Neutrophil Extracellular Trap−Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma This information is current as of September 24, 2021. Roni F. Rayes, Phil Vourtzoumis, Marianne Bou Rjeily, Rashmi Seth, France Bourdeau, Betty Giannias, Julie Berube, Yu-Hwa Huang, Simon Rousseau, Sophie Camilleri-Broet, Richard S. Blumberg, Nicole Beauchemin, Sara Najmeh, Jonathan Cools-Lartigue, Jonathan D. Spicer and Lorenzo E. Ferri Downloaded from J Immunol published online 13 March 2020 http://www.jimmunol.org/content/early/2020/03/12/jimmun ol.1900240 http://www.jimmunol.org/

Supplementary http://www.jimmunol.org/content/suppl/2020/03/12/jimmunol.190024 Material 0.DCSupplemental

Why The JI? Submit online.

by guest on September 24, 2021 • Rapid Reviews! 30 days* from submission to initial decision

• No Triage! Every submission reviewed by practicing scientists

• Fast Publication! 4 weeks from acceptance to publication

*average

Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published March 13, 2020, doi:10.4049/jimmunol.1900240 The Journal of Immunology

Neutrophil Extracellular Trap–Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma

Roni F. Rayes,*,1 Phil Vourtzoumis,*,1 Marianne Bou Rjeily,* Rashmi Seth,* France Bourdeau,* Betty Giannias,* Julie Berube,† Yu-Hwa Huang,‡ Simon Rousseau,† Sophie Camilleri-Broet,x Richard S. Blumberg,‡ Nicole Beauchemin,{ Sara Najmeh,* Jonathan Cools-Lartigue,* Jonathan D. Spicer,* and Lorenzo E. Ferri*

Neutrophils promote tumor growth and metastasis at multiple stages of cancer progression. One mechanism through which this occurs is via release of neutrophil extracellular traps (NETs). We have previously shown that NETs trap tumor cells in both the liver Downloaded from and the lung, increasing their adhesion and metastasis following postoperative complications. Multiple studies have since shown that NETs play a role in tumor progression and metastasis. NETs are composed of nuclear DNA-derived web-like structures decorated with neutrophil-derived . However, it is unknown which, if any, of these NET-affiliated proteins is responsible for inducing the metastatic phenotype. In this study, we identify the NET-associated carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) as an essential element for this interaction. Indeed, blocking CEACAM1 on NETs, or knocking it out in a murine model, leads to a significant decrease in colon carcinoma cell adhesion, migration and metastasis. Thus, this work identifies NET-associated http://www.jimmunol.org/ CEACAM1 as a putative therapeutic target to prevent the metastatic progression of colon carcinoma. The Journal of Immunology, 2020, 204: 000–000.

eutrophils are the first lines of defense against infectious relatively recently described process by which neutrophils responded insults. Recently, there has been evolving evidence to an inflammatory insult (4) by releasing a decondensed meshwork N showing that the body’s host defense mechanism can of DNA into the surrounding environment (5). Composed of nucleic play a protumorigenic role in cancer progression, including neu- acids, histones, and cytoplasmic proteins, these web-like structures trophils (1). However, the exact mechanisms remain elusive. The entrap and kill circulating pathogens (4). Since their discovery, clinical evidence associating neutrophils with cancer progression NETs were also implicated in various pathophysiological situations by guest on September 24, 2021 is strong; elevated neutrophil/lymphocyte ratio correlates with (reviewed in Ref. 6). poor prognosis in almost every solid organ malignancy studied To our knowledge, we were the first to demonstrate that NETs to date (2, 3). Neutrophil extracellular traps (NETs) represent a are involved in cancer progression (7). NETs have since been further implicated in cancer cell proliferation, growth, progres- sion, metastasis, and cancer-related thrombosis (8, 9). Moreover, *Cancer Research Program and the LD MacLean Surgical Research Laboratories, we and others have shown that postoperative infection after cancer Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; †Meakins-Christie Laboratories, Department of surgery leads to increased cancer recurrence rates and diminished Medicine, McGill University and the McGill University Health Center, Montreal, overall survival in patients (10, 11). We then showed, in a mouse Quebec H4A 3J1, Canada; ‡Department of Medicine, Harvard University, Boston, x model of postoperative infections (cecal-ligation-puncture [CLP]), MA 02115; Department of Pathology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; and {Goodman Cancer Research Center, Department of that in response to severe infections, NETs are capable of not only Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada capturing circulating tumor cells but, more importantly, also in- 1R.F.R. and P.V. contributed equally to this work. creasing their metastatic potential (7). The precise mechanism for ORCIDs: 0000-0001-7508-020X (R.F.R.); 0000-0003-4786-102X (B.G.); 0000- this increased metastatic potential is unknown; however, it is 0002-8773-575X (S.R.); 0000-0002-3453-636X (S.C.-B.); 0000-0003-2708- possible that NET-associated proteins may be implicated in this 1309 (J.D.S.). process. Using mass spectrometry, we identified several candidate Received for publication February 26, 2019. Accepted for publication February 6, 2020. proteins present in purified NETs that may be involved in cap- turing cancer cells and promoting NET-facilitated metastasis. One This work was supported by Canadian Institutes of Health Research Grant MOP-133567 (to L.E.F.). of the more promising candidates identified was carcinoembryonic Address correspondence and reprint requests to Dr. Lorenzo E. Ferri, Departments of Ag cell adhesion molecule 1 (CEACAM1), a member of the car- Surgery and Oncology, McGill University Health Centre - Montreal General Hospi- cinoembryonic Ag (CEA) family known to be widely expressed in tal, 1650 Cedar Avenue, Room L8-505, Montreal, QC H3G 1A4, Canada. E-mail different cell types but especially on human neutrophils (12). CEA address: [email protected] family members have been reported to regulate diverse functions The online version of this article contains supplemental material. including tumor promotion, tumor suppression, angiogenesis and Abbreviations used in this article: CC1 KO, Ceacam 1 knockout; CEA, carcinoembryonic Ag; CEACAM1, carcinoembryonic Ag cell adhesion molecule 1; CLP, cecal- neutrophil activation (13, 14). Expression of host CEACAM1 has ligation-puncture; hpf, high-power field; MS/MS, tandem mass spectrometry; also been shown to increase the adhesion of cancer cells and NEi, neutrophil elastase inhibitor; NET, neutrophil extracellular trap; RT, room metastasis in the liver, an effect primarily driven by the presence temperature; WT, wild-type. of this adhesion molecule on bone marrow–derived leukocytes, of Copyright Ó 2020 by The American Association of Immunologists, Inc. 0022-1767/20/$37.50 which neutrophils are by far the most abundant (15). Given these

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1900240 2 ROLE OF NET-ASSOCIATED CEACAM1 IN CANCER METASTASIS

findings linking CEACAM1 and cancer progression, and the fact Mouse neutrophils were isolated as previously described and loaded on that CEACAM1 was found to be structurally present on NETs, a m-SlideVI chamber (ibidi Biosciences, Fitchburg, WI) in the presence m we investigated the role of CEACAM1 in NET-facilitated cancer or absence of calcium ionophore (2 M) (A23187; Sigma-Aldrich) to stimulate NETs release. Neutrophils were stained with Ly6G-AF647 cell adhesion and metastasis. We show that NET-associated (1:200) (1A8; BioLegend), extracellular DNA was stained with Sytox CEACAM1 promotes adhesion and migration of colon carci- Orange (5 mM), and CC1 was labeled with anti-mouse CC1 (1:100) (E-1; noma cells both in vitro and in vivo and enhances in vivo me- Santa Cruz Biotechnologies, Dallas, TX) labeled with an Alexa Fluor tastasis. Blocking CEACAM1 decreases adhesion, migration, and 350 labeling (Life Technologies). The images were acquired for up to 1 h poststimulation. metastasis of colon carcinoma cells. This work characterizes an Both immunofluorescence assays were visualized using an LSM important interaction mechanism between NETs and cancer cells 780 laser scanning confocal microscope (Carl Zeiss, Dorval, QC) equipped and identifies a promising marker and potential target for novel with a temperature and CO2 controlled chamber. therapeutics to abrogate these prometastatic interactions between Western blot NETs and cancer cells. Western blots were performed to verify the presence of CC1 in NETs. To do so, cell-free NET stock was obtained from murine or human blood. A549, Materials and Methods 2 Cells HT-29, MC38-CC1L, and MC38-CC1 cell lysates were obtained by in- cubating cells with 500 ml of RIPA buffer (Pierce, Edmonton, AB, Canada) Human colon carcinoma cell line (HT-29), murine colon carcinoma containing protease inhibitor (Roche Canada, Laval, QC, Canada) for subline with low CEACAM1 expression (MC38-CC12), and murine 30 min. Prepared samples were then loaded onto an SDS-PAGE gel and colon carcinoma subline stably transfected with CEACAM1 long isoform electro-transferred to a nitrocellulose membrane. The membrane was then

[MC38-CC1L (16)], were obtained from Dr. N. Beauchemin (McGill blocked for an hour with 1% BSA in PBS, then incubated with primary Downloaded from University, Montreal, QC). A549 were obtained from American Type Abs consisting of either human (5F4, 1:100) or mouse (E-1, 1:100) anti- Culture Collection (Manassas, VA). Cells were maintained in aMEM CC1 Abs and b- (1:20,000) overnight at 4˚C. The following day, (HT-29) and DMEM (A549, MC38-CC12, and MC38-CC1-L) containing the membranes were incubated with HRP-conjugated secondary Ab at 10% FBS and 1% penicillin/streptomycin and incubated at 37˚C and 5% 1:10,000 dilution for 1 h at RT. Detection of proteins was performed using 3 CO2. All reagents are from Wisent (St. Bruno, QC). 20 LumiGlo image capturing. GAPDH levels were used at all time points for positive control. Human peripheral neutrophil extraction and NET generation Animals http://www.jimmunol.org/ Human neutrophils were isolated from healthy subjects, and NETs were generated as previously described in Najmeh et al. (17). Only neutrophil Seven- to ten-week-old C57BL/6 (Charles River, St-Constant, QC) and CC1 isolates with .98% purity and viability as determined by methylene blue KO (from Dr. Beauchemin) mice were used for all experiments. Peritonitis (Stemcell Technologies) and trypan blue (Wisent) staining, respectively, was induced by CLP as previously described (21, 22). For mice treated with were used to generate NETs. DNase I, 2.5 mg/kg DNase I (Biomatik, Cambridge, ON) was given daily i.m. starting 24 h prior to CLP until the termination of the experiment. Murine bone marrow neutrophil extraction All mice experiments were carried out in strict accordance with the rec- Neutrophils were isolated from bone marrow of syngeneic mice as described ommendations of the Canadian Council on Animal Care and under the in Mo´csai et al. (18). Only neutrophils with .90% pure and 95% viable as conditions and procedures approved by the Animal Care Committee of determined by methylene blue and trypan blue staining respectively were used. McGill University (Animal Use Protocol no. 7724). by guest on September 24, 2021 Murine peripheral neutrophil extraction and NET generation In vitro adhesion assay on NETs Peripheral blood from Ceacam 1 knockout (CC1 KO) and C57 BL/6 A general description of the in vitro adhesion assay of cancerous cells on mice were isolated by heart puncture and lysed with BD cell lysis buffer NETs is described in (17). Briefly, isolated NETs were left to adhere as per manufacturer’s instructions (BD Biosciences). Neutrophils were overnight at 4˚C. The next day, nonadherent NETs were aspirated, and sorted following staining with Ly6G-AF647 (1:200) (1A8; BioLegend, wells were blocked with 1% BSA for 1 h at RT. After blocking, 200 mg/ml San Diego, CA) and then stimulated with 500 nM PMA for 4 h at 37˚C, 5% anti-CEACAM1 mAb (5F4) or 200 mg/ml mouse IgG isotype control CO to induce NETosis. (34B1, from Dr. Blumberg) were added to some wells and incubated for 2 4 1 h at 37˚C and 5% CO2. After washing, 2 3 10 HT-29 or A549 cells Mass spectrometry were stained with CFSE dye for 10 min (Life Technologies) and then washed and added to the NET monolayers and incubated for 90 min at Mass spectrometry of isolated NETs was performed on samples obtained 37˚C, 5% CO2. Cells were subsequently gently aspirated, washed once, from neutrophils from triplicate healthy donor controls. Scaffold software and fixed in 4% paraformaldehyde. In some experiments, 1000 U of (version 4.0.5; Proteome Software, Portland, OR) was used to validate DNase I were added to NET–cell mixtures 10 min prior to fixation and tandem mass spectrometry (MS/MS)-based peptide and protein identifi- quantification of adhesion. Adhesion was quantified as the number of cells cations. Peptide identifications were accepted if they could be established 3 . in 4 random high-power fields (hpf) at 20 using a Nikon TE300 mi- at 95% probability by the Peptide Prophet algorithm (19). Protein croscope (Nikon, Mississauga ON). identifications were accepted if they could be established at .99% prob- ability and contained at least two identified peptides. Protein probabilities In vitro adhesion assay to mouse neutrophils were assigned by the Protein Prophet algorithm as previously described (20). Proteins that contained similar peptides and could not be differenti- A total of 5 3 105 neutrophils isolated form C57BL/6 or CC1 KO mice ated based on MS/MS analysis alone were grouped to satisfy the principles were plated in 24-well plates (Falcon) and incubated for 1 h at 37˚C and 5 2 of parsimony. 5% CO2 in DMEM. A total of 10 MC38-CC1L or MC38-CC1 CFSE- stained cells were added to wells in the presence of 500 nM PMA with or Immunofluorescence without 1000 U DNase I. Unstimulated neutrophils and untreated tumor cells in DMEM served as controls. Following incubation for 4 h at 37˚C Human NETs were isolated as described above and used to coat 13 mm glass coverslips (Fisher Scientific, Ottawa, ON) overnight at 4˚C. The and 5% CO2, wells were washed with PBS and fixed in 4% paraformal- dehyde. Adhesion was quantified as the number of cells in 4 random hpf at following day, coverslips were fixed for 10 min with 4% paraformaldehyde 3 3 (Thermo Fisher Scientific) and gently washed once with PBS (Wisent). 10 and 20 using a Nikon TE300 microscope. Coverslips were blocked with 1% BSA (Wisent) for 1 h at room temper- In vitro migration assay ature (RT) prior to staining with anti-human CC1 mAb (5F4, from Dr. R. Blumberg, Harvard) (1:100) for 1 h at RT. After washing once with PBS, Twenty-four–well Boyden chambers with 5-mm PET membranes (Fisher isolated NETs were incubated with FITC-conjugated goat-anti mouse Ab Scientific, Montreal, QC) were used for migration assays. For the human (1:200) for 1 h at RT. Coverslips were then gently washed with PBS, and neutrophil migration, 2.5 3 105 neutrophils from healthy human volun- DNA was counterstained with Sytox Orange (1:1000; Life Technologies, teers were incubated with media alone or with 500 nM PMA for 1 h at Burlington, ON) for 10 min at RT. Coverslips were mounted using Mowiol 37˚C, 5% CO2 and placed in the upper chamber. HT-29 cells from 80% mounting medium (Sigma-Aldrich). confluent cultures were detached using 0.5% trypsin (Wisent) and stained The Journal of Immunology 3 for 10 min with CFSE, and 2.5 3 105 cells were added to the upper wells. (H3-citrulline, blue), and CEACAM1 (5F4 mAb, green) was ob- Neutrophil–tumor cell suspensions were treated with either 500 nM PMA served in PMA-stimulated neutrophils, confirming that CEACAM1 m m or with 500 nM PMA with 200 g/ml 5F4 mAb or 200 g/ml IgG isotype is found on human NETs (Fig. 1B). We also sought to determine if control or 10 mM neutrophil elastase inhibitor (NEi). The cell suspensions CEACAM1 is expressed on murine NETs isolated from C57BL/6 were incubated for 24 h at 37˚C, 5% CO2. After incubation, the contents of the upper chambers were aspirated, washed with PBS, and wiped with a bone marrow–derived neutrophils and stimulated to generate sterile cotton swab. Cells adherent to the undersurface of the membrane NETs with calcium ionophore (A23187; Sigma-Aldrich), another were quantified in 5 random hpf, and representative images were taken as validated NETosis agent (28). Using live cell imaging, we cap- described. Human blood was obtained from consented healthy volunteers as per institutional review board protocol no. 2007-856. tured live images of neutrophils (Ly6G, in blue) generating NETs For mouse neutrophil migration assays, 2.5 3 105 neutrophils from (SYTOX, red) displaying extensive colocalization with CEA- C57BL/6 or CC1 KO mice were incubated with media alone or with CAM1 (E-1 mAb, green) (Fig. 1C). The presence of CEACAM1 500 nM PMA for 1 h at 37˚C, 5% CO2 and placed in the upper chamber. on isolated cell-free NETs from human and mouse neutrophils MC38-CC1L cells from 80% confluent cultures were detached using 0.5% was also confirmed by Western blotting (Fig. 1D, 1E, respec- trypsin (Wisent), and 2.5 3 105 cells were added to the upper wells. Neutrophil-tumor cell suspensions were treated with either 500 nM PMA tively). HT-29 (high CC1 expresser, Supplemental Fig. 1A) and or media alone. The cell suspensions were incubated for 24 h at 37˚C, 5% A549 [low CC1 expressor (29)] were used as positive and negative CO2. After incubation, the contents of the upper chambers were aspirated, controls, respectively, for the human NETs Western blot (Fig. 1D). washed with PBS, and wiped with a cotton swab. Cells adhering to the MC38-CC1L (high CC1 expressor, Supplemental Fig. 1B) and undersurface of the membrane were fixed with 4% paraformaldehyde, 2 permeabilized with methanol, and stained with crystal violet. Adherent MC38-CC1 [low expressor of CC1 (30)] were used as positive cells were quantified in 4 random hpf, and representative images were and negative controls, respectively, for the murine NETs Western taken as described. blot (Fig. 1E). Moreover, we observed colocalization of NETs and Downloaded from Depletion reinfusion experiment and in vivo adhesion assay CEACAM1 in vivo (Supplemental Fig. 2) in a mouse model of sepsis (CLP), known to generate NETs (7). These results show Neutrophils were depleted from C57BL/6 mice using i.p. injections of that CEACAM1 is released during NETosis and is a component of m 150 g of anti-Ly6G/GR1 Ab (Thermo Fisher Scientific, Waltham, MA). NETs. The next day, neutrophils were extracted from bone marrow of C57BL/6 or CC1 KO mice as previously described and then incubated with or without CEACAM1 on NETs is important in adhesion of colon 500 nM PMA and/or with or without 100 U DNase I for 1 h at 37˚C http://www.jimmunol.org/ 6 carcinoma cells and 5% CO2 and washed, and then 10 neutrophils were reinfused into the depleted mice. After 20 min, the reinfused mice were intrasplenically To identify the intrinsic function of NET-associated CEACAM1, injected with CFSE-labeled 1.5 3 105 MC38-CC1L cells per mouse. After 10 min, the livers were visualized in vivo and CFSE-expressing tu- we performed an in vitro adhesion assay of human colon carcinoma mor cells were imaged using epifluorescence and cells arrested within cell line HT-29 with isolated human NETs pretreated with the 5F4 unoccluded sinusoids were considered adherent. Cells or tumor islands anti-CEACAM1 mAb or isotype control and treated with DNase I were quantified as the number of cells/micrometastatic foci in 8–10 hpf, (1000 U) or vehicle control (water). The NET monolayer is formed and representative images were recorded. when a high concentration of NETs, obtained from stimulated Gross liver metastasis assay neutrophils, are collected and plated onto a dish (17). This process by guest on September 24, 2021 5 allows us to study pure NETs in isolation. We observed a sig- Liver metastases were quantified 18 d after intrasplenic injection of 1.5 3 10 MC38-CC1L cells per mouse, with a maximum quantifiable number of nificant 5-fold reduction of adhesion of HT-29 cells to cell-free 400 gross metastases per liver. H&E staining was performed, and repre- purified NETs in the presence of 5F4 (p , 0.05), but not isotype sentative images of the gross metastases and H&E are shown. or vehicle control (p . 0.05), an adhesion effect equal to NET , Statistics degradation with DNase I (p 0.05, Fig. 2A, 2B). This was not the case for the adhesion of the human lung carcinoma cell One-way ANOVA with post hoc multiple comparison was employed. line A549, which is a low CEACAM 1 expressing cell line (29) All data are presented as mean 6 SEM. Statistical significance was set at p , 0.05. GraphPad Prism 6 software was used for all statistical analyses (Fig. 1D), whereby 5F4 addition did not decrease adhesion of and graphing. A549 cells to the huNETs as compared with vehicle and isotype control (Fig. 2C, 2D); this adhesion only decreased following the addition of DNase I (Fig. 2C, 2D). Results When neutrophils extracted from CC1 KO mice were stimulated CEACAM1 is present on murine and human NETs with PMA, the same percentage of NET release was observed as To identify potential molecular mediators of the tumor–NET in- compared with those extracted from C57BL/6 mice (Fig. 3A, 3B). teraction, we performed tandem mass spectrometric analysis on This indicated that CC1 KO neutrophils have the same capability NETs isolated from the blood of three healthy volunteers. This led to release NETs as C57BL/6 neutrophils. We then performed an to the identification of 583 distinct proteins (Supplemental in vitro adhesion assay of a murine colon carcinoma cell line Table I). Of interest, we decided to focus on CEACAM1 (Fig. 1A), overexpressing CEACAM1-L (CC1L) on isolated bone marrow given its widely studied implication in various cellular signaling in- neutrophils from either C57BL/6 or CC1 KO mice. These neu- teractions involved in the growth and differentiation of cancer cells trophils were stimulated or not with 500 nM of PMA for 1 h to and modulation of various types of cancer (14–16, 23). Moreover, undergo NETosis (ex vivo) prior to addition of the MC38-CC1L. CEACAM1 was shown to be present on the surface of activated We observed that adhesion of MC38-CC1L to PMA-stimulated neutrophils (24, 25), and high expression of CEACAM1 on neu- C57BL/6 mouse neutrophils (black bars) was increased by ∼3-fold trophils was shown to drive increased infiltration in the tumor compared with unstimulated neutrophils (p , 0.05), an effect that microenvironment and correlate with poor prognosis (reviewed in was completely attenuated by DNase I treatment (p , 0.05) but Refs. 26, 27). These studies implicated neutrophil CEACAM1 in not its vehicle control (Fig. 3C, 3D). When a neutralizing Ab for cancer progression. CEACAM1 was added, the adhesion of MC38-CC1L was sig- We first validated the findings from the tandem mass spec- nificantly decreased by 2-fold (Fig. 3C, 3D). This is was not the trometry analysis by coating glass coverslips with isolated human case for the isotype control of the CEACAM1 Ab (Fig. 3C, 3D). NETs and then staining for NETs and CEACAM1. Extensive PMA stimulation of neutrophils isolated from CC1 KO mice colocalization between extracellular DNA (SYTOX, red), NETs (gray bars) did not increase the adhesion to MC38-CC1L cells as 4 ROLE OF NET-ASSOCIATED CEACAM1 IN CANCER METASTASIS Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021

FIGURE 1. CEACAM1 is present on NETs. (A) Mass spectrometry profile of CEACAM1 in three NET samples obtained from three healthy individuals. (B) Confocal fluorescence imaging of human isolated NETs on glass coverslips stained with anti–H3-Citrulline Ab (red), Sytox Green (green), and anti- human CEACAM1 (CC1) Ab (5F4, blue) (left panels) or IgG isotype instead of 5F4 Ab (blue) (right panels). (C) Confocal fluorescence imaging of bone marrow–derived murine neutrophils stimulated with calcium ionophore (A23187) on glass coverslips stained with Ly6G (blue), Sytox Orange (red), and anti-murine CEACAM1 (CC1) Ab (green). Top panels, Non-NETosed neutrophil; middle panels, NETosing neutrophil; bottom panels, NETosed neutrophil. (D) Western blot on isolated cell-free human NETs probed with an anti-human CEACAM1 Ab and b-actin (loading control) for A549, HT29, and human NETs. (E) Western blot on isolated cell-free murine NETs probed with an anti- murine CEACAM1 Ab and b-actin (loading control) for MC38-CC12, MC38-CC1L, and murine NETs. compared with C57BL/6 neutrophils (p . 0.05) and was same as chamber migration assays. We show that PMA-stimulated neu- the adhesion observed using C57BL/6 and CC1 KO neutrophils trophils from healthy individuals treated with 5F4 (CEACAM1 treated with DNase I (Fig. 3C, 3D). Moreover, addition of the mAb, second bar) or an NEi (Sivelestat) (fourth bar) significantly neutralizing Ab had no effect on the adhesion of MC38-CC1L on decreased (by 4-fold) the migration of human HT-29 colon carci- CC1 KO neutrophils, same as with its isotype control (Fig. 3C, noma cells compared with their migration on PMA-stimulated 3D). Based on these results from both human and murine adhesion neutrophils (first bar) and on IgG control treated PMA-stimulated assays, we conclude that, in vitro, CEACAM1 on NETs is an neutrophils (third bar) (p , 0.05,Fig.4A,4B).Moreover,we important adhesion molecule mediating colon carcinoma-NET show that PMA addition does not affect tumor cell migration in interaction. the absence of neutrophils (p . 0.05, Supplemental Fig. 3A), an indication that the enhanced migration observed following PMA CEACAM1 on NETs is important in migration of colon stimulation of neutrophils is due to NETs and not PMA. carcinoma cells We also observed that PMA-stimulated neutrophils from To investigate whether CEACAM1 on NETs plays a postadhesive C57BL/6 mice (second bar) significantly increased (by 50%) role in tumor progression, we performed conventional Boyden MC38-CC1L cancer cell migration compared with their migration The Journal of Immunology 5 Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 FIGURE 2. CEACAM1 on NETs is important for adhesion of human colon carcinoma cells. (A) In vitro adhesion assay of CFSE-labeled HT-29 cells on isolated human NETs in the presence of water (vehicle control for DNase I, gray bar), 200 mg/ml isotype control of the CEACAM1 Ab (white bar), 200 mg/ml CEACAM1 functional blocking Ab (5F4 mAb, dark gray bar), and 1000 U DNase I (black bar). Shown are the mean and mean SE of three experiments. *p , 0.05. (B) Representative bright field images of images analyzed in (A). Scale bar, 100 mm. (C) In vitro adhesion assay of CFSE-labeled A549 cells on isolated human NETs in the presence of water (vehicle control for DNase I, light gray bar), 200 mg/ml isotype control of the CEACAM1 Ab (white bar), 200 mg/ml CEACAM1 functional blocking Ab (5F4 mAb, dark gray bar), and 1000 U DNase I (black bar). *p , 0.05. (D) Representative bright field images of images analyzed in (C). Scale bar, 100 mm. on unstimulated neutrophils (first bar, p , 0.05, Fig. 4C, 4D). presence of circulating NETs (7). Using the same experimental However, PMA-stimulated neutrophils isolated from CC1 KO design, we compared in this study the adhesion of MC38-CC1L mice (fourth bar) did not increase the migration of MC38-CC1L murine colon carcinoma cells in C57BL/6 mice by intravital mi- cells compared with their migration on unstimulated neutrophils croscopy following neutrophil depletion (using a single i.p. in- from CC1 KO mice (third bar, p . 0.05, Fig. 4C, 4D). In fact, jections of 150 mg of anti-Ly6G/GR1 Ab) and reinfusion with MC38-CC1L cells exposed to PMA-stimulated CC1 KO neutro- either C57BL/6 or CC1 KO neutrophils (experimental design phils had a significant (by 50%) reduction in migration compared schematically depicted in Fig. 5A). Reinfusion of PMA-stimulated with those exposed to PMA-stimulated neutrophils from C57BL/6 neutrophils from C57BL/6 mice (second bar) significantly in- mice (p , 0.05, Fig. 4C, 4D). PMA addition does not affect creased the adhesion of MC38-CC1L cells by 4-fold compared tumor cell migration in the absence of neutrophils (p . 0.05, with reinfusion with unstimulated C57BL/6 neutrophils (first bar) Supplemental Fig. 3B), again an indication that the enhanced (p , 0.05, Fig. 5B, 5C). Adhesion levels of MC38-CC1L cells in migration observed following PMA-stimulation of neutrophils is mice depleted and reinfused with PMA-stimulated neutrophils due to NETs and not PMA. treated with DNase I from C57BL/6 mice (third bar) were com- These results suggest that CEACAM1 on NETs help facilitate parable to those seen for unstimulated neutrophils (Fig. 5B, 5C). murine and human colon carcinoma cell migration in vitro. Mice that were neutrophil depleted and reinfused with CC1 KO neutrophils, unstimulated (fourth bar), PMA stimulated (fifth bar) CEACAM1 on NETs is important in adhesion of murine colon and PMA stimulated and treated with DNase I (six bar) all had carcinoma cells to liver sinusoids in vivo similar low adhesion levels of MC38-CC1L cells (Fig. 5B, 5C). To validate these findings in vivo, we performed intravital MC38-CC1L adhesion levels in neutrophil-depleted mice rein- hepatic microscopy on C57BL/6 mice intrasplenically injected fused with PMA-stimulated CC1 KO neutrophils (fifth bar) are with MC38-CC1L. Using this same model, and through a series of significantly lower than those of neutrophil-depleted mice rein- neutrophil depletion–reinfusion experiments, we have previously fused with PMA-stimulated C57BL/6 neutrophils (second bar) demonstrated that in vivo adhesion of cancer cells increased in the (p , 0.05, Fig. 5B, 5C). This experiment demonstrates not only 6 ROLE OF NET-ASSOCIATED CEACAM1 IN CANCER METASTASIS Downloaded from

FIGURE 3. CEACAM1 on NETs is important for adhesion of murine colon carcinoma cells. (A) Bar graph showing number of H3-Citrulline–positive http://www.jimmunol.org/ neutrophil (obtained by counting under a fluorescent microscope) in unstimulated neutrophils and in neutrophils stimulated with 500 nM PMA for 4 h (n = 5). *p , 0.05. (B) Representative images of each condition in (A) acquired using fluorescent microscopy. Scale bar, 100 mm. (C) In vitro adhesion assay of CFSE-labeled MC38-CC1L cells on C57BL/6 (WT, black bars) or CC1 KO (gray bars) murine neutrophils in the presence or absence of 500 nM PMA, water (the vehicle control [VC] to DNase I), 1000 U DNase I, a murine CEACAM1 neutralizing Ab (CC1 Ab), and its isotype control (IC). Shown are the mean and mean SE of three experiments. *p , 0.05. (D) Representative fluorescent images of data presented in (C). Scale bar, 100 mm. that NETs themselves seem to enhance tumor cell arrest in liver nodules compared with 11 nodules and 9.5 nodules respectively, sinusoids, as we have previously demonstrated (7), but that in p . 0.05) (Fig. 6). CC1 KO CLP-treated mice had significantly the absence of CEACAM1 on NETs, the effect mimics that of less hepatic metastasis than C57BL/6 CLP-treated mice (median by guest on September 24, 2021 unstimulated neutrophils. Therefore, the proarrest activity of NETs of 11 nodules compared with 188 nodules respectively, p , 0.05) is dependent on CC1 expression. (Fig. 6). These results prove that tumor cells have significantly reduced Tumor cells have significantly reduced metastatic potential in metastatic potential in CC1 KO mice even in the presence of CC1 KO mice even in the presence of widespread widespread NET deposition. NET deposition As we have demonstrated above, CEACAM1 on NETs is able to Discussion adhere to and capture colon carcinoma cell lines both in vitro and Neutrophils are the most abundant WBCs in the body and the first in vivo. As we have previously shown that CLP results in wide- responders to tissue injury and infection. Many studies have spread intravascular NET deposition (7), we sought to employ this reported an association between higher number of neutrophils clinically relevant model of postoperative infection to determine and/or high neutrophil/lymphocyte ratios in circulation and poor the influence of NET-associated CEACAM1 on cancer metastasis. prognosis, adverse outcome and decreased survival in multiple We first show that CC1 KO and C57BL/6 mice have the same cancer types (reviewed in Refs. 2, 3). Indeed, neutrophils can number of neutrophils in circulation (around 9–10% of all circu- enhance adhesion of circulating tumor cells, thereby promoting lating WBCs; Supplemental Fig. 4). Thus, induction of NETosis in metastatic progression via direct interactions (31), secreted factors the two mouse models will result in similar number of NETs being (32), and NETs (7). released because we have previously shown that CC1 KO neu- NETs are linked to several pathological conditions (reviewed in trophils have the same capability to release NETs as C57BL/6 Ref. 6) and were shown to drive tumor progression via multiple neutrophils (Fig. 3A, 3B). MC38-CC1L colon cancer cells were mechanisms (reviewed in Refs. 8, 9). We have previously shown intrasplenically injected into C57BL/6 and CC1 KO mice 24 h that one modality through which NETs enhance tumor progression following CLP (to induce NET formation), and gross hepatic is by trapping circulating tumor cells (7). This was shown in the metastases were quantified 18 d following tumor injection. In context of postoperative complications (sepsis) and could be re- C57BL/6, gross hepatic metastases were significantly (p , 0.05) versed by treating NETs with DNase I or Sivelestat, a known NET increased in CLP-treated versus sham mice (median of 188 nod- degrader and inhibitor, respectively (7). This prompted us to ules versus 4.5 nodules, respectively), and this increase in gross identify the adhesion molecules present on NETs that enhance hepatic metastases was completely attenuated by degrading NETs adhesion and subsequently metastasis of colon cancer cells to with daily DNase I injection (median of four nodules, p , 0.05) secondary organs. In this study, we identified 283 proteins present (Fig. 6). In CC1 KO mice, gross hepatic metastases were not on NETs. Many of these were adhesion molecules belonging to the significantly increased in CLP-treated mice compared with sham integrin (ITGAM, ITGB2, ITGAIIb, ITGAL) and the CEACAM or to CLP-treated mice treated with DNase I (median of three family (CEACAM1, CEACAM6, CECAM8). Identifying a2integrin The Journal of Immunology 7 Downloaded from http://www.jimmunol.org/

FIGURE 4. CEACAM1 on NETs is important in migration of colon carcinoma cells. (A) Boyden chamber assays of HT-29 cells on NET monolayer isolated from human neutrophils stimulated with 500 nM PMA and treated with 200 mg/ml 5F4 mAb (5F4), 200 mg/ml isotype control of the 5F4 mAb (IgG), or 10 mM Sivelestat (NEi). Shown are the mean and mean SE of five fields per condition done in triplicate. *p , 0.05, NS compared with stimulated neutrophils. (B) Representative fluorescent images of the migrated CFSE-HT-29 cells of the four conditions presented in (A). Scale bar, 20 mm. (C) Boyden chamber assays of MC38-CC1L cells on PMA-stimulated (light gray bar) or non-stimulated (black bar) neutrophils from C57BL/6 (WT) or PMA-stimulated (white bar) or non-stimulated neutrophils (dark gray bar) from CC1 KO mice. Shown are the mean and mean SE of four fields per condition done in triplicate. *p , 0.05. (D) Representative bright field images of crystal violet stained MC38-CC1L migrated cells of the four conditions depicted in (C). Scale bar, 20 mm. by guest on September 24, 2021 on NETs further validates our previous work that identified b1 Our hypothesis is that once cancer cells are trapped in the NET integrin on tumor cells as an important interacting partner with complexes, the cells are exposed to a variety of proteins that are NETs (33), because integrin a2 and b1 are known to form het- present on the NETs (Supplemental Table I). The NETs thus create erodimers to promote tumor migration and metastasis (34). a “micro-microenvironment” where tumor cells are near a con- In this study, we focused our work on CEACAM1 because this centrated area of proteins that can induce signaling in the tumor adhesion molecule is extensively studied in multiple cancer types cells leading to adhesion, proliferation, migration among others. and is shown to play important roles in tumor–immune cell in- Therefore, it is possible that tumor cells get activated in the NET teraction (reviewed in Refs. 14, 26). Indeed, CEACAM1 is now complex, leading to their release from the NET, and then subse- used as a biomarker for diagnosis of melanoma as well as breast, quently those cells can adhere, intravasate, migrate and seed and pancreatic, and bladder cancers (35–38) and is involved in mul- grow in the secondary organ. tiple essential cancer-related phenomena including proliferation, In vivo, PMA-stimulated C57BL/6 neutrophils reinfused in metastasis, apoptosis, inflammation, and angiogenesis, among C57BL/6 neutrophil-depleted mice significantly increased tumor others (reviewed in Ref. 14). Moreover, CEACAM1 is expressed cell adhesion to the hepatic sinusoids compared with reinfusion by several immune cell types (T cells, B cells, NK cells, dendritic of nonstimulated neutrophils or controls or PMA-stimulated cells, and neutrophils) and has been associated with development CEACAM1 KO neutrophils. Finally, using an experimental liver and progression of various cancers and in boosting metastasis metastasis model, intrasplenic injection, we show that tumor cells (reviewed in Ref. 14). Indeed, nonstimulated neutrophils express have significantly reduced metastatic potential in CC1 KO mice little surface CEACAM1; only following activation is CEACAM1 even in the presence of widespread NET deposition. To note, the transferred from the granules to the surface (24). Moreover, one intrasplenic injection does not encompass all the steps of the group has reported that neutrophil infiltration and CEACAM1 metastatic cascade such as EMT transition and extravasation for overexpression on tumor cells are associated with poor clinical example; however, it does cover a substantial step from adhesion to outcomes in tongue squamous cell carcinoma (39). However, to intravasation to seeding, survival, and proliferation. This strongly date, how CEACAM1 expression on neutrophils and on their suggests that CEACAM1 on NETs is a major mediator of tumor NETs affects tumor progression remains unclear. cell adhesion at metastatic sites. We first confirmed that CEACAM1 is present on both murine and CEACAM1 is known to have both homophilic interactions (40) human NETs. We then show that, by blocking CEACAM1 on and heterophilic interactions (41) with other members of the human NETs or knocking it down in mice, we decrease adhesion CEACAM family (reviewed in Ref. 42). Therefore, what is attracting and migration of tumor cells in vitro by more than 50%. Although about a CEACAM1 targeted therapy, in case of a homophilic in- adhesion and migration require different sets of activation teraction, is that targeting CEACAM1 will block it on both tumor patterns, we believe that they do occur in this case sequentially. cells and NETs creating a stronger double inhibition. Indeed, we do 8 ROLE OF NET-ASSOCIATED CEACAM1 IN CANCER METASTASIS Downloaded from

FIGURE 5. CEACAM1 on NETs is important in adhesion of murine colon carcinoma cells to liver sinusoids in vivo. (A) Schematic depiction of the depletion reinfusion experiment. IVM, intravital microscopy; PMN, polymorphonuclear neutrophils. (B) Hepatic intravital video microscopy of CFSE-labeled MC38-CC1L in the liver sinusoids of neutrophil-depleted C57BL/6 mice (WT) reinfused with neutrophils from C57BL/6 mouse neutrophils either nonstimulated (first bar) or stimulated with 500 nM PMA (second bar) or with PMA and DNase 1 (1000 U) (third bar) or from CC1 KO mouse neutrophils either nonstimulated (fourth bar) or stimulated with PMA (fifth bar) or with PMA and DNase 1 (sixth bar). Shown are the mean and mean SE , C of five to seven experiments. *p 0.05. ( ) Representative images of the six conditions presented above with CFSE-labeled MC38-CC1L cells shown in green. http://www.jimmunol.org/ Scale bar, 10 mm. show that the colon carcinoma cell lines used in this study, previously shown that HT-29 and MC38 do express high levels of MC38 and HT-29, have high CEACAM1 levels (∼80 and 100% CEA and CEACAM6, which can be involved in their heterophilic respectively), which can be involved in the homophilic interaction interaction with the NETs CEACAM1 (44, 45). with the CEACAM1 on NETs (Fig. 1D, 1E, Supplemental Fig. 1). In addition, we show that in the context of sepsis, using a CLP However, as mentioned above, CEACAM1 is also capable of model, we observe a significant decrease in circulating tumor cell forming heterodimers with CEA and CEACAM6 (43). It has been metastasis to the hepatic sinusoids in CEACAM1 KO versus by guest on September 24, 2021

FIGURE 6. CC1 KO mice have significantly less metastatic potential in the presence of widespread NET deposition in a sepsis mouse model. (A)Invivo hepatic metastasis assay was performed on C57BL/6 (WT) and CC1 KO mice under three conditions each: sham, CLP, and CLP followed by daily i.m. DNase 1 treatment. Shown are average number of visible hepatic nodules (with SEs) of the six groups above mentioned with the number of mice shown below as n.*p , 0.05. (B) Representative images of the livers of the six groups of mice above mentioned at necropsy, 18 d after MC38-CC1L tumor injection. (C) H&E staining on representative liver sections from the six groups of mice mentioned above. Scale bar, 100 mm. The Journal of Immunology 9 wild-type (WT) mice. We have previously shown that CLP induces survival of lung cancer patients: a population-based cohort study. J. Thorac. massive NET deposition in the liver (7), which, based on our re- Oncol. 8: 554–561. 11. Nojiri, T., T. Hamasaki, M. Inoue, Y. Shintani, Y. Takeuchi, H. Maeda, and sults in this study, is unequivocally covered with CEACAM1. M. Okumura. 2017. Long-term impact of postoperative complications on cancer Moreover, CEACAM1 on neutrophils was shown to prolong their recurrence following lung cancer surgery. Ann. Surg. Oncol. 24: 1135–1142. survival by delaying apoptosis (46). Therefore, blocking or 12. Gu, A., Z. Zhang, N. Zhang, W. Tsark, and J. E. Shively. 2010. Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their knocking out CEACAM1 from neutrophil will not only decrease neutrophils. PLoS One 5: e10067. available CEACAM1 sites for tumor cells to attach to but will also 13. Skubitz, K. M., and A. P. Skubitz. 2008. Interdependency of CEACAM-1, -3, -6, increase neutrophil apoptosis. Because tumor-associated neutro- and -8 induced human neutrophil adhesion to endothelial cells. J. Transl. Med. 6: 78. 14. Beauchemin, N., and A. Arabzadeh. 2013. -related phils were shown to have the capacity to be immunosuppressive cell adhesion molecules (CEACAMs) in cancer progression and metastasis. (47), this should relieve this immunosuppression and thus play an Cancer Metastasis Rev. 32: 643–671. antitumor role. In addition, CEACAM1 was shown to play an 15. Arabzadeh, A., C. Chan, A. L. Nouvion, V. Breton, S. Benlolo, L. DeMarte, C. Turbide, P. Brodt, L. Ferri, and N. Beauchemin. 2013. Host-related carci- immunosuppressive role by inhibiting T cells and NK cells noembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cytotoxic activities (reviewed in Ref. 14). These findings lead to the cancer. Oncogene 32: 849–860. speculation that CEACAM1 immunotherapy (alone or in combi- 16. Arabzadeh, A., J. Dupaul-Chicoine, V. Breton, S. Haftchenary, S. Yumeen, C. Turbide, M. Saleh, K. McGregor, C. M. Greenwood, U. D. Akavia, et al. nation with available immunotherapies such as CTLA-4 or PD-1) 2016. Carcinoembryonic antigen cell adhesion molecule 1 long isoform modu- could soon become a reality. Indeed, CEACAM1 mAbs were suc- lates malignancy of poorly differentiated colon cancer cells. Gut 65: 821–829. cessfully tested as immunotherapy drugs for both melanoma and 17. Najmeh, S., J. Cools-Lartigue, B. Giannias, J. Spicer, and L. E. Ferri. 2015. Simplified human neutrophil extracellular traps (NETs) isolation and handling. colorectal cancers (48, 49). To note, we have used in this study an J. Vis. Exp. Available at: https://www.jove.com/video/52687/simplified-human- intrasplenic injection of colon carcinoma cells in our in vivo ex- neutrophil-extracellular-traps-nets-isolation. Accessed: March 16, 2015. Downloaded from perimental metastasis assay. This commonly used inducible liver 18. Mo´csai, A., H. Zhang, Z. Jakus, J. Kitaura, T. Kawakami, and C. A. Lowell. 2003. G-protein-coupled receptor signaling in Syk-deficient neutrophils and metastasis model (50) is a very robust and reproducible approach to mast cells. Blood 101: 4155–4163. investigating the seeding, adhesion, and growth of tumor cells in 19. Keller, A., A. I. Nesvizhskii, E. Kolker, and R. Aebersold. 2002. Empirical liver. Looking at the role of CEACAM1 in other metastasis models statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74: 5383–5392. is important to corroborate our results in other organ systems. 20. Nesvizhskii, A. I., A. Keller, E. Kolker, and R. Aebersold. 2003. A statistical

Finally, a key reason to identify molecular mediators of model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75: http://www.jimmunol.org/ NET–tumor cell interactions is to specifically target these to avoid 4646–4658. 21. Cuenca, A. G., M. J. Delano, K. M. Kelly-Scumpia, L. L. Moldawer, and the side effects of degrading NETs in general. Indeed, systemic P. A. Efron. 2010. Cecal ligation and puncture. Curr. Protoc. Immunol. Chapter degradation of NETs (e.g., by using DNase I) could lead to 19: Unit 19.13. increased chances of sepsis, because NETs play an important 22. Gommerman, J. L., D. Y. Oh, X. Zhou, T. F. Tedder, M. Maurer, S. J. Galli, and M. C. Carroll. 2000. A role for CD21/CD35 and CD19 in responses to acute role in clearing out microorganisms (4). Thus, the identification septic peritonitis: a potential mechanism for mast cell activation. J. Immunol. of b1 integrin (33) and CEACAM1 on NETs opens the door to 165: 6915–6921. establishing therapeutic targets of tumor cell adhesion and 23. Fiori, V., M. Magnani, and M. Cianfriglia. 2012. The expression and modulation of CEACAM1 and tumor cell transformation. Ann. Ist. Super. Sanita 48: 161–171. metastasis that warrant testing by blocking them both. 24. Ducker, T. P., and K. M. Skubitz. 1992. Subcellular localization of CD66, CD67, and NCA in human neutrophils. J. Leukoc. Biol. 52: 11–16. by guest on September 24, 2021 25. Jantscheff, P., G. Nagel, J. Thompson, S. V. Kleist, M. J. Embleton, M. R. Price, Acknowledgments and F. Grunert. 1996. A CD66a-specific, activation-dependent epitope detected We thank Dr. Min Fu and the staff of the molecular imaging platform of the by recombinant human single chain fragments (scFvs) on CHO transfectants and Research Institute of the McGill University Health Centre for help with the activated granulocytes. J. Leukoc. Biol. 59: 891–901. 26. Dankner,M.,S.D.Gray-Owen,Y.H.Huang,R.S.Blumberg,andN.Beauchemin. fluorescent confocal images acquired in this manuscript. 2017. CEACAM1 as a multi-purpose target for cancer immunotherapy. OncoImmunology 6: e1328336. 27. Liang, W., and N. Ferrara. 2016. The complex role of neutrophils in tumor Disclosures angiogenesis and metastasis. Cancer Immunol. Res. 4: 83–91. The authors have no financial conflicts of interest. 28. Kenny, E. F., A. Herzig, R. Kru¨ger, A. Muth, S. Mondal, P. R. Thompson, V. Brinkmann, H. V. Bernuth, and A. Zychlinsky. 2017. Diverse stimuli engage different neutrophil extracellular trap pathways. eLife 6: e24437. 29. Singer, B. B., I. Scheffrahn, R. Kammerer, N. Suttorp, S. Ergun, and H. Slevogt. References 2010. Deregulation of the CEACAM expression pattern causes undifferentiated 1. Tu¨ting, T., and K. E. de Visser. 2016. CANCER. How neutrophils promote cell growth in human lung adenocarcinoma cells. PLoS One 5: e8747. metastasis. Science 352: 145–146. 30. Chen, Z., L. Chen, K. Baker, T. Olszak, S. Zeissig, Y. H. Huang, T. T. Kuo, 2. Shen, M., P. Hu, F. Donskov, G. Wang, Q. Liu, and J. Du. 2014. Tumor- O. Mandelboim, N. Beauchemin, L. L. Lanier, and R. S. Blumberg. 2011. associated neutrophils as a new prognostic factor in cancer: a systematic re- CEACAM1 dampens antitumor immunity by down-regulating NKG2D ligand view and meta-analysis. PLoS One 9: e98259. expression on tumor cells. J. Exp. Med. 208: 2633–2640.  3. Templeton, A. J., M. G. McNamara, B. Seruga, F. E. Vera-Badillo, P. Aneja, 31. Spicer, J. D., B. McDonald, J. J. Cools-Lartigue, S. C. Chow, B. Giannias, A. Ocan˜a, R. Leibowitz-Amit, G. Sonpavde, J. J. Knox, B. Tran, et al. 2014. P. Kubes, and L. E. Ferri. 2012. Neutrophils promote liver metastasis via Mac-1- Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic mediated interactions with circulating tumor cells. Cancer Res. 72: 3919–3927. review and meta-analysis. J. Natl. Cancer Inst. 106: dju124. 32. Houghton, A. M., D. M. Rzymkiewicz, H. Ji, A. D. Gregory, E. E. Egea, 4. Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, H. E. Metz, D. B. Stolz, S. R. Land, L. A. Marconcini, C. R. Kliment, et al. 2010. Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor bacteria. Science 303: 1532–1535. growth. Nat. Med. 16: 219–223. 5. Fuchs, T. A., U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, 33. Najmeh, S., J. Cools-Lartigue, R. F. Rayes, S. Gowing, P. Vourtzoumis, Y. Weinrauch, V. Brinkmann, and A. Zychlinsky. 2007. Novel cell death program F. Bourdeau, B. Giannias, J. Berube, S. Rousseau, L. E. Ferri, and J. D. Spicer. leads to neutrophil extracellular traps. J. Cell Biol. 176: 231–241. 2017. Neutrophil extracellular traps sequester circulating tumor cells via 6. Sørensen, O. E., and N. Borregaard. 2016. Neutrophil extracellular traps - the b1-integrin mediated interactions. Int. J. Cancer 140: 2321–2330. dark side of neutrophils. J. Clin. Invest. 126: 1612–1620. 34. Naci, D., K. Vuori, and F. Aoudjit. 2015. Alpha2beta1 integrin in cancer de- 7. Cools-Lartigue, J., J. Spicer, B. McDonald, S. Gowing, S. Chow, B. Giannias, F. Bourdeau, P. Kubes, and L. Ferri. 2013. Neutrophil extracellular traps sequester velopment and chemoresistance. Semin. Cancer Biol. 35: 145–153. circulating tumor cells and promote metastasis. J. Clin. Invest. DOI: 10.1172/ 35. Markel, G., R. Ortenberg, R. Seidman, S. Sapoznik, N. Koren-Morag, M. J. Besser, JCI67484. J. Bar, R. Shapira, A. Kubi, G. Nardini, et al. 2010. Systemic dysregulation 8. Cedervall, J., and A. K. Olsson. 2016. Immunity gone astray - NETs in cancer. of CEACAM1 in melanoma patients. Cancer Immunol. Immunother. 59: Trends Cancer 2: 633–634. 215–230. 9. Cools-Lartigue, J., J. Spicer, S. Najmeh, and L. Ferri. 2014. Neutrophil extra- 36. Simeone, D. M., B. Ji, M. Banerjee, T. Arumugam, D. Li, M. A. Anderson, cellular traps in cancer progression. Cell. Mol. Life Sci. 71: 4179–4194. A. M. Bamberger, J. Greenson, R. E. Brand, V. Ramachandran, and C. D. Logsdon. 10. Andalib, A., A. V. Ramana-Kumar, G. Bartlett, E. L. Franco, and L. E. Ferri. 2007. CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 34: 2013. Influence of postoperative infectious complications on long-term 436–443. 10 ROLE OF NET-ASSOCIATED CEACAM1 IN CANCER METASTASIS

37. Tilki, D., B. B. Singer, S. F. Shariat, A. Behrend, M. Fernando, S. Irmak, 44. Guadagni, F., P. L. Witt, P. F. Robbins, J. Schlom, and J. W. Greiner. 1990. A. Buchner, A. T. Hooper, C. G. Stief, O. Reich, and S. Ergu¨n. 2010. CEACAM1: a Regulation of carcinoembryonic antigen expression in different human colo- novel urinary marker for bladder cancer detection. Eur. Urol. 57: 648–654. rectal tumor cells by interferon-gamma. Cancer Res. 50: 6248–6255. 38. Yang, C., P. He, Y. Liu, Y. He, C. Yang, Y. Du, M. Zhou, W. Wang, G. Zhang, 45. Holmer, R., G. H. Wa¨tzig, S. Tiwari, S. Rose-John, and H. Kalthoff. 2015. M. Wu, and F. Gao. 2015. Assay of serum CEACAM1 as a potential biomarker Interleukin-6 trans-signaling increases the expression of carcinoembryonic for breast cancer. Clin. Chim. Acta 450: 277–281. antigen-related cell adhesion molecules 5 and 6 in colorectal cancer cells. BMC 39. Wang, N., Y. Feng, Q. Wang, S. Liu, L. Xiang, M. Sun, X. Zhang, G. Liu, Cancer 15: 975. X. Qu, and F. Wei. 2014. Neutrophils infiltration in the tongue squamous cell 46. Singer, B. B., E. Klaile, I. Scheffrahn, M. M. Mu¨ller,R.Kammerer, carcinoma and its correlation with CEACAM1 expression on tumor cells. W. Reutter, B. Obrink, and L. Lucka. 2005. CEACAM1 (CD66a) mediates PLoS One 9: e89991. delay of spontaneous and -induced apoptosis in granulocytes. Eur. J. 40. Watt, S. M., A. M. Teixeira, G. Q. Zhou, R. Doyonnas, Y. Zhang, F. Grunert, Immunol. 35: 1949–1959. R. S. Blumberg, M. Kuroki, K. M. Skubitz, and P. A. Bates. 2001. Homophilic 47. Fridlender, Z. G., and S. M. Albelda. 2012. Tumor-associated neutrophils: friend adhesion of human CEACAM1 involves N-terminal domain interactions: or foe? Carcinogenesis 33: 949–955. structural analysis of the binding site. Blood 98: 1469–1479. 48. Liu, J., G. Di, C. T. Wu, X. Hu, and H. Duan. 2013. Development and evaluation 41. Klaile, E., O. Vorontsova, K. Sigmundsson, M. M. Mu¨ller,B.B.Singer, of a novel anti-colorectal cancer monoclonal , WL5. Biochem. Biophys. L. G. Ofverstedt, S. Svensson, U. Skoglund, and B. Obrink. 2009. The CEACAM1 Res. Commun. 432: 370–377. N-terminal Ig domain mediates cis- and trans-binding and is essential for allosteric 49. Ortenberg, R., Y. Sapir, L. Raz, L. Hershkovitz, A. Ben Arav, S. Sapoznik, rearrangements of CEACAM1 microclusters. J. Cell Biol. 187: 553–567. I. Barshack, C. Avivi, Y. Berkun, M. J. Besser, et al. 2012. Novel immunotherapy 42. Gray-Owen, S. D., and R. S. Blumberg. 2006. CEACAM1: contact-dependent for malignant melanoma with a monoclonal antibody that blocks CEACAM1 control of immunity. Nat. Rev. Immunol. 6: 433–446. homophilic interactions. Mol. Cancer Ther. 11: 1300–1310. 43. Oikawa, S., M. Kuroki, Y. Matsuoka, G. Kosaki, and H. Nakazato. 1992. 50. Evans, J. P., P. A. Sutton, B. K. Winiarski, S. W. Fenwick, H. Z. Malik, Homotypic and heterotypic Ca(++)-independent cell adhesion activities of D. Vimalachandran, E. M. Tweedle, E. Costello, D. H. Palmer, B. K. Park, and biliary glycoprotein, a member of carcinoembryonic antigen family, expressed N. R. Kitteringham. 2016. From mice to men: murine models of colorectal on CHO cell surface. Biochem. Biophys. Res. Commun. 186: 881–887. cancer for use in translational research. Crit. Rev. Oncol. Hematol. 98: 94–105. Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021

Supplemental Data

Figure S1. CEACAM 1 is present on the colon carcinoma cell lines. A. Flow cytometry of human CC1 on human colon carcinoma cell line (HT-29) shows ~100% stained CC1 on the surface of the cells (bottom panel) as compared to the unstained control (top panel). B. Flow cytometry of murine CC1 on murine colon carcinoma cell line MC38 shows ~75% stained CC1 on the surface of the cells (bottom panel) as compared to the unstained control (top panel).

Figure S2. CEACAM1 is present on NETs in vivo. Multi-IF using DAPI (in blue), H3Citrulline (NETs marker, in green) and CEACAM1 (in red) was performed on liver extracted from a mouse 24h post cecal-ligation-puncture. Images were acquired with a 20x magnification using the EVOS cell imaging system, scale bar: 25 µm.

Figure S3. PMA does not affect tumor cell migration in the absence of neutrophils. A. Bar graph of average (+/- SEM) number of HT-29 cells migrating towards 10% FBS in the presence or absence of 500 nM PMA in Boyden chambers (n=5, N.S.=not significant). B. Bar graph of average (+/- SEM) number of MC38-CC1L cells migrating towards 10% FBS in the presence or absence of 500 nM PMA in Boyden chambers (n=3, N.S.=not significant).

Figure S4. CC1 KO and C57BL/6 neutrophils have the same number of neutrophils in circulation. A. Bar graph from flow cytometry performed on circulating WBCs extracted from C57BL/6 and CC1 KO mice. n=3, N.S.= Not significant. B. Representative flow cytometry profiles of the circulating WBC populations in C57BL/6 and CC1 KO mice.

Table S1. List of identified proteins on huNETs using tandem Mass Spectrometry. Shown in table S1 is a list of the 583 proteins identified by tandem Mass Spectrometry as present on all the 3 NET samples isolated from 3 different healthy individuals. # Identified Proteins (583) Accession Number 1 isoform H17 |HomoSapiens| GN=MPO PE=1 SV=250 P05164 (+2) 2 peroxidase isoform Iso 1 |HomoSapiens| GN=EPX PE=1 SV=77 P11678 3 isoform Iso 1 |HomoSapiens| GN=LTF PE=1 SV=91 P02788 4 alpha-M isoform Iso 1 |HomoSapiens| GN=ITGAM PE=1 SV=74 P11215 5 G isoform Iso 1 |HomoSapiens| GN=CTSG PE=1 SV=69 P08311 6 S100-A9 isoform Iso 1 |HomoSapiens| GN=S100A9 PE=1 SV=68 P06702 7 cytoplasmic 1 isoform Iso 1 |HomoSapiens| GN=ACTB PE=1 SV=160 P60709 (+1) 8 isoform Iso 1 |HomoSapiens| GN=MYH9 PE=1 SV=238 P35579 9 elastase isoform Iso 1 |HomoSapiens| GN=ELANE PE=1 SV=77 P08246 10 S100-A8 isoform Iso 1 |HomoSapiens| GN=S100A8 PE=1 SV=56 P05109 11 subunit beta isoform Iso 1 |HomoSapiens| GN=HBB PE=1 SV=149 P68871 12 A6 isoform Iso 1 |HomoSapiens| GN=ANXA6 PE=1 SV=92 P08133 13 elastase inhibitor isoform Iso 1 |HomoSapiens| GN=SERPINB1 PE=1 SV=53 P30740 14 band 7 integral membrane protein isoform Iso 1 |HomoSapiens| GN=STOM PE=1 SV=58 P27105 15 beta-2 isoform Iso 1 |HomoSapiens| GN=ITGB2 PE=1 SV=183 P05107 16 isoform Iso 1 |HomoSapiens| GN=LCP1 PE=1 SV=112 P13796 17 isoform Iso 1 |HomoSapiens| GN=AZU1 PE=1 SV=29 P20160 18 isoform Iso 1 |HomoSapiens| GN=FLNA PE=1 SV=231 P21333 (+1) 19 cationic protein isoform Iso 1 |HomoSapiens| GN=RNASE3 PE=1 SV=30 P12724 20 disulfide-isomerase isoform Iso 1 |HomoSapiens| GN=P4HB PE=1 SV=95 P07237 21 isoform Iso 1 |HomoSapiens| GN=ACTN1 PE=1 SV=176 P12814 22 H4 isoform Iso 1 |HomoSapiens| GN=HIST1H4A;HIST1H4B;HIST1H4C;HIST1H4D;HIST1H4E;HIST1H4F;HIST1H4H;HIST1H4I;HIST1H4J;HIST1H4K;HIST1H4L;HIST2H4A;HIST2H4B;HIST4H4 PE=1 SV=188 P62805 23 GTPase-activating-like protein IQGAP1 isoform Iso 1 |HomoSapiens| GN=IQGAP1 PE=1 SV=136 P46940 24 permeability-increasing protein isoform Iso 1 |HomoSapiens| GN=BPI PE=1 SV=30 P17213 25 b-245 heavy chain isoform Iso 1 |HomoSapiens| GN=CYBB PE=1 SV=82 P04839 26 isoform Iso 1 |HomoSapiens| GN=PRTN3 PE=1 SV=60 P24158 27 A1 isoform Iso 1 |HomoSapiens| GN=ANXA1 PE=1 SV=77 P04083 28 tyrosine-protein phosphatase C isoform Iso 1 |HomoSapiens| GN=PTPRC PE=1 SV=143 P08575 (+1) 29 isoform Iso 1 |HomoSapiens| GN=TLN1 PE=1 SV=202 Q9Y490 30 defensin 1 isoform Iso 1 |HomoSapiens| GN=DEFA1;DEFA1B PE=1 SV=51 P59665 (+1) 31 marrow proteoglycan isoform Iso 1 |HomoSapiens| GN=PRG2 PE=1 SV=54 P13727 32 subunit alpha isoform Iso 1 |HomoSapiens| GN=HBA1;HBA2 PE=1 SV=295 P69905 33 C isoform Iso 1 |HomoSapiens| GN=LYZ PE=1 SV=130 P61626 34 kDa glucose-regulated protein isoform Iso 1 |HomoSapiens| GN=HSPA5 PE=1 SV=109 P11021 35 intestinal isoform Iso 1 |HomoSapiens| GN=MGAM PE=1 SV=72 O43451 36 nucleotide-binding protein G(i) subunit alpha-2 isoform Iso 1 |HomoSapiens| GN=GNAI2 PE=1 SV=81 P04899 37 ribonuclease isoform Iso 1 |HomoSapiens| GN=RNASE2 PE=1 SV=53 P10153 38 A3 isoform Iso 1 |HomoSapiens| GN=ANXA3 PE=1 SV=40 P12429 39 A11 isoform Iso 1 |HomoSapiens| GN=ANXA11 PE=1 SV=63 P50995 40 synthase subunit beta, mitochondrial isoform Iso 1 |HomoSapiens| GN=ATP5B PE=1 SV=148 P06576 41 kinase isozymes M1/M2 isoform M2 |HomoSapiens| GN=PKM2 PE=1 SV=154 P14618 42 isoform Iso 1 |HomoSapiens| GN=FLOT2 PE=1 SV=58 Q14254 43 plasma membrane-associated protein isoform Iso 1 |HomoSapiens| GN=APMAP PE=1 SV=59 Q9HDC9 44 isoform Iso 1 |HomoSapiens| GN=MSN PE=1 SV=112 P26038 45 isoform Iso 1 |HomoSapiens| GN=DYSF PE=1 SV=46 O75923 (+13) 46 dehydrogenase isoform Iso 1 |HomoSapiens| GN=GAPDH PE=1 SV=195 P04406 47 antigen-related cell adhesion molecule 8 isoform Iso 1 |HomoSapiens| GN=CEACAM8 PE=1 SV=30 P31997 48 H2B type 1-K isoform Iso 1 |HomoSapiens| GN=HIST1H2BK PE=1 SV=70 O60814 (+8) 49 alpha-glucosidase AB isoform Iso 1 |HomoSapiens| GN=GANAB PE=1 SV=101 Q14697 (+1) 50 type II cytoskeletal 1 isoform Iso 1 |HomoSapiens| GN=KRT1 PE=1 SV=165 P04264 51 isoform Iso 1 |HomoSapiens| GN=CAT PE=1 SV=94 P04040 52 isoform Iso 1 |HomoSapiens| GN=CANX PE=1 SV=98 P27824 53 isoform Iso 1 |HomoSapiens| GN=PFN1 PE=1 SV=60 P07737 54 disulfide-isomerase A3 isoform Iso 1 |HomoSapiens| GN=PDIA3 PE=1 SV=102 P30101 55 isoform Iso 1 |HomoSapiens| GN=CALR PE=1 SV=81 P27797 56 isoform Iso 1 |HomoSapiens| GN=VIM PE=1 SV=136 P08670 57 metalloproteinase-9 isoform Iso 1 |HomoSapiens| GN=MMP9 PE=1 SV=74 P14780 58 shock 70 kDa protein 1A/1B isoform Iso 1 |HomoSapiens| GN=HSPA1A;HSPA1B PE=1 SV=163 P08107 59 isoform Iso 1 |HomoSapiens| GN=GCA PE=1 SV=30 P28676 60 isoform Iso 1 |HomoSapiens| GN=UBB PE=1 SV=62 P0CG47 (+3) 61 isoform Iso 1 |HomoSapiens| GN=HSP90B1 PE=1 SV=168 P14625 62 isoform Iso 1 |HomoSapiens| GN=TKT PE=1 SV=107 P29401 63 isoform Iso 1 |HomoSapiens| GN=FLOT1 PE=1 SV=90 O75955 64 carrier family 2, facilitated glucose transporter member 3 isoform Iso 1 |HomoSapiens| GN=SLC2A3 PE=1 SV=47 P11169 65 isoform Iso 1 |HomoSapiens| GN=SERPINA1 PE=1 SV=663 P01009 66 isoform Iso 2 |HomoSapiens| GN=GSN PE=1 SV=171 P06396.2 67 isoform Iso 1 |HomoSapiens| GN=CPNE3 PE=1 SV=48 O75131 68 phosphorylase, liver form isoform Iso 1 |HomoSapiens| GN=PYGL PE=1 SV=104 P06737 69 isoform alpha-enolase |HomoSapiens| GN=ENO1 PE=1 SV=150 P06733 70 gelatinase-associated lipocalin isoform Iso 1 |HomoSapiens| GN=LCN2 PE=1 SV=62 P80188 71 A4 isoform Iso 1 |HomoSapiens| GN=ANXA4 PE=1 SV=47 P09525 72 beta chain isoform Iso 1 |HomoSapiens| GN=TUBB PE=1 SV=161 P07437 73 alpha-1B chain isoform Iso 1 |HomoSapiens| GN=TUBA1B PE=1 SV=217 P68363 74 isoform Iso 1 |HomoSapiens| GN=CORO1A PE=1 SV=64 P31146 75 3 anion transport protein isoform Iso 1 |HomoSapiens| GN=SLC4A1 PE=1 SV=54 P02730 76 protein zeta/delta isoform Iso 1 |HomoSapiens| GN=YWHAZ PE=1 SV=112 P63104 77 antigen-related cell adhesion molecule 6 isoform Iso 1 |HomoSapiens| GN=CEACAM6 PE=1 SV=55 P40199 78 synthase subunit alpha, mitochondrial isoform Iso 1 |HomoSapiens| GN=ATP5A1 PE=1 SV=97 P25705 79 B-like 1 isoform Iso 1 |HomoSapiens| GN=PLBD1 PE=1 SV=31 Q6P4A8 80 protein 3 isoform Iso 1 |HomoSapiens| GN=ACTR3 PE=1 SV=63 P61158 81 cell-expressed membrane protein 1 isoform Iso 1 |HomoSapiens| GN=MCEMP1 PE=1 SV=37 Q8IX19 82 protein Rap-1b isoform Iso 1 |HomoSapiens| GN=RAP1B PE=1 SV=50 P61224 83 C3 botulinum toxin substrate 2 isoform Iso 1 |HomoSapiens| GN=RAC2 PE=1 SV=55 P15153 84 protein RhoA isoform Iso 1 |HomoSapiens| GN=RHOA PE=1 SV=73 P61586 85 type I cytoskeletal 10 isoform Iso 1 |HomoSapiens| GN=KRT10 PE=1 SV=134 P13645 86 domain-containing protein 1 isoform Iso 1 |HomoSapiens| GN=EHD1 PE=1 SV=49 Q9H4M9 87 aldolase A isoform Iso 1 |HomoSapiens| GN=ALDOA PE=1 SV=164 P04075 88 dehydrogenase [NADP], mitochondrial isoform Iso 1 |HomoSapiens| GN=IDH2 PE=1 SV=79 P48735 89 kinase 1 isoform Iso 1 |HomoSapiens| GN=PGK1 PE=1 SV=108 P00558 90 shock cognate 71 kDa protein isoform Iso 1 |HomoSapiens| GN=HSPA8 PE=1 SV=116 P11142 91 A5 isoform Iso 1 |HomoSapiens| GN=ANXA5 PE=1 SV=85 P08758 92 protein alpha isoform Iso 1 |HomoSapiens| GN=ERO1L PE=1 SV=63 Q96HE7 93 tyrosine-protein phosphatase eta isoform Iso 1 |HomoSapiens| GN=PTPRJ PE=1 SV=112 Q12913 94 cis-trans isomerase B isoform Iso 1 |HomoSapiens| GN=PPIB PE=1 SV=79 P23284 95 disulfide-isomerase A6 isoform Iso 1 |HomoSapiens| GN=PDIA6 PE=1 SV=82 Q15084 (+1) 96 b-245 light chain isoform Iso 1 |HomoSapiens| GN=CYBA PE=1 SV=72 P13498 97 alpha chain, brain isoform Iso 1 |HomoSapiens| GN=SPTAN1 PE=1 SV=242 Q13813 (+2) 98 H2A type 1-B/E isoform Iso 1 |HomoSapiens| GN=HIST1H2AB;HIST1H2AE PE=1 SV=116 P04908 (+2) 99 1-dehydrogenase isoform Short |HomoSapiens| GN=G6PD PE=1 SV=94 P11413 (+2) 100 light polypeptide 6 isoform Smooth muscle |HomoSapiens| GN=MYL6 PE=1 SV=54 P60660.2 101 albumin isoform Iso 1 |HomoSapiens| GN=ALB PE=1 SV=474 P02768 102 isoform Iso 1 |HomoSapiens| GN=ACTN4 PE=1 SV=114 O43707 103 isoform Iso 1 |HomoSapiens| GN=NCSTN PE=1 SV=59 Q92542 (+1) 104 cyclase-associated protein 1 isoform Iso 1 |HomoSapiens| GN=CAP1 PE=1 SV=103 Q01518 105 membrane glycoprotein 2 isoform LAMP-2B |HomoSapiens| GN=LAMP2 PE=1 SV=80 P13473.2 106 dehydrogenase, decarboxylating isoform Iso 1 |HomoSapiens| GN=PGD PE=1 SV=78 P52209 107 3 isoform Iso 1 |HomoSapiens| GN=PRG3 PE=1 SV=24 Q9Y2Y8 108 dehydrogenase A chain isoform Iso 1 |HomoSapiens| GN=LDHA PE=1 SV=109 P00338 (+1) 109 isoform Iso 1 |HomoSapiens| GN=GNS PE=1 SV=74 P15586 110 nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 isoform Iso 1 |HomoSapiens| GN=GNB2 PE=1 SV=70 P62879 111 5-lipoxygenase isoform Iso 1 |HomoSapiens| GN=ALOX5 PE=1 SV=57 P09917 112 mitochondrial isoform Mitochondrial |HomoSapiens| GN=PRDX5 PE=1 SV=100 P30044 (+1) 113 membrane glycoprotein 1 isoform Iso 1 |HomoSapiens| GN=LAMP1 PE=1 SV=69 P11279 114 omega-hydroxylase 2 isoform Iso 1 |HomoSapiens| GN=CYP4F3 PE=2 SV=45 Q08477 115 type I cytoskeletal 9 isoform Iso 1 |HomoSapiens| GN=KRT9 PE=1 SV=194 P35527 116 isoform Iso 1 |HomoSapiens| GN=CFL1 PE=1 SV=73 P23528 117 receptor isoform Iso 1 |HomoSapiens| GN=LBR PE=1 SV=59 Q14739 118 N isoform Iso 1 |HomoSapiens| GN=ANPEP PE=1 SV=187 P15144 119 cyclase 2 isoform Iso 1 |HomoSapiens| GN=BST1 PE=1 SV=57 Q10588 120 isomerase isoform Iso 1 |HomoSapiens| GN=GPI PE=1 SV=132 P06744 121 ATPase subunit alpha-1 isoform Long |HomoSapiens| GN=ATP1A1 PE=1 SV=125 P05023 122 isoform Iso 2 |HomoSapiens| GN=VCL PE=1 SV=121 P18206 (+1) 123 -If isoform Iso 1 |HomoSapiens| GN=MYO1F PE=1 SV=34 O00160 124 kDa heat shock protein, mitochondrial isoform Iso 1 |HomoSapiens| GN=HSPD1 PE=1 SV=102 P10809 125 acid soluble protein 1 isoform Iso 1 |HomoSapiens| GN=BASP1 PE=1 SV=47 P80723 126 isoform Long |HomoSapiens| GN=GUSB PE=1 SV=56 P08236 127 neutrophil cytosol factor 1B isoform Iso 1 |HomoSapiens| GN=NCF1B PE=5 SV=23 A6NI72 (+1) 128 S-transferase P isoform Iso 1 |HomoSapiens| GN=GSTP1 PE=1 SV=81 P09211 129 family homolog 3 isoform Iso 1 |HomoSapiens| GN=FERMT3 PE=1 SV=54 Q86UX7 (+1) 130 15-lipoxygenase isoform Iso 1 |HomoSapiens| GN=ALOX15 PE=1 SV=56 P16050 131 division control protein 42 homolog isoform Iso 2 |HomoSapiens| GN=CDC42 PE=1 SV=71 P60953.2 132 protein 2/3 complex subunit 2 isoform Iso 1 |HomoSapiens| GN=ARPC2 PE=1 SV=54 O15144 133 light chain isoform Iso 1 |HomoSapiens| GN=FTL PE=1 SV=64 P02792 134 synthase, mitochondrial isoform Iso 1 |HomoSapiens| GN=CS PE=1 SV=83 O75390 135 transporter-like protein 2 isoform Iso 1 |HomoSapiens| GN=SLC44A2 PE=1 SV=65 Q8IWA5 (+1) 136 isoform Iso 1 |HomoSapiens| GN=TALDO1 PE=1 SV=75 P37837 137 factor 3 isoform Iso 1 |HomoSapiens| GN=ARF3 PE=1 SV=47 P61204 (+1) 138 antimicrobial peptide isoform Iso 1 |HomoSapiens| GN=CAMP PE=1 SV=41 P49913 139 proton ATPase 116 kDa subunit a isoform 3 isoform Long |HomoSapiens| GN=TCIRG1 PE=1 SV=50 Q13488 140 A-4 hydrolase isoform Iso 1 |HomoSapiens| GN=LTA4H PE=1 SV=97 P09960 141 antigen-related cell adhesion molecule 1 isoform Iso 1 |HomoSapiens| GN=CEACAM1 PE=1 SV=48 P13688 (+3) 142 differentiation marker isoform Iso 1 |HomoSapiens| GN=MYADM PE=1 SV=37 Q96S97 143 antigen isoform Iso 1 |HomoSapiens| GN=CD63 PE=1 SV=63 P08962 144 antigen isoform Iso 1 |HomoSapiens| GN=CD177 PE=1 SV=19 Q8N6Q3 145 antigen isoform Iso 1 |HomoSapiens| GN=CD97 PE=1 SV=121 P48960 (+2) 146 GDP-dissociation inhibitor 2 isoform Iso 1 |HomoSapiens| GN=ARHGDIB PE=1 SV=44 P52566 147 type II cytoskeletal 2 epidermal isoform Iso 1 |HomoSapiens| GN=KRT2 PE=1 SV=215 P35908 148 collagenase isoform Iso 1 |HomoSapiens| GN=MMP8 PE=1 SV=55 P22894 149 peroxide reductase, mitochondrial isoform Iso 1 |HomoSapiens| GN=PRDX3 PE=1 SV=70 P30048 150 protein 1 isoform Iso 1 |HomoSapiens| GN=TOR1AIP1 PE=1 SV=44 Q5JTV8 151 2 subunit beta isoform Iso 1 |HomoSapiens| GN=PRKCSH PE=1 SV=64 P14314 152 cytosol factor 4 isoform Iso 1 |HomoSapiens| GN=NCF4 PE=1 SV=38 Q15080 153 oxidoreductase, mitochondrial isoform Iso 1 |HomoSapiens| GN=SQRDL PE=1 SV=68 Q9Y6N5 154 adhesion molecule 3 isoform Iso 1 |HomoSapiens| GN=ICAM3 PE=1 SV=132 P32942 155 vesicle membrane protein VAT-1 homolog isoform Iso 1 |HomoSapiens| GN=VAT1 PE=1 SV=57 Q99536 156 polypeptide isoform Sap-mu-0 |HomoSapiens| GN=PSAP PE=1 SV=68 P07602 (+2) 157 GTP-binding protein RhoG isoform Iso 1 |HomoSapiens| GN=RHOG PE=1 SV=52 P84095 158 protein subunit alpha-1 isoform Iso 1 |HomoSapiens| GN=CAPZA1 PE=1 SV=49 P52907 159 isoform Iso 1 |HomoSapiens| GN=PRDX2 PE=1 SV=96 P32119 160 5-lipoxygenase-activating protein isoform Iso 1 |HomoSapiens| GN=ALOX5AP PE=1 SV=39 P20292 161 alpha-3 chain isoform Iso 2 |HomoSapiens| GN=TPM3 PE=1 SV=84 P06753.2 162 cell nuclear differentiation antigen isoform Iso 1 |HomoSapiens| GN=MNDA PE=1 SV=32 P41218 163 surface antigen CD47 isoform OA3-323 |HomoSapiens| GN=CD47 PE=1 SV=51 Q08722 (+3) 164 isoform Iso 1 |HomoSapiens| GN=OLFM4 PE=1 SV=32 Q6UX06 165 cis-trans isomerase A isoform Iso 1 |HomoSapiens| GN=PPIA PE=1 SV=92 P62937 166 shock protein HSP 90-alpha isoform Iso 1 |HomoSapiens| GN=HSP90AA1 PE=1 SV=192 P07900 (+1) 167 glycosyltransferase subunit 1 isoform Iso 1 |HomoSapiens| GN=RPN1 PE=1 SV=90 P04843 168 FAM49B isoform Iso 1 |HomoSapiens| GN=FAM49B PE=1 SV=57 Q9NUQ9 169 dehydrogenase family 3 member B1 isoform Iso 1 |HomoSapiens| GN=ALDH3B1 PE=1 SV=45 P43353 170 isoform Iso 1 |HomoSapiens| GN=HK3 PE=1 SV=44 P52790 171 deiminase type-4 isoform Iso 1 |HomoSapiens| GN=PADI4 PE=1 SV=62 Q9UM07 172 translocase 2 isoform Iso 1 |HomoSapiens| GN=SLC25A5 PE=1 SV=109 P05141 173 S100-A12 isoform Iso 1 |HomoSapiens| GN=S100A12 PE=1 SV=43 P80511 174 cycle control protein 50A isoform Iso 1 |HomoSapiens| GN=TMEM30A PE=1 SV=50 Q9NV96 175 malic enzyme, mitochondrial isoform Iso 1 |HomoSapiens| GN=ME2 PE=1 SV=76 P23368 176 diaphanous homolog 1 isoform Iso 1 |HomoSapiens| GN=DIAPH1 PE=1 SV=94 O60610 (+1) 177 heavy chain 1 isoform Iso 1 |HomoSapiens| GN=CLTC PE=1 SV=183 Q00610 (+1) 178 receptor isoform Iso 1 |HomoSapiens| GN=FPR1 PE=1 SV=26 P21462 179 protein beta/alpha isoform Long |HomoSapiens| GN=YWHAB PE=1 SV=100 P31946 (+1) 180 anaphylatoxin chemotactic receptor isoform Iso 1 |HomoSapiens| GN=C5AR1 PE=1 SV=65 P21730 181 dehydrogenase, mitochondrial isoform Iso 1 |HomoSapiens| GN=MDH2 PE=1 SV=104 P40926 182 type II cuticular Hb2 isoform Iso 1 |HomoSapiens| GN=KRT82 PE=1 SV=39 Q9NSB4 183 protein subunit beta isoform Iso 1 |HomoSapiens| GN=CAPZB PE=1 SV=64 P47756 (+1) 184 glycosyltransferase subunit 2 isoform Iso 1 |HomoSapiens| GN=RPN2 PE=1 SV=86 P04844 (+1) 185 alpha-mannosidase isoform Iso 1 |HomoSapiens| GN=MAN2B1 PE=1 SV=78 O00754 186 non-inflammatory molecule 2 isoform Iso 1 |HomoSapiens| GN=VNN2 PE=1 SV=44 O95498 187 regulatory light chain 12B isoform Iso 1 |HomoSapiens| GN=MYL12B PE=1 SV=46 O14950 (+1) 188 reticulum resident protein 29 isoform Iso 1 |HomoSapiens| GN=ERP29 PE=1 SV=55 P30040 189 endoplasmic reticulum ATPase isoform Iso 1 |HomoSapiens| GN=VCP PE=1 SV=138 P55072 190 isoform Iso 1 |HomoSapiens| GN=CALM1;CALM2;CALM3 PE=1 SV=126 P62158 191 kinase HCK isoform Iso 1 |HomoSapiens| GN=HCK PE=1 SV=76 P08631 (+3) 192 nucleotide-binding protein G(s) subunit alpha isoforms XLas isoform XLas-1 |HomoSapiens| GN=GNAS PE=1 SV=65 Q5JWF2 (+4) 193 ceramidase isoform Iso 1 |HomoSapiens| GN=ASAH1 PE=1 SV=80 Q13510 (+1) 194 1 isoform Iso 1 |HomoSapiens| GN=TPP1 PE=1 SV=70 O14773 (+1) 195 GDP dissociation inhibitor beta isoform Iso 1 |HomoSapiens| GN=GDI2 PE=1 SV=84 P50395 196 protein Ral-B isoform Iso 1 |HomoSapiens| GN=RALB PE=1 SV=51 P11234 197 S100-A11 isoform Iso 1 |HomoSapiens| GN=S100A11 PE=1 SV=33 P31949 198 peptide receptor 2 isoform Iso 1 |HomoSapiens| GN=FPR2 PE=2 SV=27 P25090 199 plant pathogenesis-related protein 1 isoform Iso 1 |HomoSapiens| GN=GLIPR2 PE=1 SV=40 Q9H4G4 200 alpha Fc receptor isoform A.1 |HomoSapiens| GN=FCAR PE=1 SV=44 P24071 201 protein 1 isoform Iso 1 |HomoSapiens| GN=FMNL1 PE=1 SV=51 O95466 (+1) 202 myosin-Ig isoform Iso 1 |HomoSapiens| GN=MYO1G PE=1 SV=87 B0I1T2 203 protein 2/3 complex subunit 1B isoform Iso 1 |HomoSapiens| GN=ARPC1B PE=1 SV=57 O15143 204 disulfide-isomerase A4 isoform Iso 1 |HomoSapiens| GN=PDIA4 PE=1 SV=97 P13667 205 alpha chain, erythrocyte isoform Iso 1 |HomoSapiens| GN=SPTA1 PE=1 SV=61 P02549 (+1) 206 protein 2 isoform Iso 1 |HomoSapiens| GN=ACTR2 PE=1 SV=61 P61160 207 XRP2 isoform Iso 1 |HomoSapiens| GN=RP2 PE=1 SV=60 O75695 208 isoform Iso 1 |HomoSapiens| GN=MME PE=1 SV=65 P08473 209 protein Rab-27A isoform Long |HomoSapiens| GN=RAB27A PE=1 SV=66 P51159 210 phosphoribosyltransferase isoform Iso 1 |HomoSapiens| GN=NAMPT PE=1 SV=59 P43490 211 phospholipid-transporting ATPase IA isoform Iso 3 |HomoSapiens| GN=ATP8A1 PE=1 SV=43 Q9Y2Q0.3 212 mutase 1 isoform Iso 1 |HomoSapiens| GN=PGAM1 PE=1 SV=78 P18669 213 nucleotide-binding protein G(k) subunit alpha isoform Iso 1 |HomoSapiens| GN=GNAI3 PE=1 SV=76 P08754 214 hydrolase isoform Iso 1 |HomoSapiens| GN=GGH PE=1 SV=62 Q92820 215 ligase 1 isoform Iso 1 |HomoSapiens| GN=ACSL1 PE=1 SV=70 P33121 216 enzyme subunit alpha, mitochondrial isoform Iso 1 |HomoSapiens| GN=HADHA PE=1 SV=96 P40939 217 anion-selective channel protein 1 isoform Iso 1 |HomoSapiens| GN=VDAC1 PE=1 SV=83 P21796 218 intracellular channel protein 1 isoform Iso 1 |HomoSapiens| GN=CLIC1 PE=1 SV=136 O00299 219 Ras-related protein Rab-1C isoform Iso 1 |HomoSapiens| GN=RAB1C PE=5 SV=35 Q92928 (+1) 220 dismutase [Mn], mitochondrial isoform Iso 1 |HomoSapiens| GN=SOD2 PE=1 SV=151 P04179 221 beta chain, brain 1 isoform Long |HomoSapiens| GN=SPTBN1 PE=1 SV=206 Q01082 (+2) 222 repeat-containing protein 1 isoform Iso 1 |HomoSapiens| GN=WDR1 PE=1 SV=66 O75083 223 reticulum calcium ATPase 3 isoform SERCA3B |HomoSapiens| GN=ATP2A3 PE=1 SV=65 Q93084 (+6) 224 isoform Iso 1 |HomoSapiens| GN=SERPINA3 PE=1 SV=207 P01011 225 H3.2 isoform Iso 1 |HomoSapiens| GN=HIST2H3A;HIST2H3C;HIST2H3D PE=1 SV=106 Q71DI3 226 protein Rab-7a isoform Iso 1 |HomoSapiens| GN=RAB7A PE=1 SV=69 P51149 227 protein 2/3 complex subunit 3 isoform Iso 1 |HomoSapiens| GN=ARPC3 PE=1 SV=51 O15145 228 isoform Iso 1 |HomoSapiens| GN=CNN2 PE=1 SV=44 Q99439 229 H2B type 1-J isoform Iso 1 |HomoSapiens| GN=HIST1H2BJ PE=1 SV=69 P06899 (+3) 230 protein isoform Iso 1 |HomoSapiens| GN=CAPG PE=1 SV=47 P40121 231 domain-containing protein 2 isoform Iso 1 |HomoSapiens| GN=SUN2 PE=1 SV=51 Q9UH99 232 dehydrogenase, mitochondrial isoform Iso 1 |HomoSapiens| GN=DLD PE=1 SV=69 P09622 233 unc-13 homolog D isoform Iso 1 |HomoSapiens| GN=UNC13D PE=1 SV=43 Q70J99 (+1) 234 17-beta-dehydrogenase 11 isoform Iso 1 |HomoSapiens| GN=HSD17B11 PE=1 SV=62 Q8NBQ5 235 long-chain specific acyl-CoA dehydrogenase, mitochondrial isoform Iso 1 |HomoSapiens| GN=ACADVL PE=1 SV=73 P49748 (+1) 236 isomerase isoform Iso 2 |HomoSapiens| GN=TPI1 PE=1 SV=124 P60174 (+1) 237 isoform Iso 3 |HomoSapiens| GN=RTN3 PE=1 SV=47 O95197.3 238 module-containing mucin-like hormone receptor-like 3 isoform Iso 1 |HomoSapiens| GN=EMR3 PE=1 SV=72 Q9BY15 (+1) 239 factor Tu, mitochondrial isoform Iso 1 |HomoSapiens| GN=TUFM PE=1 SV=73 P49411 240 cytosol factor 2 isoform Iso 1 |HomoSapiens| GN=NCF2 PE=1 SV=44 P19878 241 proton ATPase catalytic subunit A isoform Iso 1 |HomoSapiens| GN=ATP6V1A PE=1 SV=95 P38606 242 isoform Iso 1 |HomoSapiens| GN=SDCBP PE=1 SV=61 O00560 (+2) 243 protein 2/3 complex subunit 5 isoform Iso 1 |HomoSapiens| GN=ARPC5 PE=1 SV=39 O15511 244 D isoform Iso 1 |HomoSapiens| GN=CTSD PE=1 SV=84 P07339 245 G-protein coupled receptor 97 isoform Iso 1 |HomoSapiens| GN=GPR97 PE=1 SV=39 Q86Y34 246 protein sorting-associated protein 35 isoform Iso 1 |HomoSapiens| GN=VPS35 PE=1 SV=64 Q96QK1 247 protein 1 isoform Iso 2 |HomoSapiens| GN=SYPL1 PE=1 SV=36 Q16563.2 248 proton ATPase subunit d 1 isoform Iso 1 |HomoSapiens| GN=ATP6V0D1 PE=1 SV=60 P61421 249 isoform Iso 1 |HomoSapiens| GN=CPNE2 PE=1 SV=26 Q96FN4 250 factor 1-alpha 1 isoform Iso 1 |HomoSapiens| GN=EEF1A1 PE=1 SV=87 P68104 (+1) 251 b5 reductase 3 isoform Iso 1 |HomoSapiens| GN=CYB5R3 PE=1 SV=89 P00387 (+2) 252 facilitator superfamily domain-containing protein 10 isoform Iso 1 |HomoSapiens| GN=MFSD10 PE=1 SV=27 Q14728 253 factor-like protein 8B isoform Iso 1 |HomoSapiens| GN=ARL8B PE=1 SV=44 Q9NVJ2 254 glucosyltransferase 1 isoform Iso 1 |HomoSapiens| GN=UGGT1 PE=1 SV=81 Q9NYU2 (+1) 255 STEAP4 isoform Iso 1 |HomoSapiens| GN=STEAP4 PE=1 SV=35 Q687X5 256 isoform Iso 1 |HomoSapiens| GN=VNN1 PE=1 SV=58 O95497 257 anion-selective channel protein 2 isoform Iso 1 |HomoSapiens| GN=VDAC2 PE=1 SV=73 P45880 (+2) 258 kinase Fgr isoform Iso 1 |HomoSapiens| GN=FGR PE=1 SV=63 P09769 259 phosphoprotein isoform Iso 1 |HomoSapiens| GN=VASP PE=1 SV=62 P50552 260 enzyme subunit beta, mitochondrial isoform Iso 1 |HomoSapiens| GN=HADHB PE=1 SV=85 P55084 261 isoform Iso 1 |HomoSapiens| GN=GALNS PE=1 SV=52 P34059 262 class I histocompatibility antigen, A-3 alpha chain isoform Iso 1 |HomoSapiens| GN=HLA-A PE=1 SV=61 P04439 263 isoform Iso 1 |HomoSapiens| GN=CPNE1 PE=1 SV=46 Q99829 264 isoform Iso 2 |HomoSapiens| GN=RTN4 PE=1 SV=69 Q9NQC3.2 265 hydrogen channel 1 isoform Iso 1 |HomoSapiens| GN=HVCN1 PE=1 SV=35 Q96D96 266 component 1 Q subcomponent-binding protein, mitochondrial isoform Iso 1 |HomoSapiens| GN=C1QBP PE=1 SV=49 Q07021 267 dehydrogenase B chain isoform Iso 1 |HomoSapiens| GN=LDHB PE=1 SV=104 P07195 268 protein Rab-11B isoform Iso 1 |HomoSapiens| GN=RAB11B PE=1 SV=40 Q15907 269 transporter 4 isoform Iso 1 |HomoSapiens| GN=SLC16A3 PE=1 SV=55 O15427 270 subunit alpha isoform Iso 1 |HomoSapiens| GN=HEXA PE=1 SV=89 P06865 271 deiminase type-2 isoform Iso 1 |HomoSapiens| GN=PADI2 PE=1 SV=50 Q9Y2J8 272 S100-A4 isoform Iso 1 |HomoSapiens| GN=S100A4 PE=1 SV=43 P26447 273 cell death 6-interacting protein isoform Iso 1 |HomoSapiens| GN=PDCD6IP PE=1 SV=100 Q8WUM4 274 isoform Iso 1 |HomoSapiens| GN=PHB2 PE=1 SV=61 Q99623 275 kinase C delta type isoform Iso 1 |HomoSapiens| GN=PRKCD PE=1 SV=76 Q05655 276 FMR1-interacting protein 2 isoform Iso 1 |HomoSapiens| GN=CYFIP2 PE=1 SV=103 Q96F07 (+1) 277 anion-selective channel protein 3 isoform Iso 1 |HomoSapiens| GN=VDAC3 PE=1 SV=62 Q9Y277 (+1) 278 type I cuticular Ha1 isoform Iso 1 |HomoSapiens| GN=KRT31 PE=1 SV=44 Q15323 279 glycosyltransferase 48 kDa subunit isoform Iso 1 |HomoSapiens| GN=DDOST PE=1 SV=71 P39656 280 beta chain, erythrocyte isoform Iso 1 |HomoSapiens| GN=SPTB PE=1 SV=72 P11277 (+2) 281 proton ATPase subunit E 1 isoform Iso 1 |HomoSapiens| GN=ATP6V1E1 PE=1 SV=56 P36543 (+1) 282 modifier-activating enzyme 1 isoform Iso 1 |HomoSapiens| GN=UBA1 PE=1 SV=141 P22314 283 GTPase-activating-like protein IQGAP2 isoform Iso 1 |HomoSapiens| GN=IQGAP2 PE=1 SV=67 Q13576 284 A7 isoform Iso 1 |HomoSapiens| GN=ANXA7 PE=1 SV=48 P20073 (+1) 285 SDR family member 7 isoform Iso 1 |HomoSapiens| GN=DHRS7 PE=1 SV=44 Q9Y394 (+1) 286 uniporter protein, mitochondrial isoform Iso 1 |HomoSapiens| GN=MCU PE=1 SV=49 Q8NE86 (+1) 287 protein Rab-31 isoform Iso 1 |HomoSapiens| GN=RAB31 PE=1 SV=38 Q13636 288 phosphatase non-receptor type substrate 1 isoform Iso 1 |HomoSapiens| GN=SIRPA PE=1 SV=70 P78324 (+2) 289 synaptotagmin-1 isoform Iso 1 |HomoSapiens| GN=ESYT1 PE=1 SV=110 Q9BSJ8 (+1) 290 carrier family 15 member 4 isoform Iso 1 |HomoSapiens| GN=SLC15A4 PE=1 SV=45 Q8N697 291 isoform Iso 1 |HomoSapiens| GN=PLEK PE=1 SV=43 P08567 292 nucleoside phosphorylase isoform Iso 1 |HomoSapiens| GN=PNP PE=1 SV=83 P00491 293 protein Rab-5C isoform Iso 1 |HomoSapiens| GN=RAB5C PE=1 SV=65 P51148 294 protein Rab-3D isoform Iso 1 |HomoSapiens| GN=RAB3D PE=1 SV=45 O95716 295 type II cuticular Hb6 isoform Iso 1 |HomoSapiens| GN=KRT86 PE=1 SV=67 O43790 296 isoform Iso 1 |HomoSapiens| GN=NPTN PE=1 SV=60 Q9Y639 (+4) 297 phosphatase non-receptor type 6 isoform Iso 1 |HomoSapiens| GN=PTPN6 PE=1 SV=61 P29350 (+1) 298 isoform Iso 1 |HomoSapiens| GN=BSG PE=1 SV=84 P35613 (+1) 299 nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 isoform Iso 1 |HomoSapiens| GN=GNB1 PE=1 SV=84 P62873 300 factor 1 isoform Iso 1 |HomoSapiens| GN=OSTF1 PE=1 SV=29 Q92882 301 phosphatase PP1-alpha catalytic subunit isoform Iso 1 |HomoSapiens| GN=PPP1CA PE=1 SV=74 P62136 302 S100-P isoform Iso 1 |HomoSapiens| GN=S100P PE=1 SV=32 P25815 303 type I cuticular Ha2 isoform Iso 1 |HomoSapiens| GN=KRT32 PE=1 SV=32 Q14532 304 protein, mitochondrial isoform Iso 1 |HomoSapiens| GN=HSPA9 PE=1 SV=92 P38646 305 isoform Iso 1 |HomoSapiens| GN=ERLIN2 PE=1 SV=53 O94905 306 H2A.Z isoform Iso 1 |HomoSapiens| GN=H2AFZ PE=1 SV=50 P0C0S5 (+2) 307 isoform Iso 1 |HomoSapiens| GN=LGALS3 PE=1 SV=55 P17931 308 isoform Iso 1 |HomoSapiens| GN=PHB PE=1 SV=63 P35232 309 pyrophosphatase/phosphodiesterase family member 4 isoform Iso 1 |HomoSapiens| GN=ENPP4 PE=1 SV=35 Q9Y6X5 310 isoform Iso 1 |HomoSapiens| GN=LMNB1 PE=1 SV=100 P20700 311 isoform Iso 1 |HomoSapiens| GN=PRDX6 PE=1 SV=91 P30041 312 b-c1 complex subunit 2, mitochondrial isoform Iso 1 |HomoSapiens| GN=UQCRC2 PE=1 SV=63 P22695 313 protein Rap-2b isoform Iso 1 |HomoSapiens| GN=RAP2B PE=1 SV=37 P61225 314 chemokine receptor type 2 isoform Iso 1 |HomoSapiens| GN=CXCR2 PE=1 SV=33 P25025 315 S isoform Iso 1 |HomoSapiens| GN=CTSS PE=1 SV=59 P25774 (+1) 316 kinase isoform Iso 1 |HomoSapiens| GN=PDXK PE=1 SV=66 O00764 317 protein Rap-1A isoform Iso 1 |HomoSapiens| GN=RAP1A PE=1 SV=56 P62834 318 protein 1 isoform Iso 1 |HomoSapiens| GN=LSP1 PE=1 SV=40 P33241 319 scramblase 1 isoform Iso 1 |HomoSapiens| GN=PLSCR1 PE=1 SV=31 O15162 320 proton ATPase subunit S1 isoform Iso 1 |HomoSapiens| GN=ATP6AP1 PE=1 SV=56 Q15904 321 2-oxoglutarate/malate carrier protein isoform Iso 1 |HomoSapiens| GN=SLC25A11 PE=1 SV=62 Q02978 322 isoform Iso 1 |HomoSapiens| GN=TAGLN2 PE=1 SV=64 P37802 323 subunit beta-1 isoform Iso 1 |HomoSapiens| GN=KPNB1 PE=1 SV=69 Q14974 324 nucleotide-binding protein G(q) subunit alpha isoform Iso 1 |HomoSapiens| GN=GNAQ PE=1 SV=57 P50148 325 protein 4 isoform Iso 1 |HomoSapiens| GN=SURF4 PE=1 SV=27 O15260 (+1) 326 integral-membrane protein VIP36 isoform Iso 1 |HomoSapiens| GN=LMAN2 PE=1 SV=59 Q12907 327 nuclear ribonucleoprotein K isoform Iso 3 |HomoSapiens| GN=HNRNPK PE=1 SV=84 P61978.3 (+2) 328 protein Rab-8B isoform Iso 1 |HomoSapiens| GN=RAB8B PE=1 SV=35 Q92930 329 speck-like protein containing a CARD isoform Iso 1 |HomoSapiens| GN=PYCARD PE=1 SV=37 Q9ULZ3 (+1) 330 emp24 domain-containing protein 9 isoform Iso 1 |HomoSapiens| GN=TMED9 PE=1 SV=52 Q9BVK6 331 domain-containing protein D2 isoform Iso 1 |HomoSapiens| GN=EFHD2 PE=1 SV=41 Q96C19 332 GTPase-activating protein 1 isoform Iso 1 |HomoSapiens| GN=ARHGAP1 PE=1 SV=55 Q07960 333 c oxidase subunit 2 isoform Iso 1 |HomoSapiens| GN=MT-CO2 PE=1 SV=50 P00403 334 isoform Iso 1 |HomoSapiens| GN=GLRX PE=1 SV=46 P35754 335 kDa heat shock protein, mitochondrial isoform Iso 1 |HomoSapiens| GN=HSPE1 PE=1 SV=49 P61604 336 isoform Iso 1 |HomoSapiens| GN=EZR PE=1 SV=99 P15311 337 1A1 isoform Iso 1 |HomoSapiens| GN=SULT1A1 PE=1 SV=92 P50225 (+1) 338 acyltransferase 2 isoform Iso 1 |HomoSapiens| GN=LPCAT2 PE=1 SV=56 Q7L5N7 339 homolog subfamily C member 13 isoform Iso 1 |HomoSapiens| GN=DNAJC13 PE=1 SV=88 O75165 340 class I histocompatibility antigen, B-7 alpha chain isoform Iso 1 |HomoSapiens| GN=HLA-B PE=1 SV=68 P01889 341 nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 isoform Iso 1 |HomoSapiens| GN=GNG2 PE=1 SV=51 P59768 342 integrator 2 isoform Iso 1 |HomoSapiens| GN=BIN2 PE=1 SV=30 Q9UBW5 343 secretory protein E1 isoform Iso 1 |HomoSapiens| GN=NPC2 PE=1 SV=60 P61916 344 synthase subunit d, mitochondrial isoform Iso 1 |HomoSapiens| GN=ATP5H PE=1 SV=40 O75947 (+1) 345 homolog subfamily C member 5 isoform Iso 1 |HomoSapiens| GN=DNAJC5 PE=1 SV=55 Q9H3Z4 (+1) 346 T2 isoform Iso 1 |HomoSapiens| GN=RNASET2 PE=1 SV=47 O00584 347 isoform Iso 1 |HomoSapiens| GN=TSPAN14 PE=1 SV=48 Q8NG11 (+1) 348 isoform Iso 1 |HomoSapiens| GN=CHIT1 PE=1 SV=60 Q13231 (+2) 349 activator complex subunit 1 isoform Iso 1 |HomoSapiens| GN=PSME1 PE=1 SV=48 Q06323 350 antigen isoform Iso 1 |HomoSapiens| GN=CD44 PE=1 SV=70 P16070 (+15) 351 Niban isoform Iso 1 |HomoSapiens| GN=FAM129A PE=1 SV=39 Q9BZQ8 352 uridylyltransferase isoform Iso 1 |HomoSapiens| GN=UGP2 PE=1 SV=93 Q16851 (+1) 353 isoform Iso 1 |HomoSapiens| GN=FCN1 PE=1 SV=39 O00602 354 alpha-4A chain isoform Iso 1 |HomoSapiens| GN=TUBA4A PE=1 SV=138 P68366 355 acyl-coenzyme A oxidase 1 isoform Iso 1 |HomoSapiens| GN=ACOX1 PE=1 SV=66 Q15067 (+1) 356 vault protein isoform Iso 1 |HomoSapiens| GN=MVP PE=1 SV=61 Q14764 357 17-beta-dehydrogenase 12 isoform Iso 1 |HomoSapiens| GN=HSD17B12 PE=1 SV=67 Q53GQ0 358 synthase subunit O, mitochondrial isoform Iso 1 |HomoSapiens| GN=ATP5O PE=1 SV=59 P48047 359 protein 2 isoform Iso 1 |HomoSapiens| GN=STXBP2 PE=1 SV=79 Q15833 (+1) 360 dehydrogenase, mitochondrial isoform Iso 1 |HomoSapiens| GN=GPD2 PE=1 SV=86 P43304 (+1) 361 and metalloproteinase domain-containing protein 10 isoform Iso 1 |HomoSapiens| GN=ADAM10 PE=1 SV=81 O14672 362 B receptor isoform Iso 1 |HomoSapiens| GN=APOBR PE=1 SV=101 Q0VD83 (+1) 363 vav isoform Iso 1 |HomoSapiens| GN=VAV1 PE=1 SV=48 P15498 364 glycosyltransferase subunit STT3B isoform Iso 1 |HomoSapiens| GN=STT3B PE=1 SV=70 Q8TCJ2 365 protein 2/3 complex subunit 4 isoform Iso 1 |HomoSapiens| GN=ARPC4 PE=1 SV=32 P59998 366 emp24 domain-containing protein 10 isoform Iso 1 |HomoSapiens| GN=TMED10 PE=1 SV=58 P49755 367 protein eta isoform Iso 1 |HomoSapiens| GN=YWHAH PE=1 SV=75 Q04917 368 heavy chain isoform Iso 1 |HomoSapiens| GN=FTH1 PE=1 SV=69 P02794 369 reticulum aminopeptidase 1 isoform Iso 1 |HomoSapiens| GN=ERAP1 PE=1 SV=69 Q9NZ08 (+1) 370 histone macro-H2A.1 isoform Iso 2 |HomoSapiens| GN=H2AFY PE=1 SV=69 O75367 (+2) 371 mitochondrial carrier protein SCaMC-1 isoform Iso 1 |HomoSapiens| GN=SLC25A24 PE=1 SV=53 Q6NUK1 372 Z isoform Iso 1 |HomoSapiens| GN=CTSZ PE=1 SV=57 Q9UBR2 373 protein 43 isoform Iso 1 |HomoSapiens| GN=TMEM43 PE=1 SV=59 Q9BTV4 374 of cytokinesis protein 2 isoform Iso 1 |HomoSapiens| GN=DOCK2 PE=1 SV=42 Q92608 375 isoform Iso 1 |HomoSapiens| GN=TXN PE=1 SV=58 P10599 376 recognition protein 1 isoform Iso 1 |HomoSapiens| GN=PGLYRP1 PE=1 SV=34 O75594 377 lectin domain family 5 member A isoform Iso 1 |HomoSapiens| GN=CLEC5A PE=1 SV=52 Q9NY25 378 diphosphate kinase B isoform Iso 3 |HomoSapiens| GN=NME2 PE=1 SV=103 P22392.2 379 acyltransferase 7 isoform Iso 1 |HomoSapiens| GN=MBOAT7 PE=1 SV=36 Q96N66 380 synthase subunit f, mitochondrial isoform Iso 1 |HomoSapiens| GN=ATP5J2 PE=1 SV=31 P56134 (+1) 381 anhydrase 4 isoform Iso 1 |HomoSapiens| GN=CA4 PE=1 SV=58 P22748 382 subunit delta isoform Iso 1 |HomoSapiens| GN=HBD PE=1 SV=88 P02042 383 S-transferase omega-1 isoform Iso 1 |HomoSapiens| GN=GSTO1 PE=1 SV=72 P78417 384 protective protein isoform Iso 1 |HomoSapiens| GN=CTSA PE=1 SV=71 P10619 385 transmembrane protein 4 isoform Iso 1 |HomoSapiens| GN=TMX4 PE=1 SV=42 Q9H1E5 386 c oxidase subunit 5B, mitochondrial isoform Iso 1 |HomoSapiens| GN=COX5B PE=1 SV=36 P10606 387 dehydrogenase type-2 isoform Iso 1 |HomoSapiens| GN=HSD17B10 PE=1 SV=76 Q99714 388 peptidase 1 isoform Iso 1 |HomoSapiens| GN=CTSC PE=1 SV=106 P53634 389 phosphoesterase domain-containing protein 1 isoform Iso 1 |HomoSapiens| GN=CPPED1 PE=1 SV=62 Q9BRF8 390 kinase 2, mitochondrial isoform Iso 1 |HomoSapiens| GN=AK2 PE=1 SV=70 P54819 (+2) 391 peptidase complex catalytic subunit SEC11A isoform Iso 1 |HomoSapiens| GN=SEC11A PE=1 SV=41 P67812 392 carrier organic anion transporter family member 4C1 isoform Iso 1 |HomoSapiens| GN=SLCO4C1 PE=1 SV=35 Q6ZQN7 393 homolog subfamily B member 11 isoform Iso 1 |HomoSapiens| GN=DNAJB11 PE=1 SV=54 Q9UBS4 394 protein epsilon isoform Iso 1 |HomoSapiens| GN=YWHAE PE=1 SV=102 P62258 (+1) 395 domain death agonist isoform Iso 1 |HomoSapiens| GN=BID PE=1 SV=61 P55957 (+2) 396 reticulum resident protein 44 isoform Iso 1 |HomoSapiens| GN=ERP44 PE=1 SV=37 Q9BS26 397 factor 4 isoform Iso 1 |HomoSapiens| GN=PF4 PE=1 SV=37 P02776 398 KRas isoform 2B |HomoSapiens| GN=KRAS PE=1 SV=77 P01116.2 399 dehydrogenase, mitochondrial isoform Iso 1 |HomoSapiens| GN=ALDH4A1 PE=1 SV=76 P30038 400 maturation factor gamma isoform Iso 1 |HomoSapiens| GN=GMFG PE=1 SV=39 O60234 401 with coiled-coil, ANK repeat and PH domain-containing protein 1 isoform Iso 1 |HomoSapiens| GN=ACAP1 PE=1 SV=32 Q15027 402 histocompatibility protein HA-1 isoform Iso 1 |HomoSapiens| GN=HMHA1 PE=1 SV=40 Q92619 403 protein Rab-14 isoform Iso 1 |HomoSapiens| GN=RAB14 PE=1 SV=56 P61106 404 catalytic subunit isoform Iso 1 |HomoSapiens| GN=CAPN1 PE=1 SV=79 P07384 405 endoplasmic bifunctional protein isoform Iso 1 |HomoSapiens| GN=H6PD PE=1 SV=63 O95479 406 phosphatase 2A 65 kDa regulatory subunit A alpha isoform isoform Iso 1 |HomoSapiens| GN=PPP2R1A PE=1 SV=84 P30153 407 S-transferase kappa 1 isoform Iso 1 |HomoSapiens| GN=GSTK1 PE=1 SV=73 Q9Y2Q3 408 H1.3 isoform Iso 1 |HomoSapiens| GN=HIST1H1D PE=1 SV=62 P16402 (+2) 409 c1, heme protein, mitochondrial isoform Iso 1 |HomoSapiens| GN=CYC1 PE=1 SV=72 P08574 410 kinase 10 isoform Iso 1 |HomoSapiens| GN=STK10 PE=1 SV=60 O94804 411 proton ATPase 116 kDa subunit a isoform 1 isoform Iso 2 |HomoSapiens| GN=ATP6V0A1 PE=1 SV=67 Q93050 (+1) 412 up-regulated protein 1 isoform Iso 1 |HomoSapiens| GN=HYOU1 PE=1 SV=89 Q9Y4L1 413 immunoglobulin-like receptor subfamily B member 2 isoform Iso 1 |HomoSapiens| GN=LILRB2 PE=1 SV=63 Q8N423 (+1) 414 complex subunit beta-1 isoform A |HomoSapiens| GN=AP1B1 PE=1 SV=76 Q10567 (+2) 415 protein Rab-21 isoform Iso 1 |HomoSapiens| GN=RAB21 PE=1 SV=61 Q9UL25 416 acetyltransferase, mitochondrial isoform Iso 1 |HomoSapiens| GN=ACAT1 PE=1 SV=78 P24752 417 b-c1 complex subunit 1, mitochondrial isoform Iso 1 |HomoSapiens| GN=UQCRC1 PE=1 SV=63 P31930 418 H1.5 isoform Iso 1 |HomoSapiens| GN=HIST1H1B PE=1 SV=59 P16401 419 GTPase-activating protein 9 isoform Iso 1 |HomoSapiens| GN=ARHGAP9 PE=1 SV=30 Q9BRR9 (+1) 420 glycoprotein isoform Iso 1 |HomoSapiens| GN=CD59 PE=1 SV=79 P13987 421 beta-4B chain isoform Iso 1 |HomoSapiens| GN=TUBB4B PE=1 SV=145 P68371 422 isoform Iso 1 |HomoSapiens| GN=ARG1 PE=1 SV=67 P05089 (+1) 423 protein subunit alpha isoform Iso 1 |HomoSapiens| GN=SSR1 PE=1 SV=49 P43307 424 c oxidase subunit 7A2, mitochondrial isoform Iso 1 |HomoSapiens| GN=COX7A2 PE=1 SV=26 P14406 425 expression-enhancing protein 5 isoform Iso 1 |HomoSapiens| GN=REEP5 PE=1 SV=40 Q00765 426 type II cuticular Hb5 isoform Iso 1 |HomoSapiens| GN=KRT85 PE=1 SV=75 P78386 427 initiation factor 4A-I isoform Iso 1 |HomoSapiens| GN=EIF4A1 PE=1 SV=95 P60842 428 protein kinase 14 isoform CSBP2 |HomoSapiens| GN=MAPK14 PE=1 SV=73 Q16539 (+1) 429 protein theta isoform Iso 1 |HomoSapiens| GN=YWHAQ PE=1 SV=91 P27348 430 receptor isoform Iso 1 |HomoSapiens| GN=SORL1 PE=1 SV=58 Q92673 431 synthase subunit b, mitochondrial isoform Iso 1 |HomoSapiens| GN=ATP5F1 PE=1 SV=46 P24539 432 B isoform Iso 1 |HomoSapiens| GN=ARSB PE=1 SV=57 P15848 (+1) 433 b5 type B isoform Iso 1 |HomoSapiens| GN=CYB5B PE=1 SV=47 O43169 434 thiolase, peroxisomal isoform Iso 1 |HomoSapiens| GN=ACAA1 PE=1 SV=74 P09110 435 synthetase isozyme 2 isoform Iso 1 |HomoSapiens| GN=ADSS PE=1 SV=72 P30520 436 protein 1-like isoform Iso 1 |HomoSapiens| GN=NCKAP1L PE=1 SV=27 P55160 437 and cell motility protein 1 isoform Iso 1 |HomoSapiens| GN=ELMO1 PE=1 SV=40 Q92556 438 isoform Iso 1 |HomoSapiens| GN=HP PE=1 SV=200 P00738 439 domain-binding glutamic acid-rich-like protein isoform Iso 1 |HomoSapiens| GN=SH3BGRL PE=1 SV=30 O75368 440 protein isoform Iso 1 |HomoSapiens| GN=TSPO PE=1 SV=39 P30536 441 reductase, mitochondrial isoform Mitochondrial |HomoSapiens| GN=GSR PE=1 SV=71 P00390 (+4) 442 factor 2 isoform Iso 1 |HomoSapiens| GN=EEF2 PE=1 SV=116 P13639 443 isoform Iso 1 |HomoSapiens| GN=CORO1C PE=1 SV=76 Q9ULV4 444 domain-containing protein 12 isoform Iso 1 |HomoSapiens| GN=TXNDC12 PE=1 SV=46 O95881 445 and -containing protein 8 isoform Iso 1 |HomoSapiens| GN=VSIG8 PE=1 SV=24 Q5VU13 446 hydratase, mitochondrial isoform Iso 1 |HomoSapiens| GN=ECHS1 PE=1 SV=74 P30084 447 B6 isoform Iso 1 |HomoSapiens| GN=SERPINB6 PE=1 SV=70 P35237 448 reductase, mitochondrial isoform Iso 1 |HomoSapiens| GN=DECR1 PE=1 SV=76 Q16698 449 synthase, peroxisomal isoform Iso 1 |HomoSapiens| GN=AGPS PE=1 SV=77 O00116 450 phosphorylase isoform Iso 1 |HomoSapiens| GN=TYMP PE=1 SV=61 P19971 451 proton ATPase subunit B, brain isoform isoform Iso 1 |HomoSapiens| GN=ATP6V1B2 PE=1 SV=60 P21281 452 isoform Iso 1 |HomoSapiens| GN=SLC17A5 PE=1 SV=28 Q9NRA2 453 pyrophosphatase 2, mitochondrial isoform Iso 2 |HomoSapiens| GN=PPA2 PE=1 SV=78 Q9H2U2.2 (+1) 454 kinase isoform Iso 1 |HomoSapiens| GN=NAGK PE=1 SV=57 Q9UJ70 455 peptidase 2 isoform Iso 1 |HomoSapiens| GN=DPP7 PE=1 SV=62 Q9UHL4 456 isoform Iso 1 |HomoSapiens| GN=EMB PE=1 SV=61 Q6PCB8 457 cell death protein 6 isoform Iso 1 |HomoSapiens| GN=PDCD6 PE=1 SV=33 O75340 458 peptidase complex subunit 3 isoform Iso 1 |HomoSapiens| GN=SPCS3 PE=1 SV=31 P61009 459 lipid-transfer protein isoform SCPx |HomoSapiens| GN=SCP2 PE=1 SV=82 P22307 (+1) 460 isoform Iso 1 |HomoSapiens| GN=HK1 PE=1 SV=129 P19367 (+3) 461 protein gamma isoform Iso 1 |HomoSapiens| GN=YWHAG PE=1 SV=77 P61981 462 EVI2B isoform Iso 1 |HomoSapiens| GN=EVI2B PE=1 SV=34 P34910 463 kinase Fes/Fps isoform Iso 1 |HomoSapiens| GN=FES PE=1 SV=54 P07332 (+1) 464 protein 205 isoform Iso 1 |HomoSapiens| GN=TMEM205 PE=1 SV=33 Q6UW68 465 kinase C beta type isoform Beta-I |HomoSapiens| GN=PRKCB PE=1 SV=77 P05771 (+1) 466 shock protein HSP 90-beta isoform Iso 1 |HomoSapiens| GN=HSP90AB1 PE=1 SV=142 P08238 467 glycoprotein 1 isoform Iso 1 |HomoSapiens| GN=ORM1 PE=1 SV=162 P02763 468 protein 1 subunit zeta isoform Iso 1 |HomoSapiens| GN=CCT6A PE=1 SV=62 P40227 469 carrier family 2, facilitated glucose transporter member 5 isoform Iso 1 |HomoSapiens| GN=SLC2A5 PE=1 SV=56 P22732 470 factor receptor-bound protein 2 isoform Iso 1 |HomoSapiens| GN=GRB2 PE=1 SV=71 P62993 471 protease 57 isoform Iso 1 |HomoSapiens| GN=PRSS57 PE=1 SV=45 Q6UWY2 472 protein 1 subunit delta isoform Iso 1 |HomoSapiens| GN=CCT4 PE=1 SV=77 P50991 473 activator complex subunit 2 isoform Iso 1 |HomoSapiens| GN=PSME2 PE=1 SV=53 Q9UL46 474 glucosidase isoform Iso 1 |HomoSapiens| GN=MOGS PE=1 SV=81 Q13724 475 of cytokinesis protein 8 isoform Iso 1 |HomoSapiens| GN=DOCK8 PE=1 SV=53 Q8NF50 (+2) 476 multivesicular body protein 4b isoform Iso 1 |HomoSapiens| GN=CHMP4B PE=1 SV=41 Q9H444 477 phosphatase, tissue-nonspecific isozyme isoform Iso 1 |HomoSapiens| GN=ALPL PE=1 SV=69 P05186 478 isoform Iso 1 |HomoSapiens| GN=CORO7 PE=1 SV=36 P57737 (+1) 479 family protein C6orf115 isoform Iso 1 |HomoSapiens| GN=C6orf115 PE=1 SV=29 Q9P1F3 480 protein Rab-5B isoform Iso 1 |HomoSapiens| GN=RAB5B PE=1 SV=51 P61020 481 acidic ribosomal protein P2 isoform Iso 1 |HomoSapiens| GN=RPLP2 PE=1 SV=47 P05387 482 protein p22 isoform Iso 1 |HomoSapiens| GN=CHP PE=1 SV=37 Q99653 483 transhydrogenase, mitochondrial isoform Iso 1 |HomoSapiens| GN=NNT PE=1 SV=84 Q13423 484 repeat-containing protein 3 isoform Iso 1 |HomoSapiens| GN=NHLRC3 PE=2 SV=33 Q5JS37 485 transfer flavoprotein subunit alpha, mitochondrial isoform Iso 1 |HomoSapiens| GN=ETFA PE=1 SV=64 P13804 486 isoform Br21 |HomoSapiens| GN=ANK1 PE=1 SV=54 P16157.21 (+16) 487 specific acyl-CoA dehydrogenase, mitochondrial isoform Iso 1 |HomoSapiens| GN=ACADM PE=1 SV=69 P11310 (+1) 488 alpha-IIb isoform Iso 1 |HomoSapiens| GN=ITGA2B PE=1 SV=54 P08514 489 glucokinase isoform Iso 1 |HomoSapiens| GN=ADPGK PE=1 SV=45 Q9BRR6 (+1) 490 reductase isoform Iso 1 |HomoSapiens| GN=DCXR PE=1 SV=71 Q7Z4W1 491 A isoform Iso 1 |HomoSapiens| GN=GLA PE=1 SV=69 P06280 492 glycoprotein 4 isoform Iso 1 |HomoSapiens| GN=CD36 PE=1 SV=92 P16671 493 protein C17orf62 isoform Iso 1 |HomoSapiens| GN=C17orf62 PE=1 SV=28 Q9BQA9 494 function-associated antigen 3 isoform Iso 1 |HomoSapiens| GN=CD58 PE=1 SV=40 P19256 (+2) 495 A dehydrogenase, mitochondrial isoform Iso 1 |HomoSapiens| GN=HADH PE=1 SV=99 Q16836 (+1) 496 homology domain-containing family O member 2 isoform Iso 1 |HomoSapiens| GN=PLEKHO2 PE=1 SV=23 Q8TD55 497 dehydrogenase, cytoplasmic isoform Iso 1 |HomoSapiens| GN=MDH1 PE=1 SV=98 P40925 498 disulfide-isomerase TMX3 isoform Iso 1 |HomoSapiens| GN=TMX3 PE=1 SV=57 Q96JJ7 499 alpha-L isoform Iso 1 |HomoSapiens| GN=ITGAL PE=1 SV=85 P20701 (+2) 500 NipSnap homolog 3A isoform Iso 1 |HomoSapiens| GN=NIPSNAP3A PE=1 SV=39 Q9UFN0 501 S100-A3 isoform Iso 1 |HomoSapiens| GN=S100A3 PE=1 SV=28 P33764 502 protein 33 isoform Iso 1 |HomoSapiens| GN=TMEM33 PE=1 SV=40 P57088 503 GTPase-activating protein 4 isoform Iso 1 |HomoSapiens| GN=ARHGAP4 PE=1 SV=45 P98171 (+1) 504 expressed in FDCP 6 homolog isoform Iso 1 |HomoSapiens| GN=DEF6 PE=1 SV=46 Q9H4E7 505 carrier homolog 2 isoform Iso 1 |HomoSapiens| GN=MTCH2 PE=1 SV=49 Q9Y6C9 506 phospholipid-transporting ATPase IF isoform Iso 1 |HomoSapiens| GN=ATP11B PE=1 SV=56 Q9Y2G3 507 protein 4 isoform Iso 1 |HomoSapiens| GN=CKAP4 PE=1 SV=90 Q07065 508 isoform Iso 1 |HomoSapiens| GN=AGA PE=1 SV=57 P20933 509 domain-binding glutamic acid-rich-like protein 3 isoform Iso 1 |HomoSapiens| GN=SH3BGRL3 PE=1 SV=34 Q9H299 510 b-c1 complex subunit 9 isoform Iso 1 |HomoSapiens| GN=UQCR10 PE=1 SV=27 Q9UDW1 511 proteasome non-ATPase regulatory subunit 6 isoform Iso 1 |HomoSapiens| GN=PSMD6 PE=1 SV=45 Q15008 512 RNA polymerase II transcriptional coactivator p15 isoform Iso 1 |HomoSapiens| GN=SUB1 PE=1 SV=52 P53999 513 homolog isoform Iso 1 |HomoSapiens| GN=IST1 PE=1 SV=48 P53990 (+3) 514 synthase isoform Iso 1 |HomoSapiens| GN=TBXAS1 PE=1 SV=115 P24557 515 inhibitor 1 isoform Iso 1 |HomoSapiens| GN=TMBIM6 PE=1 SV=39 P55061 516 isoform Iso 1 |HomoSapiens| GN=PLEC PE=1 SV=365 Q15149 (+8) 517 synthase subunit gamma, mitochondrial isoform Liver |HomoSapiens| GN=ATP5C1 PE=1 SV=44 P36542 (+1) 518 Pro-X carboxypeptidase isoform Iso 1 |HomoSapiens| GN=PRCP PE=1 SV=68 P42785 519 c oxidase subunit 5A, mitochondrial isoform Iso 1 |HomoSapiens| GN=COX5A PE=1 SV=45 P20674 520 isoform Iso 1 |HomoSapiens| GN=PRDX4 PE=1 SV=67 Q13162 521 subunit alpha type-5 isoform Iso 1 |HomoSapiens| GN=PSMA5 PE=1 SV=67 P28066 522 kinase-associated phosphoprotein 2 isoform Iso 1 |HomoSapiens| GN=SKAP2 PE=1 SV=27 O75563 523 c oxidase subunit 4 isoform 1, mitochondrial isoform Iso 1 |HomoSapiens| GN=COX4I1 PE=1 SV=55 P13073 524 protein Rap-2c isoform Iso 1 |HomoSapiens| GN=RAP2C PE=1 SV=40 Q9Y3L5 525 B isoform Iso 1 |HomoSapiens| GN=RNPEP PE=1 SV=70 Q9H4A4 526 protein SEC63 homolog isoform Iso 1 |HomoSapiens| GN=SEC63 PE=1 SV=36 Q9UGP8 527 dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial isoform Iso 1 |HomoSapiens| GN=SDHB PE=1 SV=66 P21912 528 factor 6 isoform Iso 1 |HomoSapiens| GN=ARF6 PE=1 SV=49 P62330 529 1 isoform Iso 1 |HomoSapiens| GN=GGT1 PE=1 SV=70 P19440 (+3) 530 type I cuticular Ha4 isoform Iso 1 |HomoSapiens| GN=KRT34 PE=1 SV=35 O76011 531 beta-1 chain isoform Iso 1 |HomoSapiens| GN=TUBB1 PE=1 SV=71 Q9H4B7 532 syndrome protein family member 2 isoform Iso 1 |HomoSapiens| GN=WASF2 PE=1 SV=39 Q9Y6W5 (+1) 533 necrosis factor alpha-induced protein 2 isoform Iso 1 |HomoSapiens| GN=TNFAIP2 PE=1 SV=37 Q03169 534 hydratase, mitochondrial isoform Iso 1 |HomoSapiens| GN=ACO2 PE=1 SV=110 Q99798 535 dehydrogenase-like oxidoreductase isoform Iso 1 |HomoSapiens| GN=SCCPDH PE=1 SV=51 Q8NBX0 536 subunit alpha type-6 isoform Iso 1 |HomoSapiens| GN=PSMA6 PE=1 SV=68 P60900 537 GTP-binding protein C isoform Iso 1 |HomoSapiens| GN=RRAGC PE=1 SV=51 Q9HB90 (+2) 538 ERGIC-53 isoform Iso 1 |HomoSapiens| GN=LMAN1 PE=1 SV=62 P49257 539 emp24 domain-containing protein 4 isoform Iso 1 |HomoSapiens| GN=TMED4 PE=1 SV=44 Q7Z7H5 (+2) 540 inhibitor isoform Iso 1 |HomoSapiens| GN=RNH1 PE=1 SV=63 P13489 541 isoform Iso 1 |HomoSapiens| GN=MANBA PE=1 SV=45 O00462 542 family CARD domain-containing protein 4 isoform Iso 1 |HomoSapiens| GN=NLRC4 PE=2 SV=23 Q9NPP4 (+1) 543 synthase-coupling factor 6, mitochondrial isoform Iso 1 |HomoSapiens| GN=ATP5J PE=1 SV=43 P18859 544 proton ATPase subunit C 1 isoform Iso 1 |HomoSapiens| GN=ATP6V1C1 PE=1 SV=62 P21283 545 c oxidase subunit 6B1 isoform Iso 1 |HomoSapiens| GN=COX6B1 PE=1 SV=46 P14854 546 protein kinase 1 isoform Iso 1 |HomoSapiens| GN=MAPK1 PE=1 SV=100 P28482 547 type I cuticular Ha5 isoform Iso 1 |HomoSapiens| GN=KRT35 PE=1 SV=48 Q92764 548 type I cytoskeletal 14 isoform Iso 1 |HomoSapiens| GN=KRT14 PE=1 SV=109 P02533 549 repeat-containing protein 15 isoform Iso 1 |HomoSapiens| GN=LRRC15 PE=1 SV=75 Q8TF66 (+1) 550 isoform Iso 1 |HomoSapiens| GN=AHCY PE=1 SV=76 P23526 551 isoform Iso 1 |HomoSapiens| GN=TOR1A PE=1 SV=49 O14656 552 kinase Lyn isoform Iso 2 |HomoSapiens| GN=LYN PE=1 SV=88 P07948.2 553 necrosis factor alpha-induced protein 8 isoform Iso 1 |HomoSapiens| GN=TNFAIP8 PE=1 SV=22 O95379 (+2) 554 reductase isoform Iso 1 |HomoSapiens| GN=TECR PE=1 SV=59 Q9NZ01 555 RNA helicase DDX3X isoform Iso 1 |HomoSapiens| GN=DDX3X PE=1 SV=87 O00571 (+1) 556 A isoform Iso 1 |HomoSapiens| GN=ARSA PE=1 SV=65 P15289 557 1,4,5-trisphosphate receptor-interacting protein isoform Iso 1 |HomoSapiens| GN=ITPRIP PE=1 SV=27 Q8IWB1 558 phosphoribosyltransferase isoform Iso 1 |HomoSapiens| GN=APRT PE=1 SV=70 P07741 559 type II cytoskeletal 5 isoform Iso 1 |HomoSapiens| GN=KRT5 PE=1 SV=148 P13647 560 isoform B |HomoSapiens| GN=PLIN3 PE=1 SV=82 O60664 (+1) 561 type II cytoskeletal 1b isoform Iso 1 |HomoSapiens| GN=KRT77 PE=1 SV=50 Q7Z794 562 synthase subunit g, mitochondrial isoform Iso 1 |HomoSapiens| GN=ATP5L PE=1 SV=35 O75964 563 type I cuticular Ha3-II isoform Iso 1 |HomoSapiens| GN=KRT33B PE=1 SV=41 Q14525 564 domain-containing protein 88B isoform Iso 1 |HomoSapiens| GN=CCDC88B PE=1 SV=40 A6NC98 (+2) 565 isoform Iso 1 |HomoSapiens| GN=PLXNC1 PE=1 SV=46 O60486 566 leucine-rich nuclear phosphoprotein 32 family member E isoform Iso 1 |HomoSapiens| GN=ANP32E PE=1 SV=41 Q9BTT0 567 isomerase, mitochondrial isoform Iso 1 |HomoSapiens| GN=ECH1 PE=1 SV=52 Q13011 568 ETHE1, mitochondrial isoform Iso 1 |HomoSapiens| GN=ETHE1 PE=1 SV=50 O95571 569 isoform Iso 1 |HomoSapiens| GN=TTR PE=1 SV=123 P02766 570 phosphatase 2A 56 kDa regulatory subunit alpha isoform isoform Iso 1 |HomoSapiens| GN=PPP2R5A PE=1 SV=39 Q15172 (+1) 571 alanine-rich C-kinase substrate isoform Iso 1 |HomoSapiens| GN=MARCKS PE=1 SV=49 P29966 572 b-c1 complex subunit 7 isoform Iso 1 |HomoSapiens| GN=UQCRB PE=1 SV=41 P14927 573 g-like protein 2 isoform Iso 1 |HomoSapiens| GN=LYG2 PE=1 SV=24 Q86SG7 574 type I cytoskeletal 39 isoform Iso 1 |HomoSapiens| GN=KRT39 PE=1 SV=21 Q6A163 575 acid dehydratase isoform Iso 2 |HomoSapiens| GN=ALAD PE=1 SV=91 P13716.2 (+1) 576 protein 2 isoform Iso 1 |HomoSapiens| GN=HEBP2 PE=1 SV=34 Q9Y5Z4 (+1) 577 superfamily member 6 isoform Iso 1 |HomoSapiens| GN=IGSF6 PE=2 SV=30 O95976 578 acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial isoform Iso 1 |HomoSapiens| GN=DLAT PE=1 SV=74 P10515 579 transfer flavoprotein subunit beta isoform Iso 2 |HomoSapiens| GN=ETFB PE=1 SV=67 P38117.2 (+1) 580 alpha-4 chain isoform Iso 1 |HomoSapiens| GN=TPM4 PE=1 SV=93 P67936 581 dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 isoform Iso 1 |HomoSapiens| GN=NDUFA5 PE=1 SV=37 Q16718 582 protein 2 isoform Iso 1 |HomoSapiens| GN=NBEAL2 PE=1 SV=29 Q6ZNJ1 (+2) 583 family member X1 isoform Iso 1 |HomoSapiens| GN=NLRX1 PE=1 SV=39 Q86UT6 (+1)

END OF FILE