Syntactic Analysis and Type Evaluation in Haskell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GHC Reading Guide
GHC Reading Guide - Exploring entrances and mental models to the source code - Takenobu T. Rev. 0.01.1 WIP NOTE: - This is not an official document by the ghc development team. - Please refer to the official documents in detail. - Don't forget “semantics”. It's very important. - This is written for ghc 9.0. Contents Introduction 1. Compiler - Compilation pipeline - Each pipeline stages - Intermediate language syntax - Call graph 2. Runtime system 3. Core libraries Appendix References Introduction Introduction Official resources are here GHC source repository : The GHC Commentary (for developers) : https://gitlab.haskell.org/ghc/ghc https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary GHC Documentation (for users) : * master HEAD https://ghc.gitlab.haskell.org/ghc/doc/ * latest major release https://downloads.haskell.org/~ghc/latest/docs/html/ * version specified https://downloads.haskell.org/~ghc/9.0.1/docs/html/ The User's Guide Core Libraries GHC API Introduction The GHC = Compiler + Runtime System (RTS) + Core Libraries Haskell source (.hs) GHC compiler RuntimeSystem Core Libraries object (.o) (libHsRts.o) (GHC.Base, ...) Linker Executable binary including the RTS (* static link case) Introduction Each division is located in the GHC source tree GHC source repository : https://gitlab.haskell.org/ghc/ghc compiler/ ... compiler sources rts/ ... runtime system sources libraries/ ... core library sources ghc/ ... compiler main includes/ ... include files testsuite/ ... test suites nofib/ ... performance tests mk/ ... build system hadrian/ ... hadrian build system docs/ ... documents : : 1. Compiler 1. Compiler Compilation pipeline 1. compiler The GHC compiler Haskell language GHC compiler Assembly language (native or llvm) 1. compiler GHC compiler comprises pipeline stages GHC compiler Haskell language Parser Renamer Type checker Desugarer Core to Core Core to STG STG to Cmm Assembly language Cmm to Asm (native or llvm) 1. -
The Types, Roles, and Practices of Documentation in Data Analytics Open Source Software Libraries
Computer Supported Cooperative Work (CSCW) https://doi.org/10.1007/s10606-018-9333-1 © The Author(s) 2018 The Types, Roles, and Practices of Documentation in Data Analytics Open Source Software Libraries A Collaborative Ethnography of Documentation Work R. Stuart Geiger1 , Nelle Varoquaux1,2 , Charlotte Mazel-Cabasse1 & Chris Holdgraf1,3 1Berkeley Institute for Data Science, University of California, Berkeley, 190 Doe Library, Berkeley, CA, 94730, USA (E-mail: [email protected]); 2Department of Statistics, Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, USA; 3Berkeley Institute for Data Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA Abstract. Computational research and data analytics increasingly relies on complex ecosystems of open source software (OSS) “libraries” – curated collections of reusable code that programmers import to perform a specific task. Software documentation for these libraries is crucial in helping programmers/analysts know what libraries are available and how to use them. Yet documentation for open source software libraries is widely considered low-quality. This article is a collaboration between CSCW researchers and contributors to data analytics OSS libraries, based on ethnographic fieldwork and qualitative interviews. We examine several issues around the formats, practices, and challenges around documentation in these largely volunteer-based projects. There are many dif- ferent kinds and formats of documentation that exist around such libraries, which play a variety of educational, promotional, and organizational roles. The work behind documentation is similarly multifaceted, including writing, reviewing, maintaining, and organizing documentation. Different aspects of documentation work require contributors to have different sets of skills and overcome various social and technical barriers. -
Dynamic Extension of Typed Functional Languages
Dynamic Extension of Typed Functional Languages Don Stewart PhD Dissertation School of Computer Science and Engineering University of New South Wales 2010 Supervisor: Assoc. Prof. Manuel M. T. Chakravarty Co-supervisor: Dr. Gabriele Keller Abstract We present a solution to the problem of dynamic extension in statically typed functional languages with type erasure. The presented solution re- tains the benefits of static checking, including type safety, aggressive op- timizations, and native code compilation of components, while allowing extensibility of programs at runtime. Our approach is based on a framework for dynamic extension in a stat- ically typed setting, combining dynamic linking, runtime type checking, first class modules and code hot swapping. We show that this framework is sufficient to allow a broad class of dynamic extension capabilities in any statically typed functional language with type erasure semantics. Uniquely, we employ the full compile-time type system to perform run- time type checking of dynamic components, and emphasize the use of na- tive code extension to ensure that the performance benefits of static typing are retained in a dynamic environment. We also develop the concept of fully dynamic software architectures, where the static core is minimal and all code is hot swappable. Benefits of the approach include hot swappable code and sophisticated application extension via embedded domain specific languages. We instantiate the concepts of the framework via a full implementation in the Haskell programming language: providing rich mechanisms for dy- namic linking, loading, hot swapping, and runtime type checking in Haskell for the first time. We demonstrate the feasibility of this architecture through a number of novel applications: an extensible text editor; a plugin-based network chat bot; a simulator for polymer chemistry; and xmonad, an ex- tensible window manager. -
What I Wish I Knew When Learning Haskell
What I Wish I Knew When Learning Haskell Stephen Diehl 2 Version This is the fifth major draft of this document since 2009. All versions of this text are freely available onmywebsite: 1. HTML Version http://dev.stephendiehl.com/hask/index.html 2. PDF Version http://dev.stephendiehl.com/hask/tutorial.pdf 3. EPUB Version http://dev.stephendiehl.com/hask/tutorial.epub 4. Kindle Version http://dev.stephendiehl.com/hask/tutorial.mobi Pull requests are always accepted for fixes and additional content. The only way this document will stayupto date and accurate through the kindness of readers like you and community patches and pull requests on Github. https://github.com/sdiehl/wiwinwlh Publish Date: March 3, 2020 Git Commit: 77482103ff953a8f189a050c4271919846a56612 Author This text is authored by Stephen Diehl. 1. Web: www.stephendiehl.com 2. Twitter: https://twitter.com/smdiehl 3. Github: https://github.com/sdiehl Special thanks to Erik Aker for copyediting assistance. Copyright © 20092020 Stephen Diehl This code included in the text is dedicated to the public domain. You can copy, modify, distribute and perform thecode, even for commercial purposes, all without asking permission. You may distribute this text in its full form freely, but may not reauthor or sublicense this work. Any reproductions of major portions of the text must include attribution. The software is provided ”as is”, without warranty of any kind, express or implied, including But not limitedtothe warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authorsor copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, Arising from, out of or in connection with the software or the use or other dealings in the software. -
Not All Patterns, but Enough
Not All Patterns, But Enough Neil Mitchell, Colin Runciman York University Catch An Example • Is the following code safe?* risers :: Ord α→[α] → [[α]] risers [] = [] risers [x] = [[x]] risers (x:y:etc) = if x ≤ y then (x:s) : ss else [x] : (s : ss) where s:ss = risers (y : etc) > risers “Haskell” = [“Has”,“k”,“ell”] * Only people who haven’t seen this example in the paper! Using Catch > catch risers.hs Incomplete pattern on line 6 Program is safe • Catch is the associated implementation • Catch has proven the program is safe • Without any annotations The Pattern-Matching problem • Will a program crash when run? • May call error directly: error “doh!” • May call error indirectly: head [] • Partial pattern match: case False of True → 1 • GHC can warn on partial patterns • Catch conservatively checks a program will not crash at runtime • Even in the presence of partial patterns How Catch works First convert Haskell to first-order Core, using Yhc and Firstify Checker Exact Operates on first-order (ignoring laziness) Core language 3 constraint operators Constraint Language Conservative Describes a (possibly infinite) set of values Can replace constraint language Checker Terms • A constraint describes a set of values • x is a (:)-constructed value • A precondition is a constraint on arguments • In head x, x must be (:)-constructed • An entailment is a constraint on arguments to ensure a constraint on the result • If x is (:)-constructed, null x is False Checker Types • Opaque constraint type • data Constraint = … • Does an expression satisfy -
Haddock User Guide I
Haddock User Guide i Haddock User Guide Haddock User Guide ii Copyright © 2004 Simon Marlow Haddock User Guide iii COLLABORATORS TITLE : Haddock User Guide ACTION NAME DATE SIGNATURE WRITTEN BY Simon Marlow 2004-08-02 REVISION HISTORY NUMBER DATE DESCRIPTION NAME Haddock User Guide iv Contents 1 Introduction 1 1.1 Obtaining Haddock . .1 1.2 License . .2 1.3 Acknowledgements . .2 2 Invoking Haddock 3 2.1 Using literate or pre-processed source . .6 3 Documentation and Markup 7 3.1 Documenting a top-level declaration . .7 3.2 Documenting parts of a declaration . .8 3.2.1 Class methods . .8 3.2.2 Constructors and record fields . .8 3.2.3 Function arguments . .9 3.3 The module description . .9 3.4 Controlling the documentation structure . .9 3.4.1 Re-exporting an entire module . 10 3.4.2 Omitting the export list . 10 3.5 Named chunks of documentation . 11 3.6 Hyperlinking and re-exported entities . 11 3.7 Module Attributes . 12 3.8 Markup . 12 3.8.1 Paragraphs . 12 3.8.2 Special characters . 12 3.8.3 Character references . 13 3.8.4 Code Blocks . 13 3.8.5 Hyperlinked Identifiers . 13 3.8.6 Emphasis and Monospaced text . 13 3.8.7 Linking to modules . 14 3.8.8 Itemized and Enumerated lists . 14 3.8.9 Definition lists . 14 3.8.10 URLs . 14 3.8.11 Anchors . 14 Haddock User Guide v 4 Index 15 Abstract This document describes Haddock version 2.6.1, a Haskell documentation tool. Haddock User Guide 1 / 15 Chapter 1 Introduction This is Haddock, a tool for automatically generating documentation from annotated Haskell source code. -
Haskhol: a Haskell Hosted Domain Specific Language for Higher-Order
HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving BY c 2011 Evan Christopher Austin Submitted to the graduate degree program in Electrical Engineering & Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Chairperson Dr. Perry Alexander Dr. Andy Gill Dr. Arvin Agah Date Defended: July 26, 2011 The Thesis Committee for Evan Christopher Austin certifies that this is the approved version of the following thesis: HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving Chairperson Dr. Perry Alexander Date Approved: July 26, 2011 ii Abstract HaskHOL is an implementation of a HOL theorem proving capability in Haskell. Motivated by a need to integrate theorem proving capabilities into a Haskell-based tool suite, HaskHOL began as a simple port of HOL Light to Haskell. However, Haskell's laziness, immutable data, and monadic extensions both complicate an implementation and enable a new feature class. This thesis describes HaskHOL, its motivation and implementation. Its use to implement a primitive, interactive theorem prover is explored and its performance is evaluated using a collection of intuitionistically valid problems. iii Acknowledgements Dr. Perry Alexander has served as a constant inspiration, mentor, and friend since very early in my college career. His guidance and the myriad of opportunities he has afforded me have kindled a passion for formal methods research that I can honestly say I would not have had otherwise. Dr. Andy Gill was the first professor I had at KU who challenged me to go above and beyond what was required for a course. -
Haskell-Like S-Expression-Based Language Designed for an IDE
Department of Computing Imperial College London MEng Individual Project Haskell-Like S-Expression-Based Language Designed for an IDE Author: Supervisor: Michal Srb Prof. Susan Eisenbach June 2015 Abstract The state of the programmers’ toolbox is abysmal. Although substantial effort is put into the development of powerful integrated development environments (IDEs), their features often lack capabilities desired by programmers and target primarily classical object oriented languages. This report documents the results of designing a modern programming language with its IDE in mind. We introduce a new statically typed functional language with strong metaprogramming capabilities, targeting JavaScript, the most popular runtime of today; and its accompanying browser-based IDE. We demonstrate the advantages resulting from designing both the language and its IDE at the same time and evaluate the resulting environment by employing it to solve a variety of nontrivial programming tasks. Our results demonstrate that programmers can greatly benefit from the combined application of modern approaches to programming tools. I would like to express my sincere gratitude to Susan, Sophia and Tristan for their invaluable feedback on this project, my family, my parents Michal and Jana and my grandmothers Hana and Jaroslava for supporting me throughout my studies, and to all my friends, especially to Harry whom I met at the interview day and seem to not be able to get rid of ever since. ii Contents Abstract i Contents iii 1 Introduction 1 1.1 Objectives ........................................ 2 1.2 Challenges ........................................ 3 1.3 Contributions ...................................... 4 2 State of the Art 6 2.1 Languages ........................................ 6 2.1.1 Haskell .................................... -
A Formal Methodology for Deriving Purely Functional Programs from Z Specifications Via the Intermediate Specification Language Funz
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1995 A Formal Methodology for Deriving Purely Functional Programs From Z Specifications via the Intermediate Specification Language FunZ. Linda Bostwick Sherrell Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Sherrell, Linda Bostwick, "A Formal Methodology for Deriving Purely Functional Programs From Z Specifications via the Intermediate Specification Language FunZ." (1995). LSU Historical Dissertations and Theses. 5981. https://digitalcommons.lsu.edu/gradschool_disstheses/5981 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. H ie quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandardm argins, and improper alignment can adversely affect reproduction. In the unlikely, event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
The Logic of Demand in Haskell
Under consideration for publication in J. Functional Programming 1 The Logic of Demand in Haskell WILLIAM L. HARRISON Department of Computer Science University of Missouri Columbia, Missouri RICHARD B. KIEBURTZ Pacific Software Research Center OGI School of Science & Engineering Oregon Health & Science University Abstract Haskell is a functional programming language whose evaluation is lazy by default. However, Haskell also provides pattern matching facilities which add a modicum of eagerness to its otherwise lazy default evaluation. This mixed or “non-strict” semantics can be quite difficult to reason with. This paper introduces a programming logic, P-logic, which neatly formalizes the mixed evaluation in Haskell pattern-matching as a logic, thereby simplifying the task of specifying and verifying Haskell programs. In P-logic, aspects of demand are reflected or represented within both the predicate language and its model theory, allowing for expressive and comprehensible program verification. 1 Introduction Although Haskell is known as a lazy functional language because of its default eval- uation strategy, it contains a number of language constructs that force exceptions to that strategy. Among these features are pattern-matching, data type strictness annotations and the seq primitive. The semantics of pattern-matching are further enriched by irrefutable pattern annotations, which may be embedded within pat- terns. The interaction between Haskell’s default lazy evaluation and its pattern- matching is surprisingly complicated. Although it offers the programmer a facility for fine control of demand (Harrison et al., 2002), it is perhaps the aspect of the Haskell language least well understood by its community of users. In this paper, we characterize the control of demand first in a denotational semantics and then in a verification logic called “P-logic”. -
Eclipsefp & Leksah
EclipseFP & Leksah TAIMO PEELO 20.05.2009 EclipseFP • plugin for eclipse IDE platform • goal is to support all kinds of functional programming languages in Eclipse • current subprojects – Haskell module – Common module – Cohatoe module – OCaml module (admittedly dead) Downloading EclipseFP • http://eclipsefp.sourceforge.net/ – bit inactive, latest integration build 14 Sep 2008 – see downloads section • natural choice: try the latest – current prerequisites • JVM >= 5.0 • eclipse >= 3.2 • ghc ? – I had 6.8.2 Installing EclipseFP • downloaded the archive, followed the instructions – no dice, nothing new in Eclipse • argh, trying with update site then – http://eclipsefp.sf.net/updates – older version only, 0.10.0 Using EclipseFP • Help → Contents → Functional Programming • File → New Project → Haskell Project – ... and create new haskell module :) • first things noticed – error reporting not exhaustive – autocompletion (code assist) dumb – run in GHCi /hugs does nothing – “navigate to” (ctrl + click) not present!? Still Using EclipseFP • Haddock documentation generation – File → Export → Other → Haddock documentation Mysterious Cohatoe • that bastard is not installed with EclipseFP : – ... and is not available from update site – version 0.12.0 distributed as update site archive at • http://eclipsefp.sourceforge.net/cohatoe/index.html • contains runtime, SDK and examples • “but what does it do, mummy?” – Help → Contents → Cohatoe ... – "Contributing Haskell (code) to Eclipse"” Catching of the Cohatoe • Cohatoe Examples menu appeared... • EclipseFP has broken link to cohatoe-api – google for cohatoe-api_1.0.0.zip • Leif Frenzel has written Cohatoe quickstart – http://cohatoe.blogspot.com/ Taming of the Cohatoe • ps ax | grep haskell – haskellserver 57053 /usr/lib/ghc-6.8.2 – the beast is running :) Basic Cohatoe • Eclipse plugin extensions :) • consider Haskell function – doSmthWith :: String → String – .. -
Functional Baby Talk: Analysis of Code Fragments from Novice Haskell Programmers
Functional Baby Talk: Analysis of Code Fragments from Novice Haskell Programmers Jeremy Singer and Blair Archibald School of Computing Science University of Glasgow UK [email protected] [email protected] What kinds of mistakes are made by novice Haskell developers, as they learn about functional pro- gramming? Is it possible to analyze these errors in order to improve the pedagogy of Haskell? In 2016, we delivered a massive open online course which featured an interactive code evaluation en- vironment. We captured and analyzed 161K interactions from learners. We report typical novice developer behavior; for instance, the mean time spent on an interactive tutorial is around eight min- utes. Although our environment was restricted, we gain some understanding of Haskell novice er- rors. Parenthesis mismatches, lexical scoping errors and do block misunderstandings are common. Finally, we make recommendations about how such beginner code evaluation environments might be enhanced. 1 Introduction The Haskell programming language [14] has acquired a reputation for being difficult to learn. In his presentation on the origins of Haskell [23] Peyton Jones notes that, according to various programming language popularity metrics, Haskell is much more frequently discussed than it is used for software implementation. The xkcd comic series features a sarcastic strip on Haskell’s side-effect free property [21]. Haskell code is free from side-effects ‘because no-one will ever run it.’ In 2016, we ran the first instance of a massive open online course (MOOC) at Glasgow, providing an introduction to functional programming in Haskell. We received many items of learner feedback that indicated difficulty in learning Haskell.