<<

SEMMELWEIS PETER PAZMANY UNIVERSITY CATHOLIC UNIVERSITY

Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework**

Consortium leader PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund ***

**Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben

***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

.2011.09.13.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 1 http://semmelweis-egyetem.hu/www.se.hu

BIOCHEMISTRY

(BIOKÉMIA )

CATABOLISM OF

(A SZÉNHIDRÁTOK LEBONTÁSA )

TRETTER LÁSZLÓ

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 2 : of carbohydrates http://semmelweis-egyetem.hu/www.se.hu

CatabolismDEF: Part of intermediary dealing with the -yielding degradation of nutrient Examples for catabolic processes Decomposition of to pyruvate or lactate called: Decomposition of fatty acids to acetyl-CoA called: Decomposition of to glucose: called Decomposition of acetyl-CoA to + called:

Antonym of catabolism:

CarbohydratesDEF: Aldehyde or ketone derivatives of polyhydric alcohols

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 3 Biochemistry: Catabolism of carbohydrates http://semmelweis-egyetem.hu/www.se.hu CLASSIFICATION of CARBOHYDRATES

MonosacharidesDEF: those carbohydrates that cannot be hydrolyzed into a simpler form

subdivision: trioses, tetroses, pentoses, hexoses, heptoses depending upon the number of carbon atom

subdivision: aldoses or ketoses depending upon the presence of of aldehyde or ketone group

DisaccharidesDEF: of yields 2 molecules of

OligosaccharidesDEF: Hydrolysis yields 3-6 units

PolysaccharidesDEF: Hydrolysis yields more than 6 monosaccharide units

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 4 Biochemistry: Catabolism of carbohydrates http://semmelweis-egyetem.hu/www.se.hu

Examples for monosaccharides

Aldoses Ketoses

Trioses (C3H6O3) Glycerose Dihydroxy- Synonym: acetone Glycer- aldehyde

Tetroses (C4H8O4) Erythrose Erythrulose

Pentoses (C5H10O5) Ribulose

Hexoses (C6H12O6) Glucose Mannose

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 5 Biochemistry: Catabolism of carbohydrates http://semmelweis-egyetem.hu/www.se.hu

Table of contents:

Glycolysis, the anaerobic decomposition of glucose

Catabolism of non-glucose carbohydrates

Regulation of catabolism

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 6 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Glycolysis -reactions

Learning objectives:

Carbohydrates are major energy giving substrates for a living organism Glycolysis an universal pathway to decompose glucose even in the absence of

At the end of the presentation students will be able:

1. To reproduce the most important steps of glycolysis 2. To understand the formation of ATP in the absence of oxygen 3. To demonstrate important principles of thermodinamics using examples taken from glycolysis

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 7 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu

GlycolysisDEF

-Anaerobic degradation of glucose to lactate or -Anaerobic degradation of glucose to pyruvate – a preparatory pathway for the aerobic metabolism of glucose

-Can occur in every

-Energy yielding pathway (2 ATP/glucose)

In the absence of oxygen every cell would perform glycolysis and the end-product will be lactate thus glycolysis is the most universal .

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 8 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Glycolysis -reactions Overview of glycolysis Glucose C6

Hexose phosphates (C6)

Triose phosphate Triose phosphate

CO2 ATP + + H2O formation NADH+H NAD ATP Pyruvate Lactate Lactate

+ O2 (C3) Without O2 (C3) or blood no mitochondria

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 9 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Glycolysis -reactions Overview of glycolysis

2 NAD+

2 NADH+H+

In the absence of oxygen or mitochondria In the presence of oxygen and mitochondria

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 10 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Glycolysis -reactions Preparatory phase of glycolysis

2 ATP invested and Hexose chain is converted into triose phosphates

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 11 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Important reactions of the preparatory phase

ATP requiring reactions of glycolysis

ΔG’o= -16.7 kJ/mol irreversible Hexokinase Glucokinase

ΔG’o= -14.2 kJ/mol Irreversible Phosphofructokinase-1 Rate limiting step of glycolysis

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 12 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Important reactions of the preparatory phase

Hexokinase and glucokinase are isoenzymes

IsoenzymesDEF: catalyzing the same reaction But differ: In sequence

Vmax, and/or KM in regulation

Hexokinases are localized in the peripheral tissues Glucokinase is localized in the

Hexokinases show high affinity for glucose Glucokinase show low affinity for glucose Their regulation is different

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 13 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Important reactions of the payoff phase

Inorganic phosphate incorporation NADH formation High energy acyl-phosphate group formation on the 1st C atom ΔG’o= 6.3 kJ/mol reversible

The acyl-phosphate group is transferred to ADP Substrate level

ΔG’o= -18.5 kJ/mol reversible

From the high energy enol-phosphate bond the phosphoryl group is transferred to ADP Substrate level phosphorylation ΔG’o= -31.4 kJ/mol irreversible

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 14 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Energetic balance of glycolysis

Preparatory phase 2 ATP invested - 2

Payoff phase 2x2 ATP produced (1 hexose 2 triose) +4

Summary Net ATP production +2

Substrate level phosphorylationDEF: Formation of ATP by phosphoryl group transfer from a compound having high energy bound

Examples for substrate level phosphorylation: in glycolysis: phosphoglycerate kinase reaction pyruvate kinase reaction in citric acid cycle: succinate thiokinase reaction

Antonym of substrate level phosphorylation: oxidative phosphorylation

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 15 Biochemistry: Catabolism of carbohydrates Glycolysis http://semmelweis-egyetem.hu/www.se.hu Glycolysis - Summary Glycolysis – the most important decomposition pathway of the most important carbohydrate

- glycolysis produces energy even in the absence of oxygen

- every higher eukaryotic cells are able to perform glycolysis

- 2 mol of ATP produced from 1 mol of glucose

- in the presence of oxygen and mitochondria glycolysis is continued in the citric acid cycle

- glycolysis has reversible and irreversible steps

- the irreversible reactions of glycolysis are catalyzed by hexokinase (glucokinase in liver), phosphofructokinase and pyruvate kinase

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 16 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu

Catabolism of non-glucose carbohydrates

Introduction

Carbohydrates are major energy giving substrates for living organism

Besides glucose other carbohydrates (e.g. fructose and galactose) are also taken up by the organism, which sugars can be catabolized or can participate in the synthesis of other molecules

Glycogen is a special storage form of glucose with a function in the maintenance of and in the energy supply of the muscle cells.

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 17 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu

Learning objectives

At the end of the presentation students will be able:

To understand the pathways used by individual carbohydrates to join to the mainstream of the metabolism

To understand that consumption of different carbohydrates could change physiological pathways and could have pathological consequences as well.

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 18 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Fructose metabolism

Availability of fructose: Natural sources: fruit juices, honey, Food industry: High Fructose Corn Syrup

Importance: Mainly changed to glucose in the liver and used in the body

Pathological significance: hereditary fructose intolerance (fructose accumulation plus hypoglycemia), obesity

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 19 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Entry of fructose into glycolysis 1. In liver – major organ of fructose catabolism

Important: fructose catabolism in the liver bypasses phosphofructokinase-1!

Glycolysis,

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 20 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Entry of fructose into glycolysis 2. In skeletal muscle – less important in fructose catabolism

Fructose Hexokinase - not entirely specific for glucose ATP - converts fructose to Fr 6-P Hexokinase at low [Glucose] ADP at high [Fructose] Fructose 6-phosphate

Glycolysis

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 21 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Pathological aspects of fructose metabolism

1) Hereditary fructose intolerance Aldolase B deficiency [fr 1-P] increased

Symptom: hypoglycemia Why? See:regulation of carbohydrate breakdown

2) High fructose consumption - Susceptibility to obesity,hyperlipidemia X hyperlipidemiaDEF: increased concentration of in the blood

Glycolysis, gluconeogenesis

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 22 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Galactose metabolism

Availability of galactose: from milk sugar: . Intestinal hydrolysis of lactose results in formation of galactose+glucose

Galactose is metabolized mainly in the liver, can be converted to glucose

Importance: needed for synthesis of glycoproteins, glycolipids, lactose (in lactating women)

Pathological significance: galactosemia

Lactose galactose + glucose

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 23 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Galactose metabolism Galactose Glucose 1-P ATP UTP UDP-Glc ADP

PPi pyrophosphorylase Galactose 1-phosphate

UDP-glucose UDP-Glc-Gal 1-P UDP-gal epimerease uridyltransferse

UDP-galactose Glucose 1-phosphate

phosphoglucomutase

Glucose 6-phosphate

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 24 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu

Pathological aspects of galactose metabolism [Galactose] Glucose 1-P ATP galactokinase UTP UDP-Glc ADP

PPi pyrophosphorylase [Galactose 1-phosphate]

UDP-glucose UDP-Glc-Gal 1-P UDP-gal epimerease uridyltransferseX UDP-galactose Glucose 1-phosphate Galactosemia: lack of UDP-Glc-Gal 1-P uridyltransferse phosphoglucomutase Consequence: increased [Galactose] symptom: cataractDEF:opacity in the lens of the eye Glucose 6-phosphate increased [Galactose 1-phosphate] symptoms: liver failure, mental retardation

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 25 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Glycogen metabolism

Glycogen: the storage form of glucose in the body forms granules in the many cells contain glycogen the most important organs for storage: liver, skeletal muscle

function of liver glycogen: maintenance of blood sugar level function of muscle glycogen: energetic support of contraction

Structure: highly branched structure chains: alpha [1-4] glucosidic linkage branches: alpha [1-6] glucosidic linkage

glycogenin is localized in the core of glycogen glycogenin is required for the synthesis

molecular mass: in the order of millions

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 26 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu The structure of glycogen

6

1 4 1 1 6

4 1 4 1 4 1

Glycogenin

.2011.09.13.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 27 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu

GlycogenolysisDEF: Intracellular decomposition of glycogen Resulting glucose in the liver and cortex Resulting glucose 6-P in the muscle

Synonym: glycogen breakdown Antonym: or glycogen synthesis

The purpose of glycogenolysis in liver (and to a smaller extent in kidney cortex): maintenance of blood sugar level. Blood sugar level should be kept constant, because there are cells and tissues which gain energy exclusively from glucose

The purpose of glycogenolysis in muscle cells: to support the energy requirement of contraction.

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 28 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu The fate of glycogen-derived glucose after breakdown Glycogen P In liver: release to the bloodstream i glycogen phosphorylase

In muscle: glycolysis then citric acid cycle Glucose 1-P In muscle in shortage of oxygen: glycolysis ending with lactate phosphoglucomutase production Glucose 6-P glucose 6-Pase Glycolysis Glucose Lactate Pyruvate Lactate PDH complex dehydrogenase Acetyl-CoA Citric acid cycle

CO2 + H2O

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 29 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Steps of glycogen breakdown 1

Glycogen Debranching Debranching enzyme phosphorylase alpha (1→4) → alpha (1→4) Amylo (1→6)-glucosidase transferase activity activity gl 1-P H2O gl Pi P

Glycogen

Debranching enzyme has two catalytic activities Products of catabolism: shorter glycogen glucose 1-P glucose (captured by hexo- or glucokinase)

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 30 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Steps of glycogen breakdown 2

phosphoglucomutase glucose 6- H O 2 Pi

ER in liver

phosphohexose isomerase

fructose 6-phosphate

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 31 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Pathological aspects of glycogen breakdown

Glycogen storage diseasesDEF:inherited disorders characterized by abnormal quantity or type of glycogen in tissues

Examples: Name Deficiency Consequences

Von Gierke’s disease Lack of glucose 6- Hypoglycemia, phosphatase in liver and hyperlipemia kidney

Cori’s disease Lack of debranching Accumulation of enzyme abnormally branched glycogen

Mc Ardle’s disesase Lack of glycogen Diminished tolerance to phosphorylase in the skeletal muscle

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 32 Biochemistry: Catabolism of carbohydrates Catabolism of non-glucose carbohydrates http://semmelweis-egyetem.hu/www.se.hu Summary:

Catabolism of non-glucose carbohydrates were discussed

Glycogen, fructose and galactose catabolism follows individual pathways

All of the individual decomposition pathways will join to glycolysis, so the complete breakdown of these saccharides will be similar to that of glucose.

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 33 Biochemistry: Catabolism of carbohydrates Regulation of http://semmelweis-egyetem.hu/www.se.hu

Learning objectives At the end of the presentation students will be able:

To understand the adaptation of carbohydrate catabolic pathways to the current requirement of the organism and the cell.

To understand the concept that metabolic pathway can be regulated by different ways: the most important ones are: - Regulation by changing the gene expression - Regulation by reversible covalent modification (e.g. phosphorylation/dephosphorylation of the key enzymes - Regulation by allosteric effectors

To understand that only a few of the enzymes are regulated in the metabolic pathways, usually the rate-limiting ones and those which catalyze irreversible reactions

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 34 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu Multilevel regulation of glycolytic enzymes

Gene expression Covalent modification Allosteric

phosphorylat dephosphory Enzyme Inducer repressor activator inhibitor ion lation

Hexokinase Gluc 6-P

Glucagon Fructose 1-P Fructose 6-P (through through Glucokinase (cAMP) glucokinase glucokinase regulatory Starvation regulatory protein) protein) Phosphofruct Fructose 2,6-P ATP, citrate, insulin starvation 2 okinase-1 AMP fatty acids cAMP, Pyruvate insulin insulin (cAMP) Ca-CaM Fructose 1,6-P ATP, alanine kinase Activation 2 Starvation inactivation

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 35 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu Regulation of glucokinase (liver)

The regulation of glucokinase explains hypoglycemia detected in fructose intolerance. Accumulation of fructose 1-P suspends the Inative in regulatory protein-mediated inhibition of the nucleus glucokinase, thus glycolysis will be accelerated

Fructose 6-P mediated inhibition of glucokinase represents a negative fee back mechanism

Accumulation In fructose intolerance

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 36 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu Regulation of phosphofructokinase-1 in liver Insulin stimulates glycolysis Insulin

+

Dephosphorylated: Phosphorylated: inactive active

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 37 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu Regulation of phosphofructokinase-1 in liver Glucagon inhibits glycolysis

Phosphorylated: inactive X X

+ Glucagon

.2011.09.13.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 38 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu Structure of 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase enzyme

Tandem enzyme: one polypeptide chain – two catalytic activities

Liver specific enzyme: Phosphorylation (PKA) near the kinase domain inactivates kinase activity Phosphates activity will be dominant. Glycolysis is inactivated

Heart specific enzyme: Phosphorylation (PKA) of the phosphatase domain inactivates phosphatase activity Kinase activity will be dominant Glycolysis activated

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 39 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu Allosteric regulation of glycolysis Meaning of regulators

High [gluc 6-P] indicates that hexokinase activity is too high

High [AMP] – indicates low energy charge of the cell (local regulator) High [ATP] – indicates high energy charge of the cell

High [citrate] indicates the overflow of synthesis precursors from the mitochondria to the cytosol

Fructose 2,6-P2 the most important regulator of the rate limiting step of glycolysis. The level of Fr

2,6-P2 reflects hormonal changes.

In liver insulin elevates [Fr 2,6-P2], glycolysis is stimulated Glucagon decreases [Fr 2,6-P2], glycolysis is inhibited Adrenalin decreases [Fr 2,6-P2], glycolysis is inhibited BUT!

In the heart elevates [Fr 2,6-P2], glycolysis is stimulated

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 40 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu Regulation of glycogen breakdown cAMP level is elevated by some cAMP activated protein kinase A phosphorylates and activates phosphorylase kinase

Activated phosphorylase kinase phosphorylates and activates glycogen phosphorylase

Activated glycogen phosphorylase catalyzes glycogen breakdown

Those hormones which decrease cAMP level has opposite effect on glycogen breakdown

Calcium activates phosphorylase kinase.

Activated phosphorylase kinase phosphorylates and activates glycogen phosphorylase, which catalyzes glycogen breakdown

Glucose (in liver) inhibits glycogen phosphorylase, i.e. inhibits glycogenolysis

AMP in muscle stimulates glycogen phosphorylase, i.e. activates glycogenolysis

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 41 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu Summary:

Carbohydrates are important sources of energy for the organisms.

Glycolysis is a fundamental energy yielding metabolic pathway in every cell.

The rate of glycolysis is strictly regulated by various mechanisms

Changes of the gene expression of the most important enzymes are regulated by hormones and by the .

Reversible chemical modification of the enzymes (phosphorylation/dephosphorylation) usually reflects hormonal influence.

The level of allosteric modificators might reflect the actual changes in the local intracellular environment, but could be changed by hormonal effects as

well (e.g. [fruc 2,6-P2] is dependent upon hormonal status).

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 42 Biochemistry: Catabolism of carbohydrates Regulation of carbohydrate catabolism http://semmelweis-egyetem.hu/www.se.hu

Recommended literature

Orvosi Biokémia (Ed. Ádám Veronika)

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 43 Biochemistry: Catabolism of carbohydrates http://semmelweis-egyetem.hu/www.se.hu Questions:

Describe the regulation of fructose catabolism, compare it with the regulation of glucose catabolism

Which are the irreversible steps of glycolysis?

Which enzyme reaction is the rate-limiting enzyme in the glycolysis?

How many ATP can be produced, if glycolysis starts from previously synthesized glycogen and ends up with lactate formation?

What is the consequence of having different PFK2 isoenzymes in the heart and liver considering the effect of adrenaline on glycolysis?

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 44 Biochemistry: Catabolism of carbohydrates http://semmelweis-egyetem.hu/www.se.hu Questions:

Which of the following statements are true for the PFK1?

1. The reaction catalized by the enzyme is irreversible in vivo 2. The activity of the enzyme can be inhibited by ATP 3. Its function is influenced by the ATP/ADP ratio 4. It is the fastest enzyme of the glycolysis 5. It works even in the absence of ATP

A:2,3,5 B:1,2,3 C:1,2,3,4 D:2,3,4,5 E:1,3,4,5

Which of the following statements are true for the fructose metabolism?

1. Fructose is phosphorylated by hexokinase in the liver 2. Fructose metabolism does require a specific aldolase for Fr 1-P 3. Fructose can be converted to either pyruvate or glucose 4. Fructose consumption can not elevate the blood sugar level 5. Fructose catabolism in the liver bypasses phosphofructokinase

A:2,3,5 B:1,2,3 C:1,2,3,4 D:2,3,4,5 E:1,3,4,5

2011.09.13... TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 45