Photochemistry of Polycyclic Aromatic Hydrocarbons in Cosmic Water Ice II

Total Page:16

File Type:pdf, Size:1020Kb

Photochemistry of Polycyclic Aromatic Hydrocarbons in Cosmic Water Ice II A&A 529, A46 (2011) Astronomy DOI: 10.1051/0004-6361/201015762 & c ESO 2011 Astrophysics Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice II. Near UV/VIS spectroscopy and ionization rates J. Bouwman1,4, H. M. Cuppen1, M. Steglich2, L. J. Allamandola3, and H. Linnartz1 1 Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany 3 NASA-Ames Research Center, Space Science Division, Mail Stop 245-6, Moffett Field, CA 94035, USA 4 Current address: Departments of Chemistry and Physics, University of California, Berkeley, California 94720, USA Received 15 September 2010 / Accepted 6 February 2011 ABSTRACT Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims. The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods. Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results. Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trappedinH2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2Oice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions. All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically relevant temperatures. Depending on the relative efficiency of H2O photodesorption and PAH photoionization in H2O ice, the latter may trigger a charge induced aromatic solid state chemistry, in which PAH cations play a central role. Key words. astrochemistry – molecular processes – methods: laboratory – techniques: spectroscopic – ISM: molecules 1. Introduction Chiar et al. 2000; Bregman et al. 2000). Based on these obser- vations, Bouwman et al. (2011) deduced PAH:H2O ice ratios to- The presence of polycyclic aromatic hydrocarbons (PAHs) in ward MonR2/IRS3 to be about 2%, a ratio comparable to com- − many phases of the interstellar medium is evidenced by their mon interstellar ice species such as H2CO and OCN .However, strong and ubiquitous mid-infrared (mid-IR) emission features since astronomical PAHs are expected to contain on the order of (Smith et al. 2007; Draine et al. 2007; Draine & Li 2007; Tielens 50 to 100 C atoms and some 20 to 30 reactive C–H peripheral 2008). Mid-IR features are efficiently emitted by a PAH after sites, their influence on interstellar ice chemistry and ice physics excitation by an energetic photon. Toward dense clouds, how- is likely important. ever, these mid-IR features are strongly quenched. Here, most Experimental studies on the effect of vacuum ultraviolet volatile molecules are frozen out on grains forming layers of ice (VUV) irradiation of interstellar ice analogues have shown that (e.g., Pontoppidan et al. 2004; Boogert et al. 2008; Öberg et al. more complex molecules form in the simplest mixed ices (e.g. 2008; Bottinelli et al. 2010). Under such conditions, less volatile Gerakines et al. 1995; Öberg et al. 2009a; Muñoz Caro & molecules such as PAHs condense on interstellar grains as well, Dartois 2009). Laboratory studies on VUV irradiated PAH con- incorporating them in interstellar ices. taining ices indicated that PAHs are easily ionized (Gudipati & Indeed, weak mid-IR absorption features in the spectra of Allamandola 2003; Gudipati 2004; Bouwman et al. 2009, 2010). dense clouds point to the presence of PAHs in these ices as well, These experiments also showed the formation of new species. with PAH:H2O ice concentrations on the order of a few per- Kinetic information on these chemical reactions, however, is cent (Smith et al. 1989; Sellgren et al. 1995; Brooke et al. 1999; largely lacking. Article published by EDP Sciences A46, page 1 of 9 A&A 529, A46 (2011) Here, we present the time evolution of the use-up of four (Muñoz Caro et al. 2002). In the present experiment this value PAHs, anthracene (Ant, C14H10), pyrene (Py, C16H10), may be higher as a reflecting tube has been positioned behind benzo[ghi]perylene (BghiP, C 22H12), and coronene (Cor, C24H12) the lamp also directing diverging photons towards the ice sam- 15 −2 −1 in H2O ice together with the formation and destruction of the ple. As an upper limit we use a flux of 10 photons cm s in ionized PAH+ species. This paper is part II of a series which this paper. aims to quantify and understand the time-dependent chemistry Near UV/VIS absorption spectra are taken during VUV pro- of PAH:H2O ice mixtures upon VUV irradiation and the result- cessing of the samples. To this end, a Xe-lamp is used as ing photoproducts. Part I deals with the mid-IR spectroscopy of a broadband light source and a spectrometer equipped with the photoproducts and its applications to astronomical observa- a 1024 × 256 pixel CCD camera is used as detector. The tions of low and high mass objects and has been published sep- CCD camera is read out in vertical binning mode by a computer arately (Bouwman et al. 2011). Because of severe band over- on which the raw data are converted into optical depth (OD = lap, the infrared experiments are not capable of providing the ln(I/I0)). Spectra ranging from ∼280 to 800 nm are taken at a kinetic information reported here. The two papers together pro- rate of 0.1 s−1,whichissufficient to monitor chemical changes in vide a complementary (vibrational and electronic) study of PAH our ice samples. Each spectrum is the result of co-adding 229 in- containing H2O ice, as well as their photoproducts and dynamic dividual spectra, resulting in a high signal-to-noise ratio. behavior upon VUV excitation. The integrated absorbance of the deposited neutral PAH sig- Here, the chemical evolution is tracked by means of near- nal, τνdν, is converted into a PAH column density, NPAH ,via UV/VIS absorption spectroscopy at two temperatures, 25 K and the oscillator strength of the neutral PAH, f , and the conversion 125 K. This work is an extension of a previous optical study factor 8.88 × 10−13 taken from Kjaergaard et al. (2000): of pyrene in H2Oice(Bouwman et al. 2010) and draws more general conclusions on PAH photochemistry in ices based on a τνdν ff NPAH = · (1) larger set of di erent PAHs. Furthermore, the present work ex- 8.88 × 10−13 f tends the PAH:H2O photochemistry to larger and astrophysically more relevant members of the PAH family. Together with an ice thickness measurement based on the inter- The outline of this paper is as follows. In Sect. 2 the ex- ference pattern in the reflection of a HeNe laser as described in perimental setup is briefly discussed, together with details of Bouwman et al. (2009), this allows for a determination of the supporting calculations. Section 3 describes spectra of the PAH PAH:H2O concentration. Sample deposition is stopped at thick- and PAH+ cations, the assignments of the observed transitions nesses of ∼2 μm, resulting in comparable ice samples. and presents the (relative) oscillator strengths. The fitted time- In a typical 4 h experiment, as many as 1400 spectra are ob- dependent data are discussed in detail in Sect. 4,afterwhichthe tained. The spectra are all baseline corrected by fitting a second- astrophysical implications are discussed in Sect. 5. The conclu- order polynomial through points where no absorptions occur sions are summarized in Sect. 6. and subtracting the polynomial. Additionally, absorption bands are integrated and, if necessary, corrected for contributions by atomic H lines of the H2 MW discharge lamp. All the data han- 2. Experimental technique dling is performed in a LabView program. The experimental details are available from Bouwman et al. In order to support the assignment of the measured absorp- (2009). The heart of the setup is of a high-vacuum (∼10−7 mbar) tion photoproduct bands, density functional theory (DFT) calcu- lations are performed using the gaussian09 software (Frisch et al. chamber. In the center of the vacuum chamber a MgF2 sample window is suspended, which is cooled by a closed cycle He cryo- 2009). The B3LYP functional is used in conjunction with the 6- ++ stat to a temperature of 25 K. Temperatures as low as 11 K can 311 G(2d, p) basis set to determine the ground state geometry and electronic structure of PAH neutrals and cations as a starting be realized.
Recommended publications
  • Interstellar Dust Within the Life Cycle of the Interstellar Medium K
    EPJ Web of Conferences 18, 03001 (2011) DOI: 10.1051/epjconf/20111803001 C Owned by the authors, published by EDP Sciences, 2011 Interstellar dust within the life cycle of the interstellar medium K. Demyk1,2,a 1Université de Toulouse, UPS-OMP, IRAP, Toulouse, France 2CNRS, IRAP, 9 Av. colonel Roche, BP. 44346, 31028 Toulouse Cedex 4, France Abstract. Cosmic dust is omnipresent in the Universe. Its presence influences the evolution of the astronomical objects which in turn modify its physical and chemical properties. The nature of cosmic dust, its intimate coupling with its environment, constitute a rich field of research based on observations, modelling and experimental work. This review presents the observations of the different components of interstellar dust and discusses their evolution during the life cycle of the interstellar medium. 1. INTRODUCTION Interstellar dust grains are found everywhere in the Universe: in the Solar System, around stars at all evolutionary stages, in interstellar clouds of all kind, in galaxies and in the intergalactic medium. Cosmic dust is intimately mixed with the gas-phase and represents about 1% of the gas (in mass) in our Galaxy. The interstellar extinction and the emission of diffuse interstellar clouds is reproduced by three dust components: a population of large grains, the BGs (Big Grains, ∼10–500 nm) made of silicate and a refractory mantle, a population of carbonaceous nanograins, the VSGs (Very Small Grains, 1–10 nm) and a population of macro-molecules the PAHs (Polycyclic Aromatic Hydrocarbons) [1]. These three components are more or less abundant in the diverse astrophysical environments reflecting the coupling of dust with the environment and its evolution according to the physical and dynamical conditions.
    [Show full text]
  • L115 Modeling the Unidentified Infrared Emission With
    The Astrophysical Journal, 511:L115±L119, 1999 February 1 q 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. MODELING THE UNIDENTIFIED INFRARED EMISSION WITH COMBINATIONS OF POLYCYCLIC AROMATIC HYDROCARBONS L. J. Allamandola, D. M. Hudgins, and S. A. Sandford NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 Received 1998 July 13; accepted 1998 November 24; published 1999 January 18 ABSTRACT The infrared emission band spectrum associated with many different interstellar objects can be modeled successfully by using combined laboratory spectra of neutral and positively charged polycyclic aromatic hydro- carbons (PAHs). These model spectra, shown here for the ®rst time, alleviate the principal spectroscopic criticisms previously leveled at the PAH hypothesis and demonstrate that mixtures of free molecular PAHs can indeed account for the overall appearance of the widespread interstellar infrared emission spectrum. Furthermore, these models give us insight into the structures, stabilities, abundances, and ionization balance of the interstellar PAH population. These, in turn, re¯ect conditions in the emission zones and shed light on the microscopic processes involved in the carbon nucleation, growth, and evolution in circumstellar shells and the interstellar medium. Subject headings: infrared: ISM: lines and bands Ð ISM: individual (Orion Bar, IRAS 2227215435) Ð line: formation Ð line: identi®cation Ð line: pro®les Ð molecular data Ð radiation mechanisms: nonthermal 1. INTRODUCTION resemblance of the
    [Show full text]
  • The Next Decade in Astrochemistry: an Integrated Approach
    The Next Decade in Astrochemistry: An Integrated Approach An Astro2010 Science White Paper by Lucy M. Ziurys (U. Arizona) Michael C. McCarthy (Harvard, CfA) Anthony Remijan (NRAO) DeWayne Halfen (U.Arizona) Al Wooten (NRAO) Brooks H. Pate (U.Virginia) Science Frontier Panels: Planets and Stars and Star Formation Stars and Stellar Evolution The Galactic Neighborhood 1 Introduction: The Transformational Role of Astrochemistry: Among the most fundamental questions in astronomy are those concerning the formation of stars and planets from interstellar material and the feedback mechanisms from those stars on the dynamics and chemical evolution of the ISM itself. Studies of the Milky Way and other galaxies in the Local Group have shown that massive molecular clouds are the principal sites of star formation (e.g. Rosolowsky and Blitz 2005). The resultant stars can limit the star formation process as their radiation heats and disperses the remaining cloud (e.g. Matzner 2002). Star formation itself generally proceeds through the formation of a proto-planetary disk, which in turn leads to the establishment of planetary systems (e.g. Glassgold et al. 2004) and the creation of reservoirs of icy bodies. Such reservoirs are the sources of comets, asteroids, and meteorites, which provide a continuing source of material to planets via bombardment (e.g. Mumma et al. 2003). The material in stars is subject to nuclear processing, and some of it is returned to the ISM via supernovae and mass loss from other evolved stars (Asymptotic Giant Branch (AGB), red giants and supergiants: e.g. Wilson 2000). In our galaxy, planetary nebulae, which form from AGB stars, are thought to supply almost an order of magnitude more mass to the ISM than supernovae (e.g.
    [Show full text]
  • Astrochemistry from Astronomy to Astrobiology
    Astrochemistry from Astronomy to Astrobiology Astrochemistry from Astronomy to Astrobiology Andrew M. Shaw University of Exeter Copyright 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
    [Show full text]
  • Laboratory Astrophysics: from Observations to Interpretation
    April 14th – 19th 2019 Jesus College Cambridge UK IAU Symposium 350 Laboratory Astrophysics: From Observations to Interpretation Poster design by: D. Benoit, A. Dawes, E. Sciamma-O’Brien & H. Fraser Scientific Organizing Committee: Local Organizing Committee: Farid Salama (Chair) ★ P. Barklem ★ H. Fraser ★ T. Henning H. Fraser (Chair) ★ D. Benoit ★ R Coster ★ A. Dawes ★ S. Gärtner ★ C. Joblin ★ S. Kwok ★ H. Linnartz ★ L. Mashonkina ★ T. Millar ★ D. Heard ★ S. Ioppolo ★ N. Mason ★ A. Meijer★ P. Rimmer ★ ★ O. Shalabiea★ G. Vidali ★ F. Wa n g ★ G. Del-Zanna E. Sciamma-O’Brien ★ F. Salama ★ C. Wa lsh ★ G. Del-Zanna For more information and to contact us: www.astrochemistry.org.uk/IAU_S350 [email protected] @iaus350labastro 2 Abstract Book Scheduley Sunday 14th April . Pg. 2 Monday 15th April . Pg. 3 Tuesday 16th April . Pg. 4 Wednesday 17th April . Pg. 5 Thursday 18th April . Pg. 6 Friday 19th April . Pg. 7 List of Posters . .Pg. 8 Abstracts of Talks . .Pg. 12 Abstracts of Posters . Pg. 83 yPlenary talks (40') are indicated with `P', review talks (30') with `R', and invited talks (15') with `I'. Schedule Sunday 14th April 14:00 - 17:00 REGISTRATION 18:00 - 19:00 WELCOME RECEPTION 19:30 DINNER BAR OPEN UNTIL 23:00 Back to Table of Contents 2 Monday 15th April 09:00 { 10:00 REGISTRATION 09:00 WELCOME by F. Salama (Chair of SOC) SESSION 1 CHAIR: F. Salama 09:15 E. van Dishoeck (P) Laboratory astrophysics: key to understanding the Universe From Diffuse Clouds to Protostars: Outstanding Questions about the Evolution of 10:00 A.
    [Show full text]
  • Astrochemistry and Astrobiology
    springer.com Chemistry : Physical Chemistry Smith, I.W.M., Cockell, C.S., Leach, S. (Eds.) Astrochemistry and Astrobiology Outlines principles of physical chemistry needed for the fields of astrochemistry and astrobiology Contributions from international experts in astrochemistry and astrobiology Suitable for researchers from interdisciplinary fields Astrochemistry and Astrobiology is the debut volume in the new series Physical Chemistry in Action. Aimed at both the novice and experienced researcher, this volume outlines the physico- chemical principles which underpin our attempts to understand astrochemistry and predict astrobiology. An introductory chapter includes fundamental aspects of physical chemistry required for understanding the field. Eight further chapters address specific topics, encompassing basic theory and models, up-to-date research and an outlook on future work. Springer The last chapter examines each of the topics again but addressed from a different angle. 2013, X, 350 p. Written and edited by international experts, this text is accessible for those entering the field of 1st astrochemistry and astrobiology, while it still remains interesting for more experienced edition researchers. Order online at springer.com/booksellers Printed book Springer Nature Customer Service Center LLC Hardcover 233 Spring Street Printed book New York, NY 10013 Hardcover USA ISBN 978-3-642-31729-3 T: +1-800-SPRINGER NATURE (777-4643) or 212-460-1500 $ 199,99 [email protected] Available Discount group Professional Books (2) Product category Monograph Series Physical Chemistry in Action Other renditions Softcover ISBN 978-3-642-43479-2 Softcover ISBN 978-3-642-31731-6 Prices and other details are subject to change without notice. All errors and omissions excepted.
    [Show full text]
  • Panspermia — the Theory That Life Came from Outer Space
    CEN Tech. J., vol. 7(1), 1993, pp. 82–87 Panspermia — The Theory that Life came from Outer Space DR JERRY BERGMAN ABSTRACT In debates about the creation-evolution controversy, many evolutionists allege that the existing naturalistic origin of life theory is generally regarded as highly possible. That these theories are in fact not tenable is shown by the fact that many prominent evolutionists now hypothesize an alternate method. Since the theistic world view is unacceptable, they thus assume a set of conditions elsewhere in the solar system or the universe which are theorized to be more favourable for the origin of life. The recognition that the conditions on the earth are such that the origin of life is close to impossible forces this approach if a naturalistic world view is maintained. Nowhere does the literature reveal as vividly the impossibility of a naturalistic origin of life on the earth than in this area. The fact that an entirely hypothetical scenario has been proposed which is supported by virtually no evidence and only, at best, indirect inferences which can be interpreted as evidence, forces a review of the theory of panspermia. Much science fiction has in time become science fact — journeying to the moon, for example —and this should not surprise us. Many science fiction writers are scientists by profession, or at least trained in science at the graduate level. Isaac Asimov, a Ph.D. in biochemistry, is the best known example. Writing good science fiction requires both a good grasp of science fact and a vivid imagination. One of the latest science fictions which is now becoming ‘respectable’ science theory is panspermia, the belief that the source of life on earth was from other worlds.
    [Show full text]
  • PAH Photodissociation and Top-Down Chemistry Issue Date: 2018-06-28
    Cover Page The handle http://hdl.handle.net/1887/63238 holds various files of this Leiden University dissertation. Author: Castellanos Nash, P. Title: Breaking & Entering : PAH photodissociation and top-down chemistry Issue Date: 2018-06-28 I INTRODUCTION “Lo que se abre ante nuestros ojos es el mundo anterior al hombre. Abajo, en los grandes ríos, quedaron los saurios monstruosos, las anacondas, los peces con tetas, los laulaus cabezones, los escualos de agua dulce, los gimnotos y lepidosirenas que todavía cargan con su estampa de animales prehistóricos, legado de las dragonadas del Terciario. Aquí, aunque algo huya bajo los hele- chos arborescentes, aunque la abeja trabaje en las cavernas, nada parece saber de seres vivientes. Acaban de apartarse las aguas, aparecida es la Seca, hecha es la yerba verde, y, por primera vez, se prueban las lumbreras que habrán de señorear en el día y en la noche. Estamos en el mundo del Génesis al fin del Cuarto Día de la Creación. Si retrocediéramos un poco más, llegaríamos adonde comenzara la terrible soledad del Creador — la tristeza sideral de los tiempos sin incienso y sin alabanzas, cuando la tierra era desordenada y vacía y las tinieblas estaban sobre la faz del abismo.” —ALEJO CARPENTIER, Los pasos perdidos. 1 I. Introduction Not a hundred years have passed since the discovery of the very first interstellar molecule — methylidyne (CH; Swings & Rosenfeld 1937) — and, to date, more than 200 different molecules have been detected, either in the gas phase, or as ices around dust grains.1 Of these, polycyclic aromatic hydrocarbons (PAHs) are among the largest, most stable species detected thus far (Tielens 2008).
    [Show full text]
  • From Astrophysics to Astrochemistry Towards Astrobiology
    FROM ASTROPHYSICS TO ASTROCHEMISTRY TOWARDS ASTROBIOLOGY IV Workshop della Societa' Italiana di Astrobiologia Dipartimento di Chimica, Università degli Studi di Perugia September 19-21, 2012 BOOK OF ABSTRACTS Edited by Nadia Balucani Virt&l-Comm Special Issue (2012). Published by: MASTER-UP S.R.L. ISSN: 2279-8773 Virt&l-Comm is a new international online electronic scientific magazine offering a forum for presenting the work carried out by Virtual Innovation, Research, Teaching & Learning Communities. This magazine is the result of a joint endeavour of the COMPCHEM Virtual Organization (VO), of the European Chemistry Thematic Network (ECTN) Association and of the University of Perugia spinoff Master-Up. Virt&l-Comm is a scholarly open access online Magazine requiring no payment neither from the authors nor from the readers. Virt&l-Comm publishes at present two issues per year to promote Molecular and Materials Science, Teaching and Learning, Computer Science research. The magazine is also specialized in education and innovation and focuses on Service Oriented approaches. Therefore, in addition to articles, news, projects, reports of (successful or failed) attempts to build services relevant to the field of interest, lists of best practices, products used, the advantages and disadvantages of the solutions adopted will be considered for publication. In particular, all the information useful to build the puzzle of innovative complex applications in education (EDU), information and communication tecnology (ICT) and research and development
    [Show full text]
  • Photosynthesis and Photo-Stability of Nucleic Acids in Prebiotic Extraterrestrial Environments
    Top Curr Chem (2014) DOI: 10.1007/128_2013_499 # Springer-Verlag Berlin Heidelberg 2014 Photosynthesis and Photo-Stability of Nucleic Acids in Prebiotic Extraterrestrial Environments Scott A. Sandford, Partha P. Bera, Timothy J. Lee, Christopher K. Materese, and Michel Nuevo Abstract Laboratory experiments have shown that the UV photo-irradiation of low-temperature ices of astrophysical interest leads to the formation of organic molecules, including molecules important for biology such as amino acids, qui- nones, and amphiphiles. When pyrimidine is introduced into these ices, the prod- ucts of irradiation include the nucleobases uracil, cytosine, and thymine, the informational sub-units of DNA and RNA, as well as some of their isomers. The formation of these compounds, which has been studied both experimentally and theoretically, requires a succession of additions of OH, NH2, and CH3 groups to pyrimidine. Results show that H2O ice plays key roles in the formation of the nucleobases, as an oxidant, as a matrix in which reactions can take place, and as a catalyst that assists proton abstraction from intermediate compounds. As H2Ois also the most abundant icy component in most cold astrophysical environments, it probably plays the same roles in space in the formation of biologically relevant compounds. Results also show that although the formation of uracil and cytosine from pyrimidine in ices is fairly straightforward, the formation of thymine is not. Chapter 14 for the book PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS – Mario Barbatti, Antonio C. Borin, Susanne Ullrich (eds.) S.A. Sandford (*), T.J. Lee and C.K. Materese Space Science and Astrobiology Division, NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035, USA e-mail: [email protected] P.P.
    [Show full text]
  • Alexander Ruf Dissertation
    TECHNISCHE UNIVERSITÄT MÜNCHEN Previously unknown organomagnesium compounds in astrochemical context Alexander Ruf Dissertation TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Analytische Lebensmittelchemie Previously unknown organomagnesium compounds in astrochemical context Alexander Ruf Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Erwin Grill Prüfer der Dissertation: 1. apl. Prof. Dr. Philippe Schmitt-Kopplin 2. Prof. Dr. Michael Rychlik 3. Prof. Eric Quirico, PhD (Université Grenoble Alpes) Die Dissertation wurde am 06.12.2017 bei der Technischen Universität München ein- gereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 18.01.2018 angenommen. Do we feel less open-minded, the more open-minded we are? A tribute to sensitivity and resolution... Acknowledgments This work has been prepared at the Helmholtz Zentrum München in the research unit Analytical BioGeoChemistry of apl. Prof. Dr. Philippe Schmitt-Kopplin, in collaboration with the Chair of Analytical Food Chemistry at the Technical Uni- versity of Munich. In the course of these years, I have relied on the courtesy and support of many to which I am grateful. The success of this PhD thesis would not have been possible without help and support of many wonderful people. First of all, I would like to thank the whole research group Analytical BioGeo- Chemistry for a very friendly, informal, and emancipated working atmosphere that formed day-by-day an enjoyable period of residence - it has felt like freedom! Small issues like having stimulating lunch discussions or going out into a bar, friendly peo- ple could be found herein to setting up a balance to scientific work.
    [Show full text]
  • Astrochemistry: Synthesis and Modelling
    Chapter 4: Astrochemistry: Synthesis and Modelling Valentine Wakelam Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France CNRS, LAB, UMR 5804, F-33270, Floirac, France Herma M. Cuppen Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Eric Herbst Departments of Chemistry, Astronomy, and Physics, University of Virginia, Charlottesville, VA 22904 USA Abstract We discuss models that astrochemists have developed to study the chemical composition of the interstellar medium. These models aim at computing the evolution of the chemical composition of a mixture of gas and dust under as- trophysical conditions. These conditions, as well as the geometry and the physical dynamics, have to be adapted to the objects being studied because different classes of objects have very different characteristics (temperatures, densities, UV radia- tion fields, geometry, history etc); e.g., proto-planetary disks do not have the same characteristics as protostellar envelopes. Chemical models are being improved continually thanks to comparisons with observations but also thanks to laboratory and theoretical work in which the individual processes are studied. 2 4.1 Introduction A large number of molecules have now been observed in the interstellar me- dium (ISM) and many more are expected to be discovered considering the uniden- tified lines in existing spectral surveys and new surveys to come [1]. The promise of ALMA1, a powerful new interferometric telescope, on this matter is endless. On a very basic level, simple molecules such as CO and CS are used to understand the physical properties of astrophysical objects such as dark clouds, star forming regions, proto-planetary disks, and galaxies through the excitation of their ob- served spectral lines [2] (see also chapter XXX, REFERENCE TO ANOTHER CHAPTER).
    [Show full text]