or ketones and esters, methylolamines, etc., and, al lachrymators. When attempting to find a parallel though only a few of these classes are useful as ism between the pharmacological effects elicited palliatives in clinical therapy, all are capable of re by the alkylating agents and their chemical reac acting with at least some nucleophilic centers with tions at particular cellular sites, it is important to the result that even inactive compounds can help consider, among other variables, the particular 1315 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 1963 American Association for Cancer Research. 1316 Cancer Research Vol. p23, September 1963 mechanism of alkylation involved, since this will Ogston (68) in the case of mustard gas. Mustard largely determine the chemical groups which will gas (see later) yields a carbonium ion which is sta be attacked inside the cell and their position bilized in the form of a threo-membered ring, and within the cell. Almost every review which has this accounts for its greaten capacity to discrimi been written on the alkylating agents has included nate between anions. This stability is even greater at least some description of the mechanisms in in the case of the immonium ion formed from au volved in unimolecular and bimolecular reactions, phatic @-chloroethylamines due to the greater and the justification for indulging in this again in basicity of nitrogen than sulfur (Chart @). detail is inherent in the problem with which we are Each nucleophile (canbonium ion, immonium concerned. The alkylating agents, unlike many ion, etc.) has a competition factor which was meas other drugs used in medicine, produce their effects ured by Ogston in the case of mustard gas by by binding covalently with cell constituents, and observing the extent of reaction in aqueous solu tion with various anions (Table 1). In the case of compounds such as thiols, amines, and acids, ac R@ ___ • 9 @ —x R+X count must be taken of the amount in the reactive ® 9 form at a particular pH in considering likelihood @ R+Y RY of reaction with an alkylating agent. If one no CHART 1.—Mechanism of first-order nucleophilic substitu members that alkylating agents pick out centers tion Sn 1 reaction. of high electron density, thiols and acids will be most reactive when ionized, in contrast to amines which become unreactive when protonated. If the R1 competition factor for a particular group is F, c is its concentration, and is the amount in the reac :(@2@ZC1 tive form, then in a particular system the relative V @cH2 amount of any group reacting is proportional to CHART 2.—Ethyleneimmonium ion formed from an au phatic nitrogen mustard. TABLE 1 COMPETITION FACTORS FOR their sites and extents of binding, although de MUSTARD G@s (63) pendent to some extent on factors such'as solubil ity, will be determined mainly by their electro (Competi. SubstanceF . philic (or alkylating) potential; and this involves factor)pHThiosulfate tion consideration of ease of electron displacement, resonance energies, bond strengths, steric factors, Cysteine ethyl ester 1 .SX1O' 7 etc. Methylamine 3.9X10' 13 Phosphate 75 8 There are two generally accepted basic mecha Pyridine 54 7 nisms of alkylation, first-order nucleophilic sub Chloride 21 7 Acetate 10 7 stitution (Sni) and second-order nucleophilic Formate 3 7 substitution (Sn@), although care should be taken Nitrate 0.2 7 in making too rigid a classification. In the former, Glucose2.7X104 08 7 the rate-controlling stage in the reaction is ioniza tion to form a solvated carbonium ion, followed by a rapid combination with a solvent molecule or Fl c. However, Alexander (1) has drawn attention new nucleophilic reagent such as an anion or sul to the fact that apparent competition factors of fide (Chart 1). Since the driving force of the reac groups in macromolecules may be increased by tion is a displacement of electrons away from R, adsorption of the agent onto the macromolecule, then reactions of this type will be facilitated by the thereby increasing effective concentration. Ross presence of electron-repelling substituents (such as (74) assessed the reactivity of a number of chloro methyl) in R. The carbonium ion, being an ex ethylarylamines by measuring their rates of hy tremely unstable and hence reactive species, will drolysis in aqueous acetone and found that electron be to some extent indiscriminate in its combination releasing substituents in the benzyne ring such as with nucleophilic centers. The more unstable car p-methyl greatly increased the rate of hydrolysis, bonium ions, such as those derived from i-propyl whereas it was retarded by p-nitro-, p-phenylazo-, methanesulfonate, will tend to react rapidly with or other electron-attracting substituents. solvating water molecules, whereas in some cases The other essential features of Sni reactions more discrimination is possible as demonstrated by are (a) that the rate of any particular reaction will Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 1963 American Association for Cancer Research. WARwICK—Mechanism of Action of Alkylating Agents 1317 be essentially independent of both the concentra sition state is high compared with the initial state. tion and the nature of the other reagent. Thus, an Bond strength is obviously important, since, ionized thiol, a powerful nucleophile because of whereas electron affinity increases in the order the electron distribution on the sulfur atom, will I < Br < Cl < F, replacement by an alkylating react at the same rate as, e.g., an amine or hy agent increases in the reverse order, I being most droxide ion, less powerful nucleophiles, and (b) easily expelled. that no reaction will take place until primary Compounds such as primary alkyl halides, ionization has occurred. Both these factors are in methanesulfonates, and phosphates are not par contrast to what is observed in Sn@ reactions and ticularly powerful reactors, their rate of reaction are probably very significant when comparing the with water and other nucleophiles being usually pharmacological properties of the two classes of relatively low. Thus, whereas mustard gas has a reactant. half-life of 3 mm. in water at 87°C., ethyl meth Mustard gas (dichlorodiethyl sulfide) and the anesulfonate has a half-life of 36.3 hours and aromatic nitrogen mustards are the Sni reactors that of methyl bromide is 116 hours (75). The no with which we will be concerned in this discussion. action rate increases considerably in the presence Mustard gas is an extremely reactive compound of centers of high electron density, especially (half-life in water about 3 mm. at 37°C.) because of the presence and position of the electron-releas TABLE 2 ing sulfur atom relative to the chlorine atoms RELATiVE REACT1VITIES OF NUCLEOPRILES which facilitates formation of a carbonium ion TOWARD METHYL BROMIDE (84) through the unstable ring system shown.
Recommended publications
  • Page 1 EXAMPLES of ACUTE TOXINS (By CAS#) APPENDIX V(H)-B
    EXAMPLES OF ACUTE TOXINS (by CAS#) APPENDIX V(h)-B Key: SA -- Readily Absorbed Through the Skin Revised: 12/2012 ___________________________________________________ _____________ _________________________ | | | CHEMICAL NAME CAS # | SA | TARGET ORGAN | ___________________________________________________ ____________ | _ | _______________________ | AFLATOXINS 000000-00-0 | | systemic | ANILINE AND COMPOUNDS 000000-00-0 | x | blood | ARSENIC ACID AND SALTS 000000-00-0 | x | systemic | ARSENIUOS ACID AND SALTS 000000-00-0 | | systemic | ARSONIC ACID AND SALTS 000000-00-0 | | systemic | BOTULINUM TOXINS 000000-00-0 | | systemic | CYANIDE AND COMPOUNDS 000000-00-0 | x | blood | CYANOGEN AND COMPOUNDS 000000-00-0 | | blood | METHYL MERCURY AND COMPOUNDS 000000-00-0 | x | CNS | VENOM, SNAKE, CROTALUS ADAMANTEUS 000000-00-0 | | systemic | VENOM, SNAKE, CROTALUS ATROX 000000-00-0 | | systemic | MITOMYCIN C 000050-07-7 | | systemic | DINITROPHENOL, 2,4- 000051-28-5 | x | systemic | ATROPINE 000051-55-8 | x | CNS | HN2 (NITROGEN MUSTARD-2) 000051-75-2 | x | systemic | THIOTEPA 000052-24-4 | | systemic | NICOTINE 000054-11-5 | x | CNS | NITROGEN MUSTARD HYDROCHLORIDE 000055-86-7 | x | systemic | PARATHION 000056-38-2 | x | CNS | CYANIDE 000057-12-5 | x | blood | STRYCHNINE 000057-24-9 | | systemic,CNS | TUBOCURARINE CHLORIDE HYDRATE,(+)- 000057-94-3 | x | systemic | METHYL HYDRAZINE 000060-34-4 | x | pulmonary,CNS,blood | ANILINE 000062-53-3 | x | blood | DICHLORVOS 000062-73-7 | x | systemic | SODIUM FLUOROACETATE 000062-74-8 | x | systemic | COLCHICINE
    [Show full text]
  • The Chemotherapy of Malignant Disease -Practical and Experimental Considerations
    Postgrad Med J: first published as 10.1136/pgmj.41.475.268 on 1 May 1965. Downloaded from POSTGRAD. MED. J. (1965), 41,268 THE CHEMOTHERAPY OF MALIGNANT DISEASE -PRACTICAL AND EXPERIMENTAL CONSIDERATIONS JOHN MATTHIAS, M.D., M.R.C.P., F.F.A., R.C.S. Physician, The Royal Marsden Hospital, London, S.W.3. THE TERM chemotherapy was introduced by positively charged alkyl (CH2) radicles of Ehrlich to describe the specific and effective the agent. treatment of infectious disease by chemical (a) The nitrogen mustards: mustine (HN2 substances. It is currently also applied to the 'nitrogen mustard', mechlorethamine, treatment of malignant disease. Unfortunately mustargen), trimustine (Trillekamin no aspect of tumour metabolism has been HN3), chlorambucil (Leukeran, phenyl discovered which has allowed the development butyric mustard), melphalan (Alkeran, of drugs capable of acting specifically upon the phenyl alanine mustard), uramustine malignant cell, so that cytotoxic drugs also (Uracil mustard), cyclophosphamide affect normal cells to a greater or lesser degree. (Endoxan or Cytoxan), mannomustine The most susceptible or sensitive of the normal (DegranoO). tissues are those with the highest rates of cell (b) The ethylenamines: tretamine (trie- turnover and include the haemopoietic and thanomelamine, triethylene melamine, lympho-reticular tissues, the gastro-intestinal TEM), thiotepa (triethylene thiopho- the the testis and the hair epithelium, ovary, sphoramide), triaziquone (Trenimon).by copyright. follicles. (c) The epoxides: triethyleneglycoldigly- Cancer chemotherapy may be said to encom- cidyl ether (Epodyl). pass all treatments of a chemical nature (d) The sulphonic acid esters: busulphan administered to patients with the purpose of (Myleran), mannitol myleran. restricting tumour growth or destroying tumour 2.
    [Show full text]
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • Salvage Chemotherapy for Recurrent Primary Brain Tumors in Children
    Salvage chemotherapy for recurrent primary brain tumors in children Jan van Eys, PhD, MD, Tallie Z. Baram, MD, PhD, Ayten Cangir, MD, Janet M. Bruner, MD, and J. Martinez-Prieto, MD From the Departments of Pediatrics, Neurooncology, and Pathology, The Universityof Texas M, D. Anderson Cancer Center at Houston Sixty consecutive evaluable children with recurrent primary tumors of the central nervous system were treated with a regimen of vincristine, nitrogen mustard, procarbazine, and prednisone over a 12-year period. Tumor types included medulloblastoma (19), brain-stem glioma (16), astrocytoma (13), and a miscellaneous glioma (12). Responses and sustained survivals were achieved. Responses were highly dependent on tumor type. Disease progres- sion was halted in 73% of the children with medulloblastoma, and three have survived in complete remission for more than 10 years from the start of therapy with vincristine, nitrogen mustard, procarbazine, and prednisone. Two of four patients with anaplastic glioma, are long-term survivors. In contrast, less than one third of children with brain-stem gliomas responded. Toxicity consisted mainly of neutropenia, thrombocytopenia, infections, and rarely a procarba- zine rash. (J PEDIAI'R1988;113:601-6) Therapy for recurrent brain tumors in children remains METHODS unsatisfactory; most die of their disease regardless of Patients. Sixty-five children with a median age of 6 therapy, l We have repbrted on the responsiveness of years (range, 1 to 16 years) were treated with MOPP for recurrent brain tumors in children to chemotherapy with recurrent brain tumors. Sixty patients were eligible for vincristine, nitrogen mustard, procarbazine, and predni- evaluation; the other five patients were excluded because 1 sone.
    [Show full text]
  • Anticancer Alkylating Agents-Part-I.Pdf
    Anticancer Agents Medicinal Chemistry III B Pharm Dr. bilal al-jaidi Assistant Professor, Pharmaceutical Medicinal Chemistry Faculty of Pharmacy, Philadelphia University-Jordan Email: [email protected] Learning Outcome At the end of this lesson students will be able to – Outline the current status, causes and treatment strategies of cancer – Explain the mechanism of action, SAR, therapeutic uses and side effects of following classes of anti-cancer agents: • Alkylating Agents QUIZ = 20 Marks • Heavy metal compounds (Metallating Agents) • Anti-metabolite • Antibiotics • Plant Extracts • Topoisomerase inhibitors • Hormones • Combination of chemotherapy with other treatments • Others First Examination= 20 Marks The Status of Cancer • Cancer is a leading cause of death worldwide, accounting for 12.6 million new cases and 7.6 million deaths every year. THIS IS EQUIVALENT TO ONE PERSON, EVERY 5 SECONDS OF EVERYDAY Source: GLOBOCAN 2008 By 2020 the World Health Organisation (WHO) expects this rise to 16 million. Cancer • A new growth of tissue in which multiplication of cells is uncontrolled and progressive (tumour). • Abnormal cells can spread to other parts of the body (metastasise). Cancer Types Cancer types are categorized based on the functions/locations of the cells from which they originate: Carcinoma: a tumor derived from epithelial cells, those cells that line the inner or outer surfaces of our skin and organs (80-90% of all cancer cases reported) Sarcoma: a tumor derived from muscle, bone, cartilage, fat or connective tissues. Leukemia: a cancer derived from white blood cells or their precursors. Lymphoma: a cancer of bone marrow derived cells that affects the lymphatic system. Myelomas: a cancer involving the white blood cells responsible for the production of antibodies (B lymphocytes).
    [Show full text]
  • The Nitrogen Mustard Anticancer Agent Mechlorethamine Generates Cross-Links Deri
    Article pubs.acs.org/biochemistry A New Cross-Link for an Old Cross-Linking Drug: The Nitrogen Mustard Anticancer Agent Mechlorethamine Generates Cross-Links Derived from Abasic Sites in Addition to the Expected Drug-Bridged Cross-Links Maryam Imani Nejad,† Kevin M. Johnson,† Nathan E. Price,† and Kent S. Gates*,†,‡ † Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States ‡ Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States *S Supporting Information ABSTRACT: Nitrogen mustard anticancer drugs generate highly reactive aziridinium ions that alkylate DNA. Mono- adducts arising from reaction with position N7 of guanine residues are the major DNA adducts generated by these agents. Interstrand cross-links in which the drug bridges position N7 of two guanine residues are formed in low yields relative to those of the monoadducts but are generally thought to be central to medicinal activity. The N7-alkylguanine residues generated by nitrogen mustards are depurinated to yield abasic (Ap) sites in duplex DNA. Here, we show that Ap sites generated by the nitrogen mustard mechlorethamine lead to interstrand cross-links of a type not previously associated with this drug. Gel electrophoretic data were consistent with early evolution of the expected drug-bridged cross-links, followed by the appearance of Ap-derived cross-links. The evidence is further consistent with a reaction pathway involving alkylation of a guanine residue in a 5′-GT sequence, followed by depurination to generate the Ap site, and cross-link formation via reaction of the Ap aldehyde residue with the opposing adenine residue at this site [Price, N.
    [Show full text]
  • Covalent Protein Adduction of Nitrogen Mustards and Related Compounds Vanessa R
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 2-28-2014 Covalent Protein Adduction of Nitrogen Mustards and Related Compounds Vanessa R. Thompson Florida International University, [email protected] DOI: 10.25148/etd.FI14040835 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Amino Acids, Peptides, and Proteins Commons, and the Analytical Chemistry Commons Recommended Citation Thompson, Vanessa R., "Covalent Protein Adduction of Nitrogen Mustards and Related Compounds" (2014). FIU Electronic Theses and Dissertations. 1152. https://digitalcommons.fiu.edu/etd/1152 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida COVALENT PROTEIN ADDUCTION OF NITROGEN MUSTARDS AND RELATED COMPOUNDS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY by Vanessa Thompson 2014 To: Dean Kenneth G. Furton College of Arts and Sciences This dissertation, written by Vanessa Thompson, and entitled Covalent Protein Adduction of Nitrogen Mustards and Related Compounds, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Fenfei Leng _______________________________________ Watson Lees _______________________________________ Dietrich Lorke _______________________________________ Bruce McCord _______________________________________ Anthony DeCaprio, Major Professor Date of Defense: February 27, 2014 The dissertation of Vanessa Thompson is approved.
    [Show full text]
  • Nitrogen Mustard Hydrochloride Exposure to Other Drugs, Or Were Based on Small Numbers of Exposed Cases (Zaridze Et Al
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Nitrogen Mustard Hydrochloride exposure to other drugs, or were based on small numbers of exposed cases (Zaridze et al. 1993). CAS No. 55-86-7 Properties Reasonably anticipated to be a human carcinogen Nitrogen mustard hydrochloride is a compound analogous to mus- First listed in the Fourth Annual Report on Carcinogens (1985) tard gas, with sulfur replaced by nitrogen. It exists at room temper- Also known as nitrogen mustard, mechlorethamine, or ature as white to off-white crystals or powder with a fishy odor. It mechlorethamine hydrochloride is soluble in water and ethanol. The dry crystals are stable at room temperature, but unstable in aqueous solution (IARC 1975). Physi- CH3 H2 H2 cal and chemical properties of nitrogen mustard hydrochloride are C N C listed in the following table. Cl C C Cl HCl H2 H2 Property Information Carcinogenicity Molecular weight 192.5a Specific gravity 1.118 g/cm3 at 25°Cb Nitrogen mustard hydrochloride is reasonably anticipated to be a Melting point 109°C to 111°Ca human carcinogen based on sufficient evidence of carcinogenicity Boiling point 87°C at 18 mm Hgb a from studies in experimental animals. In the literature, the names Log Kow –1.24 “nitrogen mustard” and “nitrogen mustard hydrochloride” are used Water solubility 10g/La Dissociation constant (pK ) 6.43 at 25°Ca interchangeably. Only nitrogen mustard hydrochloride is produced a commercially, so it is assumed that nitrogen mustard hydrochloride Sources: aHSDB 2009, bChemIDplus 2009.
    [Show full text]
  • Evaluation of Melphalan, Oxaliplatin, and Paclitaxel in Colon, Liver, And
    ANTICANCER RESEARCH 33: 1989-2000 (2013) Evaluation of Melphalan, Oxaliplatin, and Paclitaxel in Colon, Liver, and Gastric Cancer Cell Lines in a Short-term Exposure Model of Chemosaturation Therapy by Percutaneous Hepatic Perfusion RAJNEESH P. UZGARE, TIMOTHY P. SHEETS and DANIEL S. JOHNSTON Pharmaceutical Research and Development, Delcath Systems, Inc., Queensbury, NY, U.S.A. Abstract. Background: The goal of this study was to candidates for use in the CS-PHP system to treat patients determine whether liver, gastric, or colonic cancer may be with gastric and colonic metastases, and primary cancer of suitable targets for chemosaturation therapy with the liver. percutaneous hepatic perfusion (CS-PHP) and to assess the feasibility of utilizing other cytotoxic agents besides Chemotherapeutic molecules exert beneficial clinical effects melphalan in the CS-PHP system. Materials and Methods: by inhibiting cell growth or by inducing cell death via Forty human cell lines were screened against three cytotoxic apoptosis. They can be divided into several categories based chemotherapeutic agents. Specifically, the dose-dependent on their mechanisms of action. The chemotherapeutic agent effect of melphalan, oxaliplatin, and paclitaxel on melphalan hydrochloride, which has been approved by the proliferation and apoptosis in each cell line was evaluated. US Food and Drug Administration and is used in the These agents were also evaluated for their ability to induce treatment of multiple myeloma and ovarian cancer, is a apoptosis in normal primary human hepatocytes. A high- derivative of nitrogen mustard that acts as a bifunctional dose short-term drug exposure protocol was employed to alkylating agent. Melphalan causes the alkylation of DNA at simulate conditions encountered during CS-PHP.
    [Show full text]
  • NITROGEN MUSTARD by OLIVER GARAI, M.R.C.P
    Postgrad Med J: first published as 10.1136/pgmj.24.272.307 on 1 June 1948. Downloaded from 307 NITROGEN MUSTARD By OLIVER GARAI, M.R.C.P. Clinical Assistant to the Department of Medicine, King's College Hospital, London Introduction et al. in 1936 (I. Berenblum, 1936) found that The nitrogen mustards are closely related mustard gas depressed the glycolysis of minced chemically to the mustard gas notorious in tumour tissue. The significance of this finding chemical warfare. The former differs from its is tempered by their report that Ethylene-bis-b military ancestor only in that the sulphur of the chloroethylsulphide which also inhibits carceno- latter is replaced by a nitrogen-containing group. genesis possess no selective action on glycolysis. Sulphur mustard becomes nitrogen mustard, thus: The introduction of radio-active isotopes for research purposes, made possible a great advance CH2CH2C1. in determining the fate of the mustards in living / tissue. Most of this work and, in fact, all research Mustard gas S work on the mustards which was in progress at the outbreak of World War II, was intensified and CH2CH2C1. at once came under strict secrecy. It was not CH2CHCH1. until I946 that papers concerning the mustards / began to be published once again. Much of the becomes work that had been carried out over the interveningby copyright. CH3N war years was reviewed by Gilman and Phillips in April, 1946, and by Haddow in 1947. Details CH2CH2C1. of the biochemistry and pharmacology of the History mustards were published by Banks et al. in a series Knowledge of the effects produced by bis- of papers in I946.
    [Show full text]
  • Trolox Enhances the Anti-Lymphoma Effects of Arsenic Trioxide, While Protecting Against Liver Toxicity
    Leukemia (2007) 21, 2117–2127 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu ORIGINAL ARTICLE Trolox enhances the anti-lymphoma effects of arsenic trioxide, while protecting against liver toxicity Z Diaz1,2, A Laurenzana1,2, KK Mann1,2, TA Bismar1,2,3, HM Schipper2,4 and WH Miller Jr1,2 1Segal Cancer Centre and Lady Davis Institute for Medical Research, McGill University, Montreal, Que´bec, Canada; 2Department of Oncology, McGill University, Montreal, Que´bec, Canada; 3Department of Pathology, McGill University, Montreal, Que´bec, Canada and 4Department of Neurology and Neurosurgery, McGill University, Montreal, Que´bec, Canada Arsenic trioxide (As2O3) is an effective therapy in acute in vivo studies characterized the effectiveness of arsenic in promyelocytic leukemia (APL), but its use in other malignancies various hematological malignancies, and multiple phase I/II is limited by the higher concentrations required to induce apoptosis. We have reported that trolox, an analogue of clinical trials are underway to evaluate its feasibility, safety and potential efficacy. Arsenic has also been tested in non- a-tocopherol, increases As2O3-mediated apoptosis in a variety of APL, myeloma and breast cancer cell lines, while non- hematological cancer. Using an orthotopic prostate metastasis malignant cells may be protected. In the present study, we model, As2O3 alone provided a dose-dependent inhibition of extended previous results to show that trolox increases As2O3- both primary and metastatic lesions, although an increased mediated apoptosis in the P388 lymphoma cell line in vitro,as survival rate was only obtained in the group treated with the evidenced by decrease of mitochondrial membrane potential combination of As2O3 and buthionine sulfoxamine (BSO), an and release of cytochrome c.
    [Show full text]
  • First FDA-Approved Chemo Agent Turns 60
    18 ONCOLOGY MARCH 1, 2009 • INTERNAL MEDICINE NEWS First FDA-Approved Chemo Agent Turns 60 BY BETSY BATES more chemotherapy drugs for the treatment of a wide range of dif- History of Chemotherapy: A Time Line “The response of the first patient was as dramatic as that of ferent malignancies.” the first mouse. ...Within 48 hours after the initiation of ther- The journey has been anything apy, a softening of the tumor masses was detected. It soon but smooth, with strong early op- First use of mustard gas on 1917 became obvious that this was not just wishful thinking.” position documented by Yale on- the battlefield, WWI. —Alfred Gilman, Ph.D., “The Initial Clinical Trial of Ni- cologists Vincent T. DeVita Jr. trogen Mustard” (Amer. J. Surg. 1963;105:574-8). and Edward Chu in a recent arti- cle, “A History of Cancer he top-secret intravenous administration of 0.1 Chemotherapy” (Cancer Res. Aitken 2nd Lt. T.L. United Kingdom Government 1942 Secret contract signed mg/kg “Compound X” to an “x-ray resistant pa- 2008;68:8643-53). “Remissions between U.S. Office of Ttient in the terminal stages of lymphosarcoma” turned out to be brief and in- Scientific Research and Yale in early December 1942 marked the quiet birth of complete, and this realization University to study chemical chemotherapy in America. then created an air of pessimism Library and Archives Canada warfare agents; animal research begins. The clandestine, government-sanctioned treatment that pervaded the subsequent lit- Bari Incident: Mustard gas 1943 of an anonymous patient at Yale University, New erature of the 1950s,” they noted.
    [Show full text]