Design and Characterization of High Temperature Packaging for Wide-Bandgap Semiconductor Devices

Total Page:16

File Type:pdf, Size:1020Kb

Design and Characterization of High Temperature Packaging for Wide-Bandgap Semiconductor Devices University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2012 Design And Characterization Of High Temperature Packaging For Wide-bandgap Semiconductor Devices Brian Grummel University of Central Florida Part of the Electrical and Electronics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Grummel, Brian, "Design And Characterization Of High Temperature Packaging For Wide-bandgap Semiconductor Devices" (2012). Electronic Theses and Dissertations, 2004-2019. 2495. https://stars.library.ucf.edu/etd/2495 DESIGN AND CHARACTERIZATION OF HIGH-TEMPERATURE PACKAGING FOR WIDE-BANDGAP SEMICONDUCTOR DEVICES by BRIAN J. GRUMMEL B.S.E.E. University of Central Florida, 2007 M.S.E.E. University of Central Florida, 2008 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical Engineering and Computer Science in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2012 Major Professor: Z. John Shen © 2012 Brian J. Grummel ii ABSTRACT Advances in wide-bandgap semiconductor devices have increased the allowable operating temperature of power electronic systems. High-temperature devices can benefit applications such as renewable energy, electric vehicles, and space-based power electronics that currently require bulky cooling systems for silicon power devices. Cooling systems can typically be reduced in size or removed by adopting wide-bandgap semiconductor devices, such as silicon carbide. However, to do this, semiconductor device packaging with high reliability at high temperatures is necessary. Transient liquid phase (TLP) die-attach has shown in literature to be a promising bonding technique for this packaging need. In this work TLP has been comprehensively investigated and characterized to assess its viability for high-temperature power electronics applications. The reliability and durability of TLP die-attach was extensively investigated utilizing electrical resistivity measurement as an indicator of material diffusion in gold-indium TLP samples. Criteria of ensuring diffusive stability were also developed. Samples were fabricated by material deposition on glass substrates with variant Au–In compositions but identical barrier layers. They were stressed with thermal cycling to simulate their operating conditions then characterized and compared. Excess indium content in the die-attach was shown to have poor reliability due to material diffusion through barrier layers while samples containing suitable indium content proved reliable throughout the thermal cycling process. This was confirmed by electrical resistivity measurement, EDS, FIB, and SEM characterization. Thermal and mechanical characterization of TLP die-attached samples was also performed to gain a newfound understanding of the relationship between TLP design parameters and die-attach properties. Samples with a SiC diode chip TLP bonded to a copper metalized silicon nitride iii substrate were made using several different values of fabrication parameters such as gold and indium thickness, Au–In ratio, and bonding pressure. The TLP bonds were then characterized for die-attach voiding, shear strength, and thermal impedance. It was found that TLP die-attach offers high average shear force strength of 22.0 kgf and a low average thermal impedance of 0.35 K/W from the device junction to the substrate. The influence of various fabrication parameters on the bond characteristics were also compared, providing information necessary for implementing TLP die-attach into power electronic modules for high-temperature applications. The outcome of the investigation on TLP bonding techniques was incorporated into a new power module design utilizing TLP bonding. A full half-bridge inverter power module for low-power space applications has been designed and analyzed with extensive finite element thermo- mechanical modeling. In summary, TLP die-attach has investigated to confirm its reliability and to understand how to design effective TLP bonds, this information has been used to design a new high-temperature power electronic module. iv This dissertation is dedicated to my family. v ACKNOWLEDGMENTS I would like to first thank my incredible advisor Dr. Z. John Shen who has mentored me since I knocked on his door as an undergraduate looking for research work after taking his semiconductor devices class. He welcomed me in and has guided, advised, and supported me through the field of power semiconductors ever since. I would also like to thank Dr. Habib Mustain who has also advised me and directed me toward SiC devices and TLP die-attach. He has been invaluable in assisting me in my research. Also, I would also like to thank Dr. Allen Hefner whom I have worked with since he asked me to come and work with him at the National Institute of Standards and Technology on power devices some years ago and has supported me since. I also thank my committee members Dr. Ali Gordon, Dr. Kalpathy Sundaram, and Dr. Jiann-Shiun Peter Yuan who have provided me value invaluable feedback and guidance. Thank you also to the many talented people I have worked with at the University of Central Florida and NIST including Patrick Shea, Boyi Yang, Karthik Padmanabhan, Gourab Sabui, Shan Sun, Jian Lu, Xuexin Wang, Matt Landowski, Yali Xiong, Madelaine Hernandez- Mora, Jose Ortiz, Colleen Hood, Tam Duong, and many others. Finally, my family has been unwavering in their support of me over the many years I have been pursuing my degrees and I am eternally thankful for them all, including my fiancé Brittany, my Mom, my Dad, my Sister Jill, Jason, Darlene, Marsha, and many, many others. Every day they have stood behind me and pushed me and motivated me and I cannot think of where I would be without them nor can I thank them enough. Thank you all. vi TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................................ x LIST OF TABLES ...................................................................................................................... xvii LIST OF ABBREVIATIONS .................................................................................................... xviii LIST OF VARIABLES................................................................................................................ xix CHAPTER 1: INTRODUCTION ................................................................................................... 1 1.1 Motivation ............................................................................................................... 1 1.2 Statement of Benefit ............................................................................................... 3 1.3 Wide-Bandgap Semiconductors .............................................................................. 4 1.4 High-Temperature Power Electronic Applications ............................................... 15 CHAPTER 2: REVIEW OF HIGH-TEMPERATURE PACKAGING PRIOR ART .................. 21 2.1 Conventional Power Module ................................................................................ 21 2.2 Advanced Power Module Designs ........................................................................ 33 2.3 Electronic Cooling Systems .................................................................................. 38 2.4 High-Temperature Die-Attach .............................................................................. 42 2.5 Summary ............................................................................................................... 48 CHAPTER 3: INTRODUCTION TO TRANSIENT LIQUID PHASE DIE-ATTACH .............. 49 3.1 TLP Bonding Process Overview ........................................................................... 49 3.2 Material System Requirements ............................................................................. 54 vii 3.3 Advantages and Limitations of TLP Die-Attach .................................................. 63 CHAPTER 4: OBJECTIVES ........................................................................................................ 66 4.1 Investigation of Thermal and Mechanical Properties of TLP Die-Attach ............ 67 4.2 Resistive, Diffusive, and Thermal Analysis of TLP Reliability and Durability ... 67 4.3 Design and Simulation of High-Temperature Power Electronic Module ............. 67 CHAPTER 5: INVESTIGATION OF THERMAL AND MECHANICAL PROPERTIES OF TLP DIE-ATTACH ...................................................................................................................... 69 5.1 TLP Fabrication Parameters ................................................................................. 69 5.2 Sample Fabrication Process .................................................................................. 71 5.3 Die-Attach Percentage .......................................................................................... 73 5.4 Thermal Impedance .............................................................................................. 77 5.5 Shear Strength and Force .....................................................................................
Recommended publications
  • Occupational Exposure to Heat and Hot Environments
    Criteria for a Recommended Standard Occupational Exposure to Heat and Hot Environments DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Cover photo by Thinkstock© Criteria for a Recommended Standard Occupational Exposure to Heat and Hot Environments Revised Criteria 2016 Brenda Jacklitsch, MS; W. Jon Williams, PhD; Kristin Musolin, DO, MS; Aitor Coca, PhD; Jung-Hyun Kim, PhD; Nina Turner, PhD DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations of websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. Ordering Information This document is in the public domain and may be freely copied or reprinted. To receive NIOSH documents or other information about occupational safety and health topics, contact NIOSH at Telephone: 1-800-CDC-INFO (1-800-232-4636) TTY: 1-888-232-6348 E-mail: [email protected] or visit the NIOSH website at www.cdc.gov/niosh. For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/ niosh/eNews. Suggested Citation NIOSH [2016]. NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. By Jacklitsch B, Williams WJ, Musolin K, Coca A, Kim J-H, Turner N.
    [Show full text]
  • Thermal Management of Microelectronic Equipment Heat Transfer Theory, Analysis Methods, and Design Practices
    THERMAL MANAGEMENT OF MICROELECTRONIC EQUIPMENT HEAT TRANSFER THEORY, ANALYSIS METHODS, AND DESIGN PRACTICES Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 01/05/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use ASME Press Book Series on Electronic Packaging Dereje Agonafer, Editor-in-Chief Associate Technical Editors Administrative Editors Cristina Amon, Carnegie Mellon University Damena Agonafer A. Haji-Sheikh, University of Texas, Arlington University of Texas, Arlington Yung-Cheng Lee, University of Colorado, Boulder Wataru Nakayama, ThermTech International Senayet Agonafer Shlomo Novotny, Sun Microsystems Princeton University Al Ortega, University of Arizona, Tucson Donald Price, Raytheon Electronic Systems Viswam Puligandla, Nokia Koneru Ramakrishna, Motorola, Inc. Gamal Refai-Ahmed, Ceyba Inc. Bahgat Sammakia, SUNY, Binghamton Roger Schmidt, IBM Masaki Shiratori, Yokohama National University Suresh Sitaraman, Georgia Institute of Technology Ephraim Suhir, Iolon, Inc. About the Series Electronic packaging is experiencing unprecedented growth, as it is the key enabling technology for applications ranging from computers and telecommuni- cations, to automobiles and consumer products. Although technology improve- ments are still possible, these solutions are becoming quite expensive. In addition, technology enhancements seem to be reaching physics-based limits. Therefore, packaging can present an opportunity for performance improvements without the need for new CMOS technology. At InterPACK 1999, the flagship con- ference of the Electronic and Photonic Packaging Division, the electronic pack- aging business worldwide was estimated to be over $100 billion per year. The rapidly changing technology necessitates current and up-to-date technical knowl- edge on the subject for both practicing engineers and academic researchers. It was with this background that this book series was initiated.
    [Show full text]
  • Packaging Design & Manufacture of High Temperature Electronics
    Packaging Design & Manufacture of High Temperature Electronics Module for 225ºC Applications utilizing Hybrid Microelectronics Technology Jacob M. Li Vectron International 267 Lowell Road Hudson, NH, 03051 Tel 603-598-0070, [email protected] Abstract Many downhole instrumentation tools manufacture today utilizing organic material packaging technology for producing electronic modules. Such approach with organic PCB, standard packaged discrete semiconductor and SMT-type passive components has limited the device operating temperature range in 177ºC area. An alternative packaging approach is to utilize Hybrid Microelectronics Technology to increase the operating temperature limit up to 225ºC in production environment. Besides performance improvements on upper operating temperature limit, thermal cycling, high frequency shock and vibration, based on our customer’s reliability testing data, hermetically sealed high-temperature Hybrid module’s survivability can exceed over 7000 hours of MTTF at 225ºC high temperature storage condition along with other environmental matrix testing. Moreover, comparing with high-temperature SMT and Thru-hole Technologies, Hybrid Microcircuit increases packaging density and provides valuable real estate saving. Vectron International has successfully utilized Hybrid Technology to manufacture thousands of hi- temperature electronic module for 200ºC to 225ºC applications. This paper describes the packaging design of a 225ºC hi-temp electronic module for down-hole application using such technology. This paper will also touch bases on material selection, fabrication technique and some reliability data of this high- temperature Hybrid module. Key Words: High Temperature Electronics, Hermetic Seal, Thick-Film Introduction industry, but it could develop tremendously if the automotive market opens up. Aerospace is Extreme environment applications require another area that show promise for the near electronic system survived beyond the term [1].
    [Show full text]
  • Arctic Sun® 2000 Operator’S Manual Contents
    Arctic Sun® 2000 Operator’s Manual contents Preface . iv Customer Information and Technical Support . v Section One 1 .1 Introduction . 6 1 .2 Symbols and Standards . 7 1 .3 Environmental Conditions . 9 1 .4 Indications for Use . 9 1 .5 Contraindications for Use . 10 1 .6 Warnings . 10 1 .7 Cautions . 11 Section Two 2 .1 System Description . 16 2 .2 Model 2000 Components . 18 2 .3 Remote Display and Controls . 20 2 .4 Fluid Delivery Line . 24 2 .5 Patient Temperature Cables and Probes . 24 2 .6 Temperature Out . 25 2 .7 ArcticGel Pads . 26 Section Three 3 .1 Initial Setup . 28 3 .2 Filling the Control Module . 28 3 .3 Location of the Patient . 30 3 .4 Draining the Control Module . 31 3 .5 Cleaning and Maintenance . 31 ii Arctic Sun 2000 Operator’s Manual 3 .6 Service and Calibration . 34 3 .7 Warranty . 35 Section Four 4 .1 Beginning a Procedure . 36 4 .2 Setting Custom Parameters . 36 4 .3 Collecting Data . 40 4 .4 Pre-warming or Pre-cooling the Model 2000 . 41 4 .5 Placing the ArcticGel Pads . 42 4 .6 Connecting the Pads to the Fluid Delivery Lines . 47 4 .7 Pad Weights . 48 4 .8 Treating a Patient Using Automatic Mode . 49 4 .9 Treating a Patient Using Manual Mode . 53 4 .10 Water Flow Rate . 55 4 .11 Interrupting Treatment for Patient Transport . 56 4 .12 Ending a Procedure . 56 Section Five 5 .1 Alarms . 58 5 .2 Alerts . 60 5 .2 Troubleshooting the Arctic Sun System . 60 Appendices A . Installation Procedure .
    [Show full text]
  • Power MOSFET Frequently Asked Questions and Answers Rev
    TN00008 Power MOSFET frequently asked questions and answers Rev. 5.0 — 23 June 2020 Technical note Document information Information Content Keywords TrenchMOS generation 3, generation 6, generation 9, avalanche, ruggedness, linear mode, reliability, thermal impedance, EMC, ESD, switching, thermal design Abstract This document provides answers to frequently asked questions regarding automotive MOSFET platforms, devices, functionality and reliability. It is also applicable to non-automotive applications. Nexperia TN00008 Power MOSFET frequently asked questions and answers 1. Introduction This technical note provides several important questions regarding the use of MOSFETs and the platforms required. Although it is focused on automotive applications, the principles can apply to industrial and consumer applications. It strives to provide clear answers to these questions and the reasoning behind the answers. This document is intended for guidance only. Any specific questions from customers should be discussed with Nexperia power MOSFET application engineers. 2. Gate 2.1. Q: Why is the VGS rating of Trench 6 automotive logic level MOSFETs limited to 10 V and can it be increased beyond 10 V? A: The VGS rating of 10 V given to Trench 6 logic level MOSFETs is driven by our <1 ppm failure rate targets and was rated to the best industry practices at the time. The ppm failure figures are not given in any data sheet nor are they part of AEC-Q101 qualification. In other words, two devices can both be qualified to AEC-Q101 and still have different ppm failure rate figures. Methods of defining, characterising and protecting these ratings have improved and there is now a possibility to operate beyond the given rating of 10 V.
    [Show full text]
  • A Mathematical Study of Effect of Humidity on Human Skin Temperature at Warm Environment Shiva Hari Subedi
    Journal of the Institute of Engineering Volume 16, No. 1 Published: April 2021 ISSN: 1810-3383 © TUTA j IOE j PCU Printed in Nepal A Mathematical Study of Effect of Humidity on Human Skin Temperature at Warm Environment Shiva Hari Subedi Department of Applied Sciences, Thapathali Campus, Institute of Engineering, Tribhuvan University, Nepal Corresponding Author: [email protected] Received: 2020-12-10 Revised: 2021-03-12 Accepted: 2021-03-13 Abstract: The ability of the human body to regulate its heat exchange depends on various environmental factors together with its ability to exchange heat in in-vivo tissue. The environmental factor humidity plays a crucial role in heat regulation within the human body. The heat regulation within in-vivo tissue constitutes temperature regulation in the layers of the dermal part to maintain body core temperature constant. The purpose of this article is to develop a mathematical model to study the effect of humidity on temperature regulation within the human body. The model has been developed for one dimensional steady state flow of heat in human dermal parts with appropriate boundary conditions containing the factors of effect of humidity. Matlab program has been used to simulate the model and obtain numerical results with graphs. Keywords: Thermoregulation, Pennes’ bio-heat transfer equation, human dermal parts, humidity, evaporation rate, finite element method 1. Introduction in deep structures of the body such as the liver, in comparison to temperatures of peripheral tissues. Core The human body, complicated in structure, has to temperature is normally maintained within a narrow acclimate itself to thermal environmental change within range so that essential enzymatic reactions can occur.
    [Show full text]
  • The Complete Guide to Thermal Management | CUI Devices
    THE COMPLETE GUIDE TO THERMAL MANAGEMENT TABLE OF CONTENTS 1. Executive Summary ............................................................................................................................1 2. Introduction ............................................................................................................................................ 2 2.1 Modes of Heat Transfer ............................................................................................................ 2 Conduction ........................................................................................................................................... 2 Convection .............................................................................................................................................2 Radiation ............................................................................................................................................... 3 Thermal Impedance ............................................................................................................................ 3 2.2 Cooling Devices ............................................................................................................................ 4 Heat Sinks ..............................................................................................................................................4 Fans ......................................................................................................................................................
    [Show full text]
  • Considerations for High Temperature Power Electronics Bruno Allard, Cyril Buttay, Christian Martin, Hervé Morel
    Considerations for High Temperature Power Electronics Bruno Allard, Cyril Buttay, Christian Martin, Hervé Morel To cite this version: Bruno Allard, Cyril Buttay, Christian Martin, Hervé Morel. Considerations for High Temperature Power Electronics. 18th International Symposium on Power Electronics Ee2015, Oct 2015, Novi Sad, Serbia. hal-01372146 HAL Id: hal-01372146 https://hal.archives-ouvertes.fr/hal-01372146 Submitted on 26 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Considerations for High Temperature Power Electronics B. Allard1, C. Buttay1, C. Martin2, H. Morel1 1: Univ. Lyon, Ampère, INSA Lyon, Building Leonard de Vinci, Villeurbanne, F-69621 France 2: Univ. Lyon, Ampère, Univ. Claude Bernard, Building Omega, Villeurbanne, F-69622 France Abstract: High-temperature electronics is driving large development efforts regarding many issues Obviously very high reliability is expected from these among which the objective of integration. The main systems, despite long operating life (10 - 30 years) objectives for a higher level of integration come with plus frequent deep thermal cycling (several takeoff- the constraint of increased reliability. At converter landing per day). Targeted voltage in aircraft and level, these objectives face many challenges and 3 automotive applications converge to 600V for power of them are discussed here with indication of results devices and 5V-to-30V for low-voltage circuits contributed by Ampere-lab.
    [Show full text]
  • The Engineer's Guide to Temperature Sensing
    The Engineer’s Guide to Temperature Sensing Temperature sensor design challenges and solutions ranging from thermistors to multi-channel remote-sensor ICs Table of contents Preface Chapter 4: Body temperature monitoring Message from the editors . 3 Design challenges of wearable temperature sensing . 17 Additional resources to explore . 4 Chapter 5: Fluid temperature monitoring Chapter 1: Temperature sensing fundamentals RTD replacement in heat meters using Introduction . 5 digital temperature sensors . 20 Chapter 2: System temperature monitoring Chapter 6: Threshold detection Section 2 .1 How to monitor board temperature . 7 How to protect control systems from thermal damage . 23 Section 2 .2 High-performance processor die temperature monitoring . 9 Chapter 7: Temperature compensation Chapter 3: Ambient temperature monitoring and calibration Section 3 .1 Layout considerations for accurately Section 7 .1 Temperature compensation using measuring ambient temperature . 12 high-accuracy temperature sensors . 26 Section 3 .2 Efficient cold-chain management Section 7 .2 Methods to calibrate temperature with scalable temperature sensors . 14 monitoring systems . 28 Temperature monitoring and protection 2 Texas Instruments Preface: Message from the editors Introduction • Temperature protection: Several applications In designing personal electronics, industrial or medical require action once the system goes above or below applications, engineers must address some of the same functional temperature thresholds. Temperature challenges: how to increase performance, add features sensors provide output alerts upon the detection of and shrink form factors. Along with these considerations, defined conditions to prevent system damage. It is they must carefully monitor temperature to ensure safety possible to enhance processor throughput without and protect systems and consumers from harm. compromising system reliability.
    [Show full text]
  • Thermal Analysis of Power Semiconductor Device in Steady-State Conditions
    energies Article Thermal Analysis of Power Semiconductor Device in Steady-State Conditions Adrian Plesca Faculty of Electrical Engineering, Gheorghe Asachi Technical University of Iasi, Blvd. Dimitrie Mangeron, 21–23, 700050 Iasi, Romania; [email protected]; Tel.: +40-232-278-683 Received: 27 November 2019; Accepted: 23 December 2019; Published: 24 December 2019 Abstract: Electronic devices can be damaged in an undesirable manner if the junction temperature achieves high values in order to cause thermal runaway and melting. This paper describes the mathematical model to calculate the power losses in power semiconductor devices used in bidirectional rectifier which supplies a resistive-inductive load. The obtained thermal model can be used to analyse the thermal behaviour of power semiconductors in steady-state conditions, at different values of the firing angle, direct current, air speed in the case of forced cooling, and different types of load. Also, the junction and case temperature of a power thyristor have been computed. In order to validate the proposed mathematical model, some experimental tests have been performed. The theoretical values are in good concordance with the experimental data and simulated results. Keywords: power semiconductor; temperature distribution; mathematical model; thermal modelling and simulation 1. Introduction The need for miniaturization involves mounting power semiconductors at small distances on the same heatsink, with the effect of increasing the device temperature. Even so, the maximum junction temperatures given by the manufacturer may not be exceeded for the operating conditions [1]. Measuring the operating temperature of power semiconductor devices it is of high importance for various applications, such as: power supply, wind turbines, electric vehicles, etc.
    [Show full text]
  • National Semiconductor Temperature Sensor Handbook
    National Semiconductor’s Temperature Sensor Handbook CONTENTS 1. Introduction to this Handbook .............................................................. 1 2. Temperature Sensing Techniques.......................................................... 1 RTDs........................................................................................................... 1 Thermistors ................................................................................................... 2 Thermocouples................................................................................................ 3 Silicon Temperature Sensors ................................................................................. 4 3 National’s Temperature Sensor ICs ........................................................5 3.1 Voltage-Output Analog Temperature Sensors ............................................................... 5 LM135, LM235, LM335 Kelvin Sensors........................................................................ 5 LM35, LM45 Celsius Sensors ................................................................................. 5 LM34 Fahrenheit Sensor ...................................................................................... 6 LM50 “Single Supply” Celsius Sensor........................................................................ 6 LM60 2.7V Single Supply Celsius Sensor ..................................................................... 6 3.2 Current-Output Analog Sensors ............................................................................
    [Show full text]
  • Thermal Management Solutions for Electronics
    Thermal Management Solutions for Electronics INTRODUCTION Whether in consumer electronics or high-end aerospace technology, printed wiring board assemblies for today’s increasingly complex electronics present design engineers with an ever growing need for improved, cost-effective thermal management. Many industry trends, such as cost reduction pressures, reduced footprints, and reduced weight, are counterbalanced by the need for higher circuit density to provide increased functionality to support more user “features.” The end result is an increase in heat generated—an a growing need for improved, cost-effective thermal management. Typical applications include: • Defense & Aerospace • High brightness LED’s • Automotive Electronics • Power Converters • Chemical & Process Industry instrumentation • Telecommunications Infrastructure • Cell phones & feature-rich consumer electronics • High power RF combiner/splitters & power amplifiers • Semiconductor chip packaging • Server backplanes To meet the design challenges of these diverse applications, material options have evolved to provide engineers with a broader and more versatile tool kit to optimize device cost, performance and reliability. Arlon’s electronic materials have been engineered to enhance thermal management to ultimately improve device reliability. Arlon’s broad product-line of PWB materials offers design engineers access to multiple and enhanced thermal management stratgies to meet the end-use requirements, from overall cost reduction to mission critical performance. THESE DESIGN STRATEGIES INCLUDE: – Many designs today continually push limits for heattransfer, Removing the Heat resulting in high device operating temperatures. Newer Arlon PCB materials offer increased thermal conductivity to reduce peak operating temperatures and improve component life. – For over 30 years, high temperature applications have used Beating the Heat Polyimide laminate & prepreg systems to provide device reliability in operating envi - ronments exceeding 200°C.
    [Show full text]