Anais Do XIV Congresso De Iniciação Científica Da

Total Page:16

File Type:pdf, Size:1020Kb

Anais Do XIV Congresso De Iniciação Científica Da ANAIS XIV Congresso de Iniciação Científica Universidade de Araraquara – UNIARA 04 A 08 DE NOVEMBRO 2019 XIV Congresso de Iniciação Científica Universidade de Araraquara – UNIARA XIV CONGRESSO DE INICIAÇÃO CIENTÍFICA PÁGINAS DE 1 - 358 2019 XIV CONGRESSO DE INICIAÇÃO CIENTÍFICA – ANAIS Ficha Catalográfica elaborada pela Biblioteca da Universidade de Araraquara UNIARA XIV CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UNIARA. (14.: 2019: Araraquara). Anais do XIV Congresso de Iniciação Científica da UNIARA. – Araraquara: UNIARA - Universidade de Araraquara, SP, 2019. 358 p. Vários autores Disponível em: https://www.uniara.com.br/cic/anais/ 1. Iniciação Científica. I. Título. CDU. 001.89 Universidade de Araraquara – UNIARA Rua Voluntários da Pátria, 1309 – Centro – Araraquara – CEP: 14801-320 Site: www.uniara.com.br / Tel. (16) 3301-7100 UNIVERSIDADE DE ARARAQUARA – UNIARA Reitor Prof. Dr. Luiz Felipe Cabral Mauro Pró-reitora Acadêmica Prof. Flávio Módolo Programa de Pós-Graduação em Desenvolvimento Territorial e Meio Ambiente Profa. Dra. Vera Lúcia Silveira Botta Ferrante Departamento de Ciências Biológicas e da Saúde Profa. Dra. Celi Vasques Crepaldi Departamento de Ciências da Administração e Tecnologia Prof. Ms. Eduardo Rois Moralles Alves Departamento de Ciências Humanas e Sociais Profa. Ms. Eduarda Escila Ferreira Lopes Departamento de Ciências Jurídicas Prof. Ms. Fernando Passos Centro Integrado de Estudos e Pesquisas Profa. Dra. Helena Carvalho De Lorenzo Comissão Organizadora do XIV Congresso de Iniciação Científica • Profa. Dra. Helena Carvalho De Lorenzo – Coordenação • Profa. Dra. Ana Paula de Souza Faloni • Prof. Dr. Adilson Cesar Abreu Bernardi • Prof. Dr. Marcelo Wilson Anhesine • Profa. Dra. Maria Lucia Ribeiro • Profa. Dra. Maria Lúcia Suzigan Dragone • Profa. Dra. Silvia Helena Ferreira Fortes Bassi • Profa. Dra. Teresa Kazuko Muraoka • Profa. Dra. Vera Mariza Henriques de Miranda Costa Secretária Executiva • Fernanda Cesar Comissão Científica e Conselho Editorial • Profa. Dra. Helena Carvalho De Lorenzo – Coordenadora • Profa. Dra. Ana Paula de Souza Faloni • Prof. Dr. Adilson Cesar Abreu Bernardi • Prof. Dr. Marcelo Wilson Anhesine • Profa. Dra. Maria Lucia Ribeiro • Profa. Dra. Maria Lúcia Suzigan Dragone • Profa. Dra. Silvia Helena Ferreira Fortes Bassi • Profa. Dra. Teresa Kazuko Muraoka • Profa. Dra. Vera Mariza Henriques de Miranda Costa Comitê de Ética em Pesquisa - CEP • Dr. Adilson César Abreu Bernardi - Coordenador • Dra. Andréa Corrêa Carrascosa - Vice coordenadora • George Washington Rocha - Representante dos usuários • Regiane Gomes de Oliveira Fray - Secretária administrativa • Dra. Adriana Aparecida Mendes • Dra. Angélica de Moraes Manço Rubiatti • Ms. Antonio Marcos de Souza Lemos • Dra. Bruna Galdorfini Chiari • Dra. Cliciane Portela Sousa • Dra. Daiane Roncato Cardozo • Ms. Denise Bertolini Chediek • Dr. Fernando Simões Crisci • Ms. Gislaine Cristina Pavini • Dra. Juliene de Cassia Leiva • Ms. Jussara de Oliveira • LD. Leonor de Castro Monteiro Loffredo • Ms. Luis Gustavo Pozzi • Dra. Maria Lúcia Suzigan Dragone • Dr. Ricardo Augusto Bonotto Barboza • Dra. Silvia Helena Ferreira Fortes Bassi • LD. Vera Mariza H. de Miranda Costa Comitê de Ética no Uso de Animais - CEUA • Dra. Eliane Trovatti - Coordenadora • Dra. Thalita Pedroni Formariz Pilon - Vice coordenadora • Jaqueline Diniz – Secretária • Sra. Rosângela Franco Gomes de Assunção, representante da Sociedade Protetora de Animais – Associação Araraquarense SOS Melhor amigo. • Dra. Ana Carolina Buzzo Marcondelli • Dr. Claúdio Marcantonio • Ms. Douglas Augusto Franciscato • Esp. Eduardo Henrique Porta • Dra. Miriane da Costa Gileno • Dra. Mônica Rosas da Costa Iemma • Dr. Olavo Nardy • Dr. Walter Heinz Feringer Junior Apoio Técnico • Celso Andretta Junior – Web • Juliano Marcelo – Web • Rafael Lopes – Web • Rodrigo Sallun – Publiara • Michel Roberto da Silva - Publiara • Natalia Fernanda Nunes – Assessoria de Imprensa • Christiano Kobal Oliveira Dias de Andrade – Assessoria de Imprensa • Irene Carvalho De Lorenzo – estagiária Bolsista de Iniciação Científica • Aline Monteiro Novo - PIBIC/CNPq/UNIARA • Amanda Braga Alves - FUNADESP/UNIARA • Amós Patrik Landim Chiquesi - PIBIC/CNPq/UNIARA • Ana Luiza de Marchi - PIBIC/CNPq/UNIARA • Ana Luiza Ramos de Castro – PIBIC/CNPq/UNIARA • Augusto Fargoni Bergo - PIBIC/CNPq/UNIARA • Beatriz Patti Rocha - PIBIC/CNPq/UNIARA • Beatriz Nogueira de Brito - PIBIC/CNPq/UNIARA • Beatriz Rossafa Pauletti - FUNADESP/UNIARA • Bruna Polastri Gomes - PIBIC/CNPq/UNIARA • Bruno Augusto Jardim da Silva - PIBIC/CNPq/UNIARA • Carolina Fernanda da Silva - PIBIC/CNPq/UNIARA • Carolina da Silva de Oliveira - PIBIC/CNPq/UNIARA • Camila Galatti Valencio - FUNADESP/UNIARA • Carla Fernandes Monteiro - FUNADESP/UNIARA • Daiani Cristini Mascgana - FUNADESP/UNIARA • Everton Luiz Trintin - PIBITI/CNPq/UNIARA • Flávio Augusto Barbieri - PIBITI/CNPq/UNIARA • Gabrielle Dovigo - PIBIC/CNPq/UNIARA • Gabriela de Menezes Freitas - PIBIC/CNPq/UNIARA • Gabriely Caroline Correia - PIBIC/CNPq/UNIARA • Guilherme Erlo - PIBIC/CNPq/UNIARA • Henrique Sanctis Santarém - PIBIC/CNPq/UNIARA • Henrique Tamer - PIBIC/CNPq/UNIARA • Jacqueline Henrique Terzi Silva – PIBIC/CNPq/UNIARA • Jéssica Luciana Thomazzi - PIBIC/CNPq/UNIARA • Lamis Martins Braga Gibran Malkomes - PIBIC/CNPq/UNIARA • Lais Fernanda Assandre - PIBITI/CNPq/UNIARA • Layris Menzes de Oliveira - PIBITI/CNPq/UNIARA • Lilian Fernandes da Rocha - PIBIC/CNPq/UNIARA • Maria Julia Mieli - PIBIC/CNPq/UNIARA • Marina Spoto Bueno de Moraes - PIBIC/CNPq/UNIARA • Merielen Silva Albuquerque - PIBITI/CNPq/UNIARA • Thaís Bianca Barrere - PIBITI/CNPq/UNIARA • Vitor Ribeiro Tricai - PIBITI/CNPq/UNIARA • Vitoria Siqueira Burato - PIBIC/CNPq/UNIARA APRESENTAÇÃO É com grande satisfação que apresentamos aos leitores e autores, os resultados dos trabalhos apresentados no XIV Congresso de Iniciação Cientifica da Uniara realizado no período de 04 a 08 de novembro de 2019, em Araraquara. Tendo se iniciado em 2006, como um pequeno evento de caráter local, o congresso vem gradativamente se ampliando e ganhando a participação de estudantes e pesquisadores de outras instituições de ensino da região, o que muito nos gratifica. Assim, pensamos que já pode ser considerado um evento consolidado graças também aos esforços de um grupo de professores que, em anos consecutivos, veem se empenhando para a realização do mesmo e da sua crença de que a iniciação cientifica é uma ferramenta fundamental para a formação profissional de nossos alunos. Não se trata apenas da apresentação dos trabalhos dos alunos, mas de divulgar na instituição a cultura científica, ou seja, a maneira científica de produzir conhecimento e de refletir com os alunos como as atividades humanas, o meio ambiente e a própria vida humana têm sido moldados pela ciência ao longo da história. Este ano o XIV Congresso teve a palestra de abertura ministrada pela Profa. Me. Larissa Camerlengo Dias Gomes, docente e pesquisadora da Uniara que falou sobre o tema “Caminhos profissionais: emprego, empregabilidade na atualidade”. O XIV CIC teve 553 inscrições de alunos, sendo 298 para apresentação de trabalhos e 255 como participantes ouvintes. Foram apresentados 96 trabalhos em mesas de debates e 202 sob a forma de painéis. Os resumos apresentados encontram-se aqui reunidos e o leitor poderá avaliar a qualidade, a atualidade e a relevância das pesquisas aqui desenvolvidas. Aproveitamos para agradecer à UNIARA, o apoio ao Programa PIC de Iniciação Cientifica e ao CNPq pelos Programas PIBIC e PIBITI. Estendemos nossos agradecimentos à Reitoria da UNIARA, aos Coordenadores dos Programas de Pós- graduação, aos Chefes de Departamentos, além de professores, funcionários e alunos que participaram do Congresso. Profa. Dra. Helena Carvalho De Lorenzo Coordenadora do XIV Congresso de Iniciação Científica Araraquara, março de 2020 Sumário Sumário 10 Programação 36 Trabalhos 37 Premiados MESA 1 Biomedicina / Biotecnologia 40 AUTOR TRABALHO Gabriela Victor Caracterização de nanocompósitos a partir de 41 Conte nanocristais de celulose bacteriana e siloxanos para aplicação em liberação controlada de fármacos Larissa Peloso Produção e caracterização de gel de celulose 42 Mobilon bacteriana/própolis para possível aplicação em inativação fotodinâmica mediada por azul de metileno como forma de tratamento de feridas infectadas José Alberto Paris Síntese, caracterização e estudos da atividade 43 Junior biológica de complexos metálicos com ácidos alfa- hidroxicarboxílicos e outros ligantes selecionados. Descrição de um complexo de prata com isoniazida Nadia Andrade 44 Aleixo; Patrícia Screening da atividade citotóxica de complexos de Bento da Silva cobre(II) com isoniazida Vilmar Alves de 45 Souza Comparação de modelos de maturidade MESA 2 Biomedicina 46 AUTOR TRABALHO Luiza Girotto Avaliação da influência de um sistema nanotecnológico 47 sobre a atividade citotóxica, mutagênica e antibacteriana induzida por extratos de byrsonima coccolobifolia Marina Paschoal O papel do biomédico na orientação da obesidade, 48 Marcomini diabetes mellitus e hipertensão e análise de fatores de risco Paloma Minelli 49 Bento; Keico Okino Efeito do ácido zoledrônico em sítios ósseos formados Nonaka; Nathalia por tipos de ossificação distintos Mestre Pereira; 10 Rômulo Augusto da Costa Chaves; Victor Fabrício Camila Cristina Funcionalização de scaffolds de pla impresso em 50 mora reina estrutura 3d para aplicação em engenharia de tecidos MESA 3 Enfermagem 51 AUTOR TRABALHO Beatriz Suélen Conhecimento e atuação do
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • CT Image Based 3D Reconstruction for Computer Aided Orthopaedic Surgery
    CT Image Based 3D Reconstruction for Computer Aided Orthopaedic Surgery F. Blanco IDMEC-IST, Technical University of Lisbon, Av Rovisco Pais, 1049-001 Lisboa, Portugal P.J.S. Gonçalves Polytechnic Institute of Castelo Branco, Av Empresario, 6000-767 Castelo Branco, Portugal IDMEC-IST, Technical University of Lisbon, Av Rovisco Pais, 1049-001 Lisboa, Portugal J.M.M. Martins & J.R. Caldas Pinto IDMEC-IST, Technical University of Lisbon, Av Rovisco Pais, 1049-001 Lisboa, Portugal Abstract This paper presents an integrated system of 3D medical image visualization and robotics to assist orthopaedic surgery, namely by positioning a manipulator robot end-effector using a CT image based femur model. The 3D model is generated from CT images, acquired in a preoperative exam, using VTK applied to the free medical visualization software InVesalius. Add-ons were developed for communication with the robot which will be forwarded to the designated position to perform surgical tasks. A stereo vision 3D reconstruction algorithm is used to determine the coordinate transform between the virtual and the real femur by means of a fiducial marker attached to the bone. Communication between the robot and 3D model is bi-directional since visualization is updated in real time from the end-effector movement. 1. Introduction In recent years, robotic applications regarding surgical assistance have been appearing more often. Their advantages in precision, accuracy, repeatability and the ability to use specialized manipulators are granting them a place in the operating theatre. By introducing robotic technology in surgery, the goal is not to replace the surgeon but, instead, to develop new tools to assist in accurate surgical tasks.
    [Show full text]
  • Development and Characterization of the Invesalius Navigator Software for Navigated Transcranial Magnetic Stimulation T ⁎ Victor Hugo Souzaa, ,1, Renan H
    Journal of Neuroscience Methods 309 (2018) 109–120 Contents lists available at ScienceDirect Journal of Neuroscience Methods journal homepage: www.elsevier.com/locate/jneumeth Development and characterization of the InVesalius Navigator software for navigated transcranial magnetic stimulation T ⁎ Victor Hugo Souzaa, ,1, Renan H. Matsudaa, André S.C. Peresa,b, Paulo Henrique J. Amorimc, Thiago F. Moraesc, Jorge Vicente L. Silvac, Oswaldo Baffaa a Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil b Instituto Internacional de Neurociência de Natal Edmond e Lily Safra, Instituto Santos Dumont, Rodovia RN 160 Km 03, 3003, 59280-000, Macaíba, RN, Brazil c Núcleo de Tecnologias Tridimensionais, Centro de Tecnologia da Informação Renato Archer, Rodovia Dom Pedro I Km 143, 13069-901, Campinas, SP, Brazil GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: Background: Neuronavigation provides visual guidance of an instrument during procedures of neurological in- Neuronavigation terventions, and has been shown to be a valuable tool for accurately positioning transcranial magnetic stimu- Transcranial magnetic stimulation lation (TMS) coils relative to an individual’s anatomy. Despite the importance of neuronavigation, its high cost, Localization error low portability, and low availability of magnetic resonance imaging facilities limit its insertion in research and Co-registration clinical environments. Coil positioning New method: We have developed and validated the InVesalius Navigator as the first free, open-source software Surgical planning for image-guided navigated TMS, compatible with multiple tracking devices. A point-based, co-registration al- gorithm and a guiding interface were designed for tracking any instrument (e.g.
    [Show full text]
  • Journal of Epilepsy and Clinical Neurophysiology
    ISSN 1676-2649 Journal of Epilepsy and Clinical Neurophysiology Volume 25 l Number 1 l Year 2019 ABSTRACTS PRESENTED AT THE 6TH BRAINN CONGRESS BRAZILIAN INSTITUTE OF NEUROSCIENCE AND NEUROTECHNOLOGY (BRAINN-UNICAMP) APRIL 1th TO 3th 2019 - CAMPINAS, SP, BRAZIL J Epilepsy Clin Neurophysiol 2019; 25(1): 1-51 www.jecn.org Órgão Oficial da Liga Brasileira de Epilepsia Indexada no LILACS – Literatura Latino-americana e do Caribe em Ciências da Saúde CORPO EDITORIAL Editores Científicos Fernando Cendes – Departamento de Neurologia, Faculdade de Ciências João Pereira Leite – Departamento de Neurociências e Ciências do Médicas, Unicamp, Campinas/SP/Brasil. Comportamento, Faculdade de Medicina, USP, Ribeirão Preto/SP/Brasil. Editores Associados Li Li Min – Departamento de Neurologia, Faculdade de Ciências Carlos Eduardo Silvado – Setor de Epilepsia e EEG, Hospital de Clínicas, Médicas, Unicamp, Campinas/SP/Brasil. UFPR, Curitiba, PR/Brasil. Conselho Editorial • André Palmini – Divisão de Neurologia, PUC • Gilson Edmar Gonçalves e Silva – Departamento Pediatria, Faculdade de Medicina, PUC, Porto Porto Alegre, RS/Brasil. de Neurologia, Faculdade de Medicina, UFPE, Alegre, RS/Brasil. • Áurea Nogueira de Melo – Departamento de Recife, PE/Brasil. • Natalio Fejerman – Hospital de Pediatria “Juan Medicina Clínica, Centro de Ciências da Saúde, • Íscia Lopes-Cendes – Departamento de Genética P. Garrahan”, Buenos Aires/Argentina. UFRN, Natal, RN/Brasil. Médica, Faculdade de Ciências Médicas, Uni- • Norberto Garcia Cairasco – Departamento de • Bernardo Dalla Bernardina – Universitá de camp, Campinas, SP/Brasil. Fisiologia, Faculdade de Medicina, USP, Ribeirão Verona,Verona/Itália. • J. W. A. S. Sander – National Hospital for Neu- Preto, SP/Brasil. • Elza Marcia Yacubian – Unidade de Pesquisa e rology and Neurosurgery, London/UK • Paula T.
    [Show full text]
  • Current Applications and Future Perspectives of the Use of 3D Printing in Anatomical Training and Neurosurgery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector TECHNOLOGY REPORT published: 24 June 2016 doi: 10.3389/fnana.2016.00069 Current Applications and Future Perspectives of the Use of 3D Printing in Anatomical Training and Neurosurgery Vivek Baskaran 1, Goran Štrkalj 2, Mirjana Štrkalj 3 and Antonio Di Ieva 4, 5* 1 ACT Health, Canberra, ACT, Australia, 2 Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia, 3 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia, 4 Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia, 5 Cancer Division, Garvan Institute of Medical Research, Sydney, NSW, Australia 3D printing is a form of rapid prototyping technology, which has led to innovative new applications in biomedicine. It facilitates the production of highly accurate three dimensional objects from substrate materials. The inherent accuracy and other properties of 3D printing have allowed it to have exciting applications in anatomy education and surgery, with the specialty of neurosurgery having benefited particularly well. This article presents the findings of a literature review of the Pubmed and Web of Science databases investigating the applications of 3D printing in anatomy and surgical education, and Edited by: neurosurgery. A number of applications within these fields were found, with many Zoltan F. Kisvarday, University of Debrecen, Hungary significantly improving the quality of anatomy and surgical education, and the practice of Reviewed by: neurosurgery. They also offered advantages over existing approaches and practices. It is Ricardo Insausti, envisaged that the number of useful applications will rise in the coming years, particularly University of Castilla -la Mancha, as the costs of this technology decrease and its uptake rises.
    [Show full text]
  • Three-Dimensional Printing of Customized Bioresorbable Airway
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.12.294751; this version posted September 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Three-dimensional Printing of Customized Bioresorbable Airway Stents Nevena Paunović1,ǂ; Yinyin Bao1,ǂ; Fergal Brian Coulter2; Kunal Masania2,3; Anna Karoline Geks4; Karina Klein4; Ahmad Rafsanjani2,5; Jasmin Cadalbert1; Peter W. Kronen4,6,7; Nicole Kleger2; Agnieszka Karol4; Zhi Luo1; Fabienne Rüber8; Davide Brambilla1,9; Brigitte von Rechenberg4; Daniel Franzen8,*; André R. Studart2,*; Jean-Christophe Leroux1,* 1Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland. 2Complex materials, Department of Materials, ETH Zurich, Zurich, Switzerland. 3Shaping Matter Lab, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands. 4Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. 5The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark. 6Veterinary Anaesthesia Services-International, Winterthur, Switzerland. 7Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland. 8Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland. 9Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada. ǂThese authors contributed equally. *Corresponding authors. E-mail: [email protected], [email protected], [email protected]. Abstract Central airway obstruction is a life-threatening disorder causing a high physical and psychological burden to patients due to severe breathlessness and impaired quality of life. Standard-of-care airway stents are silicone tubes, which cause immediate relief, but are prone to migration, especially in growing patients, and require additional surgeries to be removed, which may cause further tissue damage.
    [Show full text]
  • Process to Convert DICOM Data to 3D Printable STL Files Mac Cameron, Application Engineer
    HOW-TO GUIDE Process to Convert DICOM Data to 3D Printable STL Files Mac Cameron, Application Engineer Anatomical models have several applications in the medical space — from patient-specific models used to plan and optimize surgical approaches, to sophisticated training simulators to educate physicians, to clinically relevant models for preclinical device testing. Developing these models can be a challenge due to the complexity and irregularity of human anatomy. One starting point is to use data readily available in the form of patient imaging studies generated by non-invasive MRI, CT, or 3D Ultrasound testing. Using data from patients, model designers can recreate the complexity of any disease, abnormal anatomy or variation that exists in the natural world. Using this approach, the first challenge is to take the data from imaging studies, isolate the anatomy of interest (referred to as segmentation) and convert it into a file format readable by CAD and 3D printing software. The final product depends on the quality of the original data. Image resolution, the use of contrast to enhance the anatomy, and sophistication of the software used to perform segmentation can all significantly affect the final product. There are a variety of professional, freeware, and open-source solutions available to perform these steps. This document describes the approach using InVesalius and Materialise Magics as an example, but the process can be replicated by many available solutions. Software used in this tutorial: • InVesalius free software to convert DICOM images to STL files. svn.softwarepublico.gov.br/trac/invesalius • Magics for editing STL files. software.materialise.com/magics THE 3D PRINTING SOLUTIONS COMPANY™ PROCESS TO CONVERT DICOM DATA TO 3D PRINTABLE STL FILES STEP ONE: GET DICOM DATA Digital Imaging and Communications in Medicine (DICOM) is a standard for handling, storing, printing and transmitting information in medical imaging.
    [Show full text]
  • Software for Bioprinting Catherine Pakhomova1,2*, Dmitry Popov1, Eugenii Maltsev1, Iskander Akhatov1, Alexander Pasko1,3
    REVIEW ARTICLE Software for Bioprinting Catherine Pakhomova1,2*, Dmitry Popov1, Eugenii Maltsev1, Iskander Akhatov1, Alexander Pasko1,3 1Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow 2Institute of Engineering Physics for Biomedicine, NRNU Mephi, Moscow 3The National Centre for Computer Animation, Bournemouth University, UK Abstract: The bioprinting of heterogeneous organs is a crucial issue. To reach the complexity of such organs, there is a need for highly specialized software that will meet all requirements such as accuracy, complexity, and others. The primary objective of this review is to consider various software tools that are used in bioprinting and to reveal their capabilities. The sub-objective was to consider different approaches for the model creation using these software tools. Related articles on this topic were analyzed. Software tools are classified based on control tools, general computer-aided design (CAD) tools, tools to convert medical data to CAD formats, and a few highly specialized research-project tools. Different geometry representations are considered, and their advantages and disadvantages are considered applicable to heterogeneous volume modeling and bioprinting. The primary factor for the analysis is suitability of the software for heterogeneous volume modeling and bioprinting or multimaterial three- dimensional printing due to the commonality of these technologies. A shortage of specialized suitable software tools is revealed. There is a need to develop
    [Show full text]
  • Evaluation of Imaging Software Accuracy for 3-Dimensional Analysis of the Mandibular Condyle
    International Journal of Environmental Research and Public Health Article Evaluation of Imaging Software Accuracy for 3-Dimensional Analysis of the Mandibular Condyle. A Comparative Study Using a Surface-to-Surface Matching Technique Antonino Lo Giudice 1 , Vincenzo Quinzi 2 , Vincenzo Ronsivalle 1 , Marco Farronato 3 , Carmelo Nicotra 1, Francesco Indelicato 4 and Gaetano Isola 4,* 1 Department of General Surgery and Surgical-Medical Specialties, Section of Orthodontics, School of Dentistry, University of Catania, 95123 Catania, Italy; [email protected] (A.L.G.); [email protected] (V.R.); [email protected] (C.N.) 2 Post Graduate School of Orthodontics, Department of Life, Health and Environmental Sciences, University of L’Aquila, V.le San Salvatore, 67100 L’Aquila, Italy; [email protected] 3 Department of Medicine, Surgery and Dentistry, Section of Orthodontics, University of Milan, 20122 Milan, Italy; [email protected] 4 Department of General Surgery and Surgical-Medical Specialties, Section of Oral Surgery and Periodontology, School of Dentistry, University of Catania, 95123 Catania, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-095-3782453 Received: 29 May 2020; Accepted: 1 July 2020; Published: 3 July 2020 Abstract: The aim of this study was to assess the accuracy of 3D rendering of the mandibular condylar region obtained from different semi-automatic segmentation methodology. A total of 10 Cone beam computed tomography (CBCT) were selected to perform semi-automatic segmentation of the condyles by using three free-source software (Invesalius, version 3.0.0, Centro de Tecnologia da Informação Renato Archer, Campinas, SP, Brazil; ITK-Snap, version2.2.0; Slicer 3D, version 4.10.2) and one commercially available software Dolphin 3D (Dolphin Imaging, version 11.0, Chatsworth, CA, USA).
    [Show full text]
  • File Download
    Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer David Andrew Gutman, Emory University William D. Dunn, Jr., Emory University Jake Cobb, Georgia Institute of Technology Richard M. Stoner, University of California Jayashree Kalpathy-Cramer, Martinos Center for Biomedical Imaging Bradley Erickson, Mayo Clinic Journal Title: Frontiers in Neuroinformatics Volume: Volume 8, Number 53 Publisher: Frontiers | 2014-05-27 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.3389/fninf.2014.00053 Permanent URL: http://pid.emory.edu/ark:/25593/ghkmr Final published version: http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00053/abstract Copyright information: © 2014 Gutman, Dunn, Cobb, Stoner, Kalpathy-Cramer and Erickson. This is an Open Access work distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/). Accessed September 23, 2021 8:08 AM EDT TECHNOLOGY REPORT ARTICLE published: 27 May 2014 NEUROINFORMATICS doi: 10.3389/fninf.2014.00053 Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer David A. Gutman 1*,WilliamD.DunnJr1,JakeCobb2,RichardM.Stoner3, Jayashree Kalpathy-Cramer 4 and Bradley Erickson 5 1 Department of Biomedical Informatics, Emory University, Atlanta, GA, USA 2 Georgia Institute of Technology, College of Computing, Atlanta, GA, USA 3 Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA 4 Harvard-MIT Division of Health Sciences and Technology, Martinos Center for Biomedical Imaging, Charlestown, MA, USA 5 Department of Radiology, Mayo Clinic, Rochester, MN, USA Edited by: Advances in web technologies now allow direct visualization of imaging data sets without Xi Cheng, Lieber Institue for Brain necessitating the download of large file sets or the installation of software.
    [Show full text]
  • Enhancement of Tegra Tablet's Computational Performance by Geforce Desktop and Wifi
    ENHANCEMENT OF TEGRA TABLET'S COMPUTATIONAL PERFORMANCE BY GEFORCE DESKTOP AND WIFI Di Zhao The Ohio State University GPU Technology Conference 2014, March 24-27 2014, San Jose California 1 TEGRA-WIFI-GEFORCE Tegra tablet and Geforce desktop are one of the most popular home based computing platforms; Wifi is the most popular home networking platform; Wildly applied to entertainment, healthcare, gaming, etc; 1.1 DEVELOPMENT OF TEGRA AND GEFORCE Core GFLOPS (single) Tegra 4 CPU 4+1/GPU ~ 80 72 Tegra K1 CPU 4+1/192 ~ 180 CUDA core TITAN 2688 CUDA ~ 4500 core TITAN Z 5760 CUDA ~ 8000 core 1.2 DEVELOPMENT OF WIFI Protocol Theoretical Frequency (G) Release Date Speed (M) 802.11 1 − 2 2.4 1997-06 802.11a 6 − 54 5 1999-09 802.11b 1 − 11 2.4 1999-09 802.11g 6 − 54 2.4 2003-06 802.11n 15 − 150 2.4/5 2009-10 802.11ac < 866.7 5 2014-01 802.11ad < 6912 60 2012-12 IEEE 802.11 Network Standards THE PROBLEM Tegra has limited GFLOPS, when the applications exceed Tegra’s computational ability GFLOPS, what should we do? Mobile applications such as computer graphics or healthcare often result in heavy computation; Mobile applications have time constraints because user do not want to wait for seconds; Geforce has large GFLOPS, and Tegra can be supported by Geforce and Wifi? In this talk, experiences of Tegra-Wifi-Geforce are introduced, and an example of medical image is discussed; 2 SETUP DEVELOPMENT ENVIRONMENT FOR TEGRA-WIFI- GEFORCE Setup of Development Environment for Tegra Tablet; TestingWifi Device; Setup of Development for Geforce Desktop;
    [Show full text]
  • A Review on 3D-Printed Templates for Precontouring Fixation Plates in Orthopedic Surgery
    Journal of Clinical Medicine Review A Review on 3D-Printed Templates for Precontouring Fixation Plates in Orthopedic Surgery Rodica Marinescu 1, Diana Popescu 2,* and Dan Laptoiu 3 1 Department of Orthopedics, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; [email protected] 2 Department of Robotics and Production Systems, University Politehnica of Bucharest, 060042 Bucharest, Romania 3 Department of Orthopedics 2, Colentina Clinical Hospital, 020125 Bucharest, Romania; [email protected] * Correspondence: [email protected] Received: 15 July 2020; Accepted: 7 September 2020; Published: 9 September 2020 Abstract: This paper is a systematic review of the literature on 3D-printed anatomical replicas used as templates for precontouring the fixation plates in orthopedic surgery. Embase, PubMed, Cochrane, Scopus and Springer databases were consulted for information on design study, fracture anatomical location, number of patients, surgical technique, virtual modeling approach and 3D printing process. The initial search provided a total of 496 records. After removing the duplicates, the title and abstract screening, and applying exclusion criteria and citations searching, 30 papers were declared eligible and included in the final synthesis. Seven studies were identified as focusing on retrospective non-randomized series of clinical cases, while two papers presented randomized case control studies. Two main approaches were highlighted in developing 3D-printed anatomical models for precontouring fixation plates: (a.) medical reconstruction, virtual planning and fracture reduction followed by 3D printing the model; (b.) medical reconstruction followed by 3D printing the model of the mirrored uninjured side. Revised studies reported advantages such as surgical time and blood loss reduction, while the reduction quality is similar with that of the conventional surgery.
    [Show full text]