Short-Range Host Preference in Snowberry Maggot Flies Depends on Life History Stage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera: Tephritidae)
Identifying Diagnostic Genetic Markers for a Cryptic Invasive Agricultural Pest: A Test Case Using the Apple Maggot Fly (Diptera: Tephritidae) Authors: Doellman, Meredith M., Hood, Glen R., Gersfeld, Jacob, Driscoe, Amanda, Xu, Charles C. Y., et al. Source: Annals of the Entomological Society of America, 113(4) : 246- 256 Published By: Entomological Society of America URL: https://doi.org/10.1093/aesa/saz069 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Entomological-Society-of-America on 29 Aug 2020 Terms of Use: https://bioone.org/terms-of-useAccess provided by University of Notre Dame Annals of the Entomological Society of America, 113(4), 2020, 246–256 doi: 10.1093/aesa/saz069 Advance Access Publication Date: 16 March 2020 Special Collection: Advanced Genetic Analysis of Invasive Arthropods Special Collection Identifying Diagnostic Genetic Markers for a Cryptic Invasive Agricultural Pest: A Test Case Using the Apple Maggot Fly (Diptera: Tephritidae) 2020 July 23 user on access site OUP by https://academic.oup.com/aesa/article-abstract/113/4/246/5748322 from Downloaded Meredith M. -
Ketu Mutant Mice Uncover an Essential Meiotic Function for the Ancient, Putative RNA Helicase YTHDC2
bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ketu mutant mice uncover an essential meiotic function for the ancient, putative RNA helicase YTHDC2 Devanshi Jain1, M. Rhyan Puno2,4, Kathryn V. Anderson3, and Scott Keeney1,4 * 1Molecular Biology Program, 2Structural Biology Program, 3Developmental Biology Program, and 4Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA Running title: Ythdc2 is essential for mouse meiosis Keywords Meiosis, spermatogonia, MEIOC, Bgcn, Bam, RNA binding proteins, gametogenesis *Correspondence: Scott Keeney Howard Hughes Medical Institute Molecular Biology Program Memorial Sloan Kettering Cancer Center 1275 York Ave, Box 97 New York, NY 10065 (212) 639-5182 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Mechanisms regulating mammalian meiotic progression are poorly understood. Here we identify mouse YTHDC2 as a critical component of this regulation. A screen yielded a mutant, “ketu”, with male and female sterility caused by a Ythdc2 missense mutation. Mutant germ cells enter meiosis but proceed prematurely to aberrant metaphase and apoptosis. -
Blueberry Maggot, Rhagoletis Mendax Curran I. Introduction
Blueberry maggot, Rhagoletis mendax Curran I. Introduction: Blueberry maggot was formerly considered a race of apple maggot, R. pomonella (Marucci 1966). In some areas it is the most important pest preharvest. Was common in Canada in lowbush blueberries, but since 1960's has spread southward through most of mid-Atlantic states (Milholland & Meyer 1984). Blueberry maggot was found to be common in the southeastern U.S. by Payne & Berlocher (1995), where an important host is deerberry, Vaccinium stamineum L. To date it has not been reported as important in Virginia, but this may result from unidentified infestations. II. Biology: Pupae overwinter in the soil at a depth of 2.5-15 cm (Milholland & Meyer 1984). Development is resumed in spring. Adults emerge shortly before harvest, usually last week of May or first week of June in North Carolina, peaking in mid-June (Milholland & Meyer 1984). After a 7-10 day pre-oviposition period, females start ovipositing on large ripening berries. Larvae hatch in about 5 days, feeding in the pulp of fruit for about 2 weeks. Larvae then leave berries, enter the soil to pupate. This species is univoltine, but a small proportion of the population may remain in the soil for 2-3 years [however, Payne & Berlocher (1995) reported it to be more strictly univoltine than apple maggot]. "The highest populations...are generally associated with fields where soil moisture remains high enough throughout the summer (due to irrigation, high organic matter, or tall bushes that shade the ground) to prevent desiccation of the pupae. Pest populations also tend to increase following years when wet field conditions delay harvest and a cold winter breaks pupal diapause." (Milholland & Meyer 1984). -
Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives
insects Review Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives Francesca Scolari 1,* , Federica Valerio 2 , Giovanni Benelli 3 , Nikos T. Papadopoulos 4 and Lucie Vaníˇcková 5,* 1 Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy 2 Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy; [email protected] 3 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] 4 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece; [email protected] 5 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.) Simple Summary: Tephritid fruit flies comprise pests of high agricultural relevance and species that have emerged as global invaders. Chemical signals play key roles in multiple steps of a fruit fly’s life. The production and detection of chemical cues are critical in many behavioural interactions of tephritids, such as finding mating partners and hosts for oviposition. The characterisation of the molecules involved in these behaviours sheds light on understanding the biology and ecology of fruit flies and in addition provides a solid base for developing novel species-specific pest control tools by exploiting and/or interfering with chemical perception. Here we provide a comprehensive Citation: Scolari, F.; Valerio, F.; overview of the extensive literature on different types of chemical cues emitted by tephritids, with Benelli, G.; Papadopoulos, N.T.; a focus on the most relevant fruit fly pest species. -
Diptera: Tephritidae) Pests in the NAPPO Countries
NAPPO Science and Technology Documents ST 04: Status of Rhagoletis (Diptera: Tephritidae) Pests in the NAPPO Countries Prepared by the members of the NAPPO Technical Advisory Group on Rhagoletis Wee L. Yee1, Vicente Hernández-Ortiz2, Juan Rull3 y Bradley J. Sinclair4 October, 2013 1 United States Department of Agriculture-Agricultural Research Service, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, WA 98951, [email protected] 2 Red de Interacciones Multitróficas, Instituto de Ecología A.C., Km 2.5 carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91070, Mexico, [email protected] 3 Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C., Km 2.5 carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91070, Mexico, [email protected] 4 Canadian National Collection of Insects & Ottawa Plant Laboratory – Entomology, CFIA K. W. Neatby Building, 960 Carling Ave., Ottawa, ON Canada K1A 0C6, [email protected] 1 Table of Contents Introduction ...........................................................................................................................3 Apple Maggot, Rhagoletis pomonella (Walsh) ......................................................................4 Blueberry Maggot, Rhagoletis mendax Curran .....................................................................8 Eastern Cherry Fruit Fly, Rhagoletis cingulata (Loew) ........................................................ 11 Western Cherry Fruit Fly, Rhagoletis indifferens -
A Study on the Biological and Physiological Traits of Bactrocera Dorsalis, with Special Reference to Its Invasion Potential Into the Western Cape of South Africa
A study on the biological and physiological traits of Bactrocera dorsalis, with special reference to its invasion potential into the Western Cape of South Africa. by Welma Pieterse Dissertation presented for the degree of Doctor of Philosophy (Agricultural Sciences) at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr Pia Addison Co-supervisors: Prof John Terblanche Dr Aruna Manrakhan March 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated) that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Welma Pieterse Date: 26 February 2018 Copyright © 2018 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Bactrocera dorsalis (Hendel) is of Asian origin and is present in the northern and north-eastern parts of South Africa, but is still absent in other areas of the country including the Western Cape Province. The Western Cape Province is the largest producer of deciduous fruit in South Africa, exporting 41% of the deciduous fruit grown in the province. South Africa earned about R7 billion in export revenue from deciduous fruit exports in 2015. Currently, Ceratitis capitata (Wiedemann) and Ceratitis rosa s.l. Karsch are economically the most important fruit fly species on deciduous fruit in the Western Cape Province of South Africa. -
Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade
A peer-reviewed open-access journal ZooKeys 540: 1–3 (2015) Editorial 1 doi: 10.3897/zookeys.540.6506 EDITORIAL http://zookeys.pensoft.net Launched to accelerate biodiversity research Editorial Marc De Meyer1, Anthony R. Clarke2, M. Teresa Vera3,4, Jorge Hendrichs5 1 Royal Museum for Central Africa, Tervuren, Belgium 2 Queensland University of Technology, Brisbane, Au- stralia 3 Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad National de Tu- cumán (UNT), San Miguel de Tucumán, Argentina 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 5 Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International, Centre, Vienna, Austria Corresponding author: Marc De Meyer ([email protected]) Received 8 September 2015 | Accepted 10 September 2015 | Published 26 November 2015 http://zoobank.org/ Citation: De Meyer M, Clarke AR, Vera MT, Hendrichs J (2015) Editorial. In: De Meyer M, Clarke AR, Vera MT, Hendrichs J (Eds) Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade. ZooKeys 540: 1–3. doi: 10.3897/zookeys.540.6506 Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers. -
National Program 304 – Crop Protection and Quarantine
APPENDIX 1 National Program 304 – Crop Protection and Quarantine ACCOMPLISHMENT REPORT 2007 – 2012 Current Research Projects in National Program 304* SYSTEMATICS 1245-22000-262-00D SYSTEMATICS OF FLIES OF AGRICULTURAL AND ENVIRONMENTAL IMPORTANCE; Allen Norrbom (P), Sonja Jean Scheffer, and Norman E. Woodley; Beltsville, Maryland. 1245-22000-263-00D SYSTEMATICS OF BEETLES IMPORTANT TO AGRICULTURE, LANDSCAPE PLANTS, AND BIOLOGICAL CONTROL; Steven W. Lingafelter (P), Alexander Konstantinov, and Natalie Vandenberg; Washington, D.C. 1245-22000-264-00D SYSTEMATICS OF LEPIDOPTERA: INVASIVE SPECIES, PESTS, AND BIOLOGICAL CONTROL AGENTS; John W. Brown (P), Maria A. Solis, and Michael G. Pogue; Washington, D.C. 1245-22000-265-00D SYSTEMATICS OF PARASITIC AND HERBIVOROUS WASPS OF AGRICULTURAL IMPORTANCE; Robert R. Kula (P), Matthew Buffington, and Michael W. Gates; Washington, D.C. 1245-22000-266-00D MITE SYSTEMATICS AND ARTHROPOD DIAGNOSTICS WITH EMPHASIS ON INVASIVE SPECIES; Ronald Ochoa (P); Washington, D.C. 1245-22000-267-00D SYSTEMATICS OF HEMIPTERA AND RELATED GROUPS: PLANT PESTS, PREDATORS, AND DISEASE VECTORS; Thomas J. Henry (P), Stuart H. McKamey, and Gary L. Miller; Washington, D.C. INSECTS 0101-88888-040-00D OFFICE OF PEST MANAGEMENT; Sheryl Kunickis (P); Washington, D.C. 0212-22000-024-00D DISCOVERY, BIOLOGY AND ECOLOGY OF NATURAL ENEMIES OF INSECT PESTS OF CROP AND URBAN AND NATURAL ECOSYSTEMS; Livy H. Williams III (P) and Kim Hoelmer; Montpellier, France. * Because of the nature of their research, many NP 304 projects contribute to multiple Problem Statements, so for the sake of clarity they have been grouped by focus area. For the sake of consistency, projects are listed and organized in Appendix 1 and 2 according to the ARS project number used to track projects in the Agency’s internal database. -
Invasion Genetics of American Cherry Fruit Fly in Europe and Signals of Hybridization with the European Cherry Fruit
DOI: 10.1111/eea.12041 Invasion genetics of American cherry fruit flyinEurope and signals of hybridization with the European cherry fruit fly Jes Johannesen1*, Nusha Keyghobadi2, Hannes Schuler3, Christian Stauffer3 & Heidrun Vogt4 1Institute of Zoology, Ecological Department, University of Mainz, Johann-Joachim-Becherweg 13, Mainz 55128, Germany, 2Department of Biology, Western University, London, Ontario, ON N6A 5B7, Canada, 3Department of Forest & Soil Sciences, Institute of Forest Entomology, Forest Pathology & Forest Protection, BOKU, University of Natural Resources & Applied Life Sciences, Hasenauerstrasse 38, Vienna 1190, Austria, and 4Julius Kuhn-Institute,€ Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Strasse 101, Dossenheim 69221, Germany Accepted: 2 January 2013 Key words: Rhagoletis cingulata, Rhagoletis indifferens, Rhagoletis cerasi, microsatellites, COI, cross- species amplification, hybridization, invasion biology, pest species, Diptera, Tephritidae, wing pattern Abstract The American cherry fruit fly is an invasive pest species in Europe, of serious concern in tart cherry production as well as for the potential to hybridize with the European cherry fruit fly, Rhagoletis cerasi L. (Diptera: Tephritidae), which might induce new pest dynamics. In the first European reports, the question arose whether only the eastern American cherry fruit fly, Rhagoletis cingulata (Loew) (Di- ptera: Tephritidae), is present, or also the closely related western American cherry fruit fly, Rhagoletis indifferens Curran. In this study, we investigate the species status of European populations by com- paring these with populations of both American species from their native ranges, the invasion dynamics in German (first report in 1993) and Hungarian (first report in 2006) populations, and we test for signals of hybridization with the European cherry fruit fly. -
Diptera, Tephritidae)
VILNIUS UNIVERSITY STATE SCIENTIFIC RESEARCH INSTITUTE NATURE RESEARCH CENTRE Dominykas ALEKNAVIČIUS Chemoecological peculiarities of Rhagoletis batava Hering (Diptera, Tephritidae) SUMMARY OF DOCTORAL DISSERTATION Natural sciences, Ecology and Environment science N 012 VILNIUS 2019 This dissertation was written between 2015 and 2019 (Nature Research Centre). Academic supervisor: True member of the Lithuania Academy of Science, Prof. Habil. Dr. Vincas, Būda (Nature Research Centre, Natural sciences, Ecology and Environment science – N 012) This doctoral dissertation will be defended in a public meeting of the Dissertation Defence Panel: Chairman – Assoc. Prof. Dr. Eduardas, Budrys (Nature Research Centre, Natural sciences, Ecology and Environment science – N 012). Members: Dr. Rasa, Čepulytė (Nature Research Centre, Natural sciences, Ecology and Environment science – N 012); Prof. Dr. Rolandas, Meškys (Vilnius University, Natural sciences, Biochemical science – N 004); Prof. Dr. Paulo Alexandre, da Silva Pereira (Mykolas Romeris University, Natural sciences, Ecology and Environment science – N 012); Dr. Miklós, Tóth (Hungarian Academy of Sciences, Natural sciences, Ecology and Environment science – N 012). The dissertation shall be defended at a public meeting of the Dissertation Defence Panel at 1 PM on 13 December 2019 in conference hall of the Nature Research Centre. Address: Akademijos Str. 2, LT-08412, Vilnius, Lithuania. Tel. +370 (5) 272 92 57; e-mail: [email protected] The text of this dissertation can be accessed at the libraries of Nature Research Centre and Vilnius University, as well as on the website of Vilnius University: www.vu.lt/lt/naujienos/ivykiu-kalendorius VILNIAUS UNIVERSITETAS VALSTYBINIS MOKSLINIŲ TYRIMŲ INSTITUTAS GAMTOS TYRIMŲ CENTRAS Dominykas ALEKNAVIČIUS Rhagoletis batava Hering (Diptera, Tephritidae) chemoekologijos bruožai DAKTARO DISERTACIJOS SANTRAUKA Gamtos mokslai, Ekologija ir aplinkotyra N 012 VILNIUS 2019 Disertacija rengta 2015-2019 metais Gamtos tyrimų centre. -
Diptera: Tephritidae) As Ecological Model
Host plant toxicity, stenophagy and evolutionary radiation in phytophagous insects: genus Ceratitis (Diptera: Tephritidae) as ecological model Gastplant-toxiciteit, stenofagie en evolutionaire radiatie in fytofage insecten: het genus Ceratitis (Diptera: Tephritidae) als ecologisch model Nathalie Erbout Universiteit Gent, 2010 Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen, Biologie Supervisor : Prof. Dr. Luc Lens (Ghent University) Co-supervisor: Dr. Marc De Meyer (Royal Museum for Central Africa) Reading committee: Dr. Jorge Hendrichs (IAEA, Austria) Prof. Dr. Frederick Hendrickx (Ghent University) Dr. Eduardo de la Penã (Ghent University) Examination committee: Prof. Dr. Luc Lens (Ghent University, supervisor) Dr. Marc De Meyer (Royal Museum for Central Africa, co-supervisor) Prof. Dr. Dominique Adriaens (Ghent University, chairman) Prof. Dr. Bart Braeckman (Ghent University) Contents Dankwoord Section I: Introduction 1.1 General introduction and thesis outline 1 1.2 It takes two to tango: the role of chemistry in evolutionary 11 diversification of insect-host relationships Section II: Spatial and temporal patterns in fruit fly host-use 2.1 Biogeography of ecological specialization in African fruit flies 33 (Diptera: Tephritidae) 2.2 Evolutionary trends in insect-host plant associations within a 59 tropical fruit fly genus (Diptera: Tephritidae: Ceratitis) Section III: Developmental stress in Ceratitis fruit flies 3.1 Hybridisation between two polyphagous fruit fly species 89 (Diptera:Tephritidae) -
Diptera: Tephritidae) in Eastern Canada
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 143–149, 2016 http://www.eje.cz doi: 10.14411/eje.2016.018 ORIGINAL ARTICLE Factors limiting the northern distribution of the blueberry maggot, Rhagoletis mendax (Diptera: Tephritidae) in Eastern Canada CHARLES VINCENT 1, PIERRE LEMOYNE 1, SONIA GAUL2 and KENNA MACKENZIE 3 1 Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Blvd., Saint-Jean-sur-Richelieu, QC Canada J3B 3E6; e-mails: [email protected], [email protected] 2 Kentville Research and Development Centre, Agriculture and Agri-Food Canada, 32 Main Street, Kentville, N.S., Canada B4N 1J5; e-mail: [email protected] 3 Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway #97, South Summerland, B.C., Canada V0H 1Z0; e-mail: [email protected] Key words. Diptera, Tephritidae, Rhagoletis mendax, blueberry maggot, supercooling point, overwintering, host plants, Vaccinium spp. Abstract. Until recently, the Canadian distribution of the blueberry maggot, Rhagoletis mendax Curran (Diptera: Tephritidae), was restricted to Nova Scotia, Prince Edward Island and New Brunswick. The insect was fi rst mentioned in southern Quebec in 1996 and, to date, it has not reached the Lac St-Jean region, where 34% of Canadian blueberry acreage is located. Two questions con- cerning the northern limit of distribution of the blueberry maggot in Quebec were addressed. First, are wild plants suitable hosts for larval development? We collected the fruit of fi ve wild plants, (e.g. Vaccinium corymbosum, Vaccinium angustifolium, Vaccinium myrtilloides, Gaylussacia baccata, and Aronia melanocarpa) growing in southern Quebec and allowed larvae to complete their development into pupae.