bioRxiv preprint doi: https://doi.org/10.1101/2020.09.12.294751; this version posted September 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Three-dimensional Printing of Customized Bioresorbable Airway Stents Nevena Paunović1,ǂ; Yinyin Bao1,ǂ; Fergal Brian Coulter2; Kunal Masania2,3; Anna Karoline Geks4; Karina Klein4; Ahmad Rafsanjani2,5; Jasmin Cadalbert1; Peter W. Kronen4,6,7; Nicole Kleger2; Agnieszka Karol4; Zhi Luo1; Fabienne Rüber8; Davide Brambilla1,9; Brigitte von Rechenberg4; Daniel Franzen8,*; André R. Studart2,*; Jean-Christophe Leroux1,* 1Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland. 2Complex materials, Department of Materials, ETH Zurich, Zurich, Switzerland. 3Shaping Matter Lab, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands. 4Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. 5The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark. 6Veterinary Anaesthesia Services-International, Winterthur, Switzerland. 7Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland. 8Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland. 9Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada. ǂThese authors contributed equally. *Corresponding authors. E-mail:
[email protected],
[email protected],
[email protected]. Abstract Central airway obstruction is a life-threatening disorder causing a high physical and psychological burden to patients due to severe breathlessness and impaired quality of life. Standard-of-care airway stents are silicone tubes, which cause immediate relief, but are prone to migration, especially in growing patients, and require additional surgeries to be removed, which may cause further tissue damage.