Queensland Nut Tree Macadamia Intergrifloia

Total Page:16

File Type:pdf, Size:1020Kb

Queensland Nut Tree Macadamia Intergrifloia Queensland nut tree Macadamia integrifolia There are seven Macadamia species native to Australia, with the Queensland nut tree Macadamia integrifolia being one of two species that have an edible nut. The attractive foliage and flowers M. integrifolia have made it a popular tree for domestic yards. It is also the species most commonly used for commercial production of nuts, although it is often crossed with other Macadamia species. Wild populations of M. integrifolia are rare and have a restricted and scattered distribution in Photo: CSIRO Plant Industry rainforest throughout south-east Queensland from Bauple (about Description 30km south of Maryborough) in Macadamia integrifolia is a rainforest species endemic to Queensland. It is also known as the smooth-shelled macadamia, bush nut, nut oak, Queensland nut, Bauple nut or the north, south to Nicoll Scrub bopple nut. Macadamia species, like banksias, waratahs and grevilleas, are members of near the New South Wales the Proteaceae family. border. M. integrifolia is in M. integrifolia can grow to 20m in height with a similar foliage width, giving the tree a danger of becoming extinct in round shape. The trunk is rough but not furrowed, without buttress roots, and reaches a the wild due to extensive diameter of around 30cm. M. integrifolia leaves are thick and leathery, growing to 14cm clearing of its rainforest habitat and arranged on branchlets in groups of three. Mature leaf edges are smooth, but newly formed leaves have a spiny margin. Flowers are cream/white in colour on racemes up to in south-east Queensland for 30cm in length that grow from the leaf axil and hang down from the branches. The green rural and urban development. leathery outer shell (also known as a pericarp or seed vessel) is around 2.5–3.5cm in size and surrounds a smooth brown nut-shell containing a white edible kernel. Flowering has been recorded from August to October, with fruiting from December to March. M. integrifolia is the most popular species used worldwide for commercial production of macadamia nuts. These commercial tree varieties are often smaller than naturally- growing species. Macadamia nut farmers have been selectively grafting M. integrifolia with other Macadamia species (frequently M. tetraphylla) to increase desirable The macadamia nut is the commercial qualities such as a thinner shell, increased yield and disease resistance. only Australian native The National Macadamia Germplasm Conservation Program, an initiative of the produce that has achieved Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the major commercial success. Australian macadamia industry, is establishing plantations of all wild varieties of Macadamia with the aim of having a stock gene pool to aid preservation of the species and provide readily available resources for commercial research. Queensland nut tree Macadamia integrifolia Habitat and distribution M. integrifolia was originally associated with subtropical rainforest that was spread along a 600km coastal strip between Grafton in New South Wales and Maryborough in Queensland, extending up to 150km inland. Current distribution of wild M. integrifolia appears to be similar to the initial distribution area, however populations are more sparsely distributed, and overall numbers have declined as a result of agricultural and urban development. Although M. integrifolia is a rainforest species they tend to grow better in partially open areas such as rainforest edges. They can be found at elevations near sea level up to 600m, preferring well-drained sites on hill crests, hill slopes, scree slopes, foot slopes and along the edges of hoop pine Araucaria cunninghamii scrubs and creek beds. M. integrifolia grows best in mild frost-free weather with reasonably high rainfall and has been recorded fruiting as far south as Sydney. At many sites where M. integrifolia occurs there are less than ten plants remaining. The largest populations are recorded in Amamoor State Forest, Bahr’s Scrub, Nicoll Scrub and Triunia National Parks, and they also occur in several other national parks and state forests as well as three nature refuges. M. integrifolia grows in complex notophyll vine forest, simple notophyll vine forest and in simple microphyll-notophyll vine forest with emergent Araucaria and Argyrodendron species. It can be found in uniformly dark surface soils that vary in texture from clayey sand through various types of loam to silty clay. Leaves, flowers and nuts of Macadamia integrifolia. Photos: CSIRO Plant Industry Naturally occurring Macadamia integrifolia have always been recorded in areas associated Distribution of Macadamia integrifolia in Queensland. Map: EPA with subtropical rainforest. Queensland nut tree Macadamia integrifolia There are nine Macadamia species, seven of which are endemic to Australia, and two species (M. hildebrandii and M. erecta) that are native to the island of Sulawesi in Indonesia. The Australian native species can be divided into two distinct groups — the tropical species found in Far North Queensland (M. claudiensis, M. grandis and M. whelanii) and the subtropical species found in south-east Queensland (M. jansenii, M. integrifolia, M. tetraphylla and M. ternifolia). Distribution of the two edible species, M. integrifolia and M. tetraphylla, extends to northern New South Wales. Macadamia species in south-east Queensland Macadamia tetraphylla Macadamia ternifolia Macadamia jansenii M. tetraphylla, also known as the M. ternifolia is similar in appearance M. jansenii is smaller than other rough-shelled nut, has a similar height to M. integrifolia and M. tetraphylla Macadamia species, reaching a and distribution to M. integrifolia. It can however it is a smaller tree, growing to height of 6–9m. First discovered in be distinguished by pink-purple flowers around 10m, and produces small nuts 1982, it is only known from an area and having leaves with spiked margins (around 2cm including outer green west of Miriam Vale in Queensland. that are arranged in groups of four on shell) that are bitter and slightly toxic. The inedible nuts are quite small at branchlets. New leaves of M. tetraphylla The leaves are sharp-tipped with some around 1.5cm. are bright red in colour, whereas M. spikes along the margin, arranged in Photos: CSIRO Plant Industry integrifolia are light green. Nut-shells groups of three on the branchlets. are roughened the raw nut kernels New growth is pink-red and flowers have a slightly grey tint and sweeter are pinkish. flavour than M. integrifolia nuts. Macadamia species in north Queensland Macadamia claudiensis Macadamia grandis Macadamia whelanii Photo: B. Gray © Centre for Plant Photo: CSIRO Plant Industry Photo: J. Connors © Centre for Plant Biodiversity Research Biodiversity Research M. grandis is from the Cairns region and M. claudiensis is located in rainforests reaches 10–40m in height. The leaves are M. whelanii can be found in lowland of the Cape York Peninsula region. in groups of four, with slightly wavy and coastal rainforest between Mount Leaves have smooth edges without margins without spikes. Flowers are Bellenden Ker to Mossman in Far North spikes and are in groups of five or six. yellow-cream, and nuts are up to 7cm Queensland. Leaves are mainly in It grows to 25–30m in height and has wide including the outer shell. It is groups of five on the branchlets, and white flowers. The nuts including the unknown whether the nuts are toxic. are without spikes. Unlike M. tetraphylla outer shell are very large, up to 8cm and M. integrifolia, the yellow flowers wide, and do not have a bitter flavour grow upwards from the branch. The large like many other Macadamia species so nuts are around 5cm in diameter including may not be toxic. the outer shell and are slightly toxic. Queensland nut tree Macadamia integrifolia Cultural heritage Macadamia, Grevillea and Banksia belong to the same family. Macadamia nuts are of material and cultural importance to Aboriginal people. They are eaten whole or pressed to produce oil that is used as a liniment base or as a binder for ochres and clays used for face and body decoration and artwork. To crack the hard macadamia nut-shell, Aboriginal people used a base rock containing a groove to stop movement of the nut, placed a flat rock on top of the nut and used another “hammer” rock to hit the flat rock. This method causes less damage to the kernel than directly hitting the shell with a hammer or other implement. The first recorded cultivation of aMacadamia species was a M. integrifolia nut kernel planted in the Brisbane Botanical Gardens in 1858 by the superintendent, Walter Hill. This tree continues to produce nuts and has a girth of around 2.5m at its base. Conservation status M. integrifolia is listed as vulnerable under the Queensland Nature Conservation Act 1992 and the Commonwealth Environment Protection and Biodiversity Conservation Act 1999. Table 1 outlines the conservation status of the regional ecosystems (REs) with which M. integrifolia is associated. Table 1. Regional ecosystems with which Macadamia integrifolia is associated and their status. RE Queensland Vegetation RE description *** Biodiversity Management Status * Status ** 12.3.1 Endangered Endangered Gallery rainforest/notophyll vine forest on alluvial plains 12.8.3 No concern at Not of concern Complex notophyll vine forest on present Cainozoic igneous rocks, altitude <600m 12.11.10 No concern at Not of concern Notophyll vine forest ± Araucaria present cunninghamii on metamorphics ± interbedded volcanics 12.12.16 No concern at Not of concern Notophyll vine forest on Mesozoic present to Proterozoic igneous rocks * Biodiversity Status as listed by the Environmental Protection Agency. ** Queensland Vegetation Management Act 1999 status as of December 2005. *** Refer to the Regional Ecosystem Description Database (REDD) at www.epa.qld.gov. au/nature_conservation/biodiversity/regional_ecosystems/ for full RE descriptions. Threats to M. integrifolia Land clearing for agricultural and urban development is the greatest threat to M. integrifolia. South-east Queensland, particularly in coastal areas, has experienced the highest rate of population growth and associated development in Queensland.
Recommended publications
  • Macadamia Integrifolia HAES 741)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114009; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Chromosome-scale assembly and annotation of the macadamia genome (Macadamia integrifolia HAES 741) Catherine J. Nock1†*, Abdul Baten1,2†, Ramil Mauleon1, Kirsty S. Langdon1, Bruce Topp3, Craig Hardner3, Agnelo Furtado3, Robert J. Henry3 and Graham J. King1 1Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia 2AgResearch NZ, Grasslands Research Centre, Palmerston North 4442, New Zealand 3Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia QLD 4069, Australia †These authors contributed equally to this work *Corresponding author, [email protected] ORCID 0000-0001-5609-4681 Abstract Macadamia integrifolia is a representative of the large basal eudicot family Proteaceae and the main progenitor species of the Australian native nut crop macadamia. Since its commercialisation in Hawaii fewer than 100 years ago, global production has expanded rapidly. However, genomic resources are limited in comparison to other horticultural crops. The first draft assembly of M. integrifolia had good coverage of the functional gene space but its high fragmentation has restricted its use in comparative genomics and association studies. Here we have generated an improved assembly of cultivar HAES 741 (4,094 scaffolds, 745 Mb, N50 413 kb) using a combination of Illumina paired and PacBio long read sequences.
    [Show full text]
  • Banksia Vincentia (Proteaceae), a New Species Known from Fourteen Plants from South-Eastern New South Wales, Australia
    Phytotaxa 163 (5): 269–286 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.163.5.3 Could this be Australia’s rarest Banksia? Banksia vincentia (Proteaceae), a new species known from fourteen plants from south-eastern New South Wales, Australia MARGARET L. STIMPSON1, JEREMY J. BRUHL1 & PETER H. WESTON2 1 Botany, School of Environmental and Rural Science, University of New England, Armidale NSW 2351 Australia Corresponding Author Email: [email protected] 2 National Herbarium of New South Wales, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, NSW 2000, Australia Abstract Possession of hooked, distinctively discolorous styles, a broadly flabellate common bract subtending each flower pair, and a lignotuber place a putative new species, Banksia sp. Jervis Bay, in the B. spinulosa complex. Phenetic analysis of individuals from all named taxa in the B. spinulosa complex, including B. sp. Jervis Bay, based on leaf, floral, seed and bract characters support recognition of this species, which is described here as Banksia vincentia M.L.Stimpson & P.H.Weston. Known only from fourteen individuals, B. vincentia is distinguished by its semi-prostrate habit, with basally prostrate, distally ascending branches from the lignotuber, and distinctive perianth colouring. Its geographical location and ecological niche also separate it from its most similar congeners. Introduction The Banksia spinulosa complex has a complicated taxonomic history (Table 1). Smith (1793) first described and named B. spinulosa Sm., and subsequent botanists named two close relatives, B. collina R.Br. and B.
    [Show full text]
  • NSW Rainforest Trees Part
    This document has been scanned from hard-copy archives for research and study purposes. Please note not all information may be current. We have tried, in preparing this copy, to make the content accessible to the widest possible audience but in some cases we recognise that the automatic text recognition maybe inadequate and we apologise in advance for any inconvenience this may cause. · RESEARCH NOTE No. 35 ~.I~=1 FORESTRY COMMISSION OF N.S.W. RESEARCH NOTE No. 35 P)JBLISHED 197R N.S.W. RAINFOREST TREES PART VII FAMILIES: PROTEACEAE SANTALACEAE NYCTAGINACEAE GYROSTEMONACEAE ANNONACEAE EUPOMATIACEAE MONIMIACEAE AUTHOR A.G.FLOYD (Research Note No. 35) National Library of Australia card number and ISBN ISBN 0 7240 13997 ISSN 0085-3984 INTRODUCTION This is the seventh in a series ofresearch notes describing the rainforest trees of N.S. W. Previous publications are:- Research Note No. 3 (I 960)-N.S.W. Rainforest Trees. Part I Family LAURACEAE. A. G. Floyd and H. C. Hayes. Research Note No. 7 (1961)-N.S.W. Rainforest Trees. Part II Families Capparidaceae, Escalloniaceae, Pittosporaceae, Cunoniaceae, Davidsoniaceae. A. G. Floyd and H. C. Hayes. Research Note No. 28 (I 973)-N.S.W. Rainforest Trees. Part III Family Myrtaceae. A. G. Floyd. Research Note No. 29 (I 976)-N.S.W. Rainforest Trees. Part IV Family Rutaceae. A. G. Floyd. Research Note No. 32 (I977)-N.S.W. Rainforest Trees. Part V Families Sapindaceae, Akaniaceae. A. G. Floyd. Research Note No. 34 (1977)-N.S.W. Rainforest Trees. Part VI Families Podocarpaceae, Araucariaceae, Cupressaceae, Fagaceae, Ulmaceae, Moraceae, Urticaceae.
    [Show full text]
  • Bush Foods and Fibres
    Australian Plants Society NORTH SHORE GROUP Ku-ring-gai Wildflower Garden Bush foods and fibres • Plant-based bush foods, medicines and poisons can come from nectar, flowers, fruit, leaves, bark, stems, sap and roots. • Plants provide fibres and materials for making many items including clothes, cords, musical instruments, shelters, tools, toys and weapons. • A fruit is the seed-bearing structure of a plant. • Do not eat fruits that you do not know to be safe to eat. Allergic reactions or other adverse reactions could occur. • We acknowledge the Traditional Custodians of this land and pay our respects to the Elders both past, present and future for they hold the memories, traditions, culture and hope of their people. Plants as food: many native plants must be processed before they are safe to eat. Flowers, nectar, pollen, Sugars, vitamins, honey, lerps (psyllid tents) minerals, starches, manna (e.g. Ribbon Gum proteins & other nutrients Eucalyptus viminalis exudate), gum (e.g. Acacia lerp manna decurrens) Fruit & seeds Staple foods Carbohydrates (sugars, starches, fibre), proteins, fats, vitamins Leaves, stalks, roots, apical Staple foods Carbohydrates, protein, buds minerals Plants such as daisies, lilies, orchids and vines Tubers, rhyzomes were a source of starchy tubers known as Carbohydrate, fibre, yams. The yam daisy Microseris lanceolata protein, vitamins, (Asteraceae) was widespread in inland NSW minerals and other states. The native yam Dioscorea transversa grows north from Stanwell Tops into Qld and Northern Territory and can be eaten raw or roasted as can those of Trachymene incisa. 1 Plant Description of food Other notes Acacia Wattle seed is a rich source of iron, Saponins and tannins and other essential elements.
    [Show full text]
  • Macadamia Variety Identifier
    Macadamia information kit Reprint – information current in 1998 Macadamia Variety Identifier REPRINT INFORMATION – PLEASE READ! Contributing authors For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au David Bell Eric Gallagher This publication has been reprinted as a digital book without any changes to the content published in 1998. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: Lindsay Bryen Ian McConachie • Chemical recommendations—check with an agronomist or Infopest www.infopest.qld.gov.au • Financial information—costs and returns listed in this publication are out of date. Please contact an adviser or Daryl Firth Paul O’Hare industry body to assist with identifying more current figures. Kim Jones Russ Stephenson • Varieties—new varieties are likely to be available and some older varieties may no longer be recommended. Check with an agronomist, call the Business Information Centre on 13 25 23, visit our website www.deedi.qld.gov.au or contact the industry body. • Contacts—many of the contact details may have changed and there could be several new contacts available. The industry organisation may be able to assist you to find the information or services you require. • Organisation names—most government agencies referred to in this publication have had name changes. Contact Coordinating author the Business Information Centre on 13 25 23 or the industry organisation to find out the current name and contact details for these agencies. • Additional information—many other sources of information are now available for each crop.
    [Show full text]
  • Species List Alphabetically by Common Names
    SPECIES LIST ALPHABETICALLY BY COMMON NAMES COMMON NAME SPECIES COMMON NAME SPECIES Actephila Actephila lindleyi Native Peach Trema aspera Ancana Ancana stenopetala Native Quince Guioa semiglauca Austral Cherry Syzygium australe Native Raspberry Rubus rosifolius Ball Nut Floydia praealta Native Tamarind Diploglottis australis Banana Bush Tabernaemontana pandacaqui NSW Sassafras Doryphora sassafras Archontophoenix Bangalow Palm cunninghamiana Oliver's Sassafras Cinnamomum oliveri Bauerella Sarcomelicope simplicifolia Orange Boxwood Denhamia celastroides Bennetts Ash Flindersia bennettiana Orange Thorn Citriobatus pauciflorus Black Apple Planchonella australis Pencil Cedar Polyscias murrayi Black Bean Castanospermum australe Pepperberry Cryptocarya obovata Archontophoenix Black Booyong Heritiera trifoliolata Picabeen Palm cunninghamiana Black Wattle Callicoma serratifolia Pigeonberry Ash Cryptocarya erythroxylon Blackwood Acacia melanoxylon Pink Cherry Austrobuxus swainii Bleeding Heart Omalanthus populifolius Pinkheart Medicosma cunninghamii Blue Cherry Syzygium oleosum Plum Myrtle Pilidiostigma glabrum Blue Fig Elaeocarpus grandis Poison Corkwood Duboisia myoporoides Blue Lillypilly Syzygium oleosum Prickly Ash Orites excelsa Blue Quandong Elaeocarpus grandis Prickly Tree Fern Cyathea leichhardtiana Blueberry Ash Elaeocarpus reticulatus Purple Cherry Syzygium crebrinerve Blush Walnut Beilschmiedia obtusifolia Red Apple Acmena ingens Bollywood Litsea reticulata Red Ash Alphitonia excelsa Bolwarra Eupomatia laurina Red Bauple Nut Hicksbeachia
    [Show full text]
  • Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
    PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp.
    [Show full text]
  • RAINFOREST STUDY Glicjjp
    RAINFOREST STUDY GlICJJP ,. Group Leader DAVID JENKINSON NEWSLElTER NO, fi JULY 1991 18 SKENES AVE, ISSN 0729-5413 EASTWOOD NSW 21 22 Annual Subscription $5 "Rainforest provides a living laboratory harbouring many of the most primitive members of Australia's plant and animal groups." ANNUAL REPORT This is my second year of co-ordinating the Study Group and I admit to a certain amount of satisfaction at our achievements in that time. Membership has increased from 79 to 124. Contact during the year was through 4 Newsletters, various correspondence, and by meeting very many members. Three meetings were held at Sydney venues and a NSW campout. An active Brisbane branch that has recently been established, ably organised by Ran Twaddle, held 2 meetings in pleasant aurrowdings. Seed exchange is increasing and the first tentative steps in organlsing a cuttings exchange have been taken. Esther Taylor of Ipswich has accepted the position of Plant Registrar. We are setting up a library of donated material. A Flews- letter exchange with kindred groups has been initiated. We again have a bank balance. I would particularly wish to thank those many members for their various contributions - news and views for the Newsletter, material for the library, seed for offering to others, plants for fund raising, cash donations, the hospitality of people providing meeting places, the welcome given to Ber1.l and me by those . members we were able to contact on our travels in gaining knowledge on Rainforest generally and in seek- ing items and ideas for Newsletters. The Group's appreciation should be shown to the SGAP regions, QLD, NSW, Vic.
    [Show full text]
  • Macadamia Tetraphylla L.)
    MACADAMIA (Macadamia tetraphylla L.) Marisol Reyes M. 5 Arturo Lavín A. 5.1. Clasificación botánica El género Macadamia pertenece a la familia Proteaceae, el que incluye al menos cinco especies en Australia y diez a escala mundial. Debido a que su semilla es comestible, Macadamia integrifolia Maiden & Betche y Macadamia tetraphylla L., junto a algunos híbridos entre ambas, son las especies de esta familia que actualmente tienen importancia económica. Ambas son nativas de Australia (Nagao and Hirae, 1992). En Chile esta familia está representada por árboles de gran valor maderero como lo son, entre otras, Gevuina avellana Mol. (Avellano chileno, de fruta similar a macadamia), Embothrium coccineum Forst. (“Notro” y “Ciruelillo), Lomatia ferruginea (Cav.) R. Br., (“Fuinque”, ”Huinque”), Lomatia hirsuta (Lam.) Diels, (“Radal”) y Orites myrtoidea (Poepp. et Endl.) Benth et Hook, (“Mirtillo, Radal de hojas chicas”) (Muñoz, 1959; Sudzuki, 1996). 5.2. Origen de la especie Las macadamias originarias de Australia (entre los 25° y 31° de latitud sur), corresponden a especies relativamente nuevas en cuanto a la comercialización de su fruta y son las únicas plantas nativas de Australia que han sido incorporadas al cultivo comercial por su fruto comestible (Moncur et al., 1985). 103 M. integrifolia es originaria de los bosques húmedos subtropicales del sudeste de Queensland, lo que la hace poco tolerante a las bajas temperaturas, mientras que M. tetraphylla es de origen más meridional, lo que la hace más tolerante a áreas con clima temperado (Nagao and Hirae, 1992). La macadamia fue introducida a Hawai desde Australia hacia fines de los 1.800, pero no fue comercialmente cultivada hasta los inicios de los 1.900 (Nagao and Hirae, 1992).
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]
  • Threatened Species of Wilsons and Coopers Creek
    Listed below are species recorded from the project areas of Goonengerry Landcare and Wilsons Creek Huonbrook Landcare groups. Additional species are known from adjacent National Parks. E = Endangered V = Vulnerable BCA - Biodiversity Conservation Act 2016 EPBC - Environment Protection and Biodiversity Conservation Act 1999 Threatened Species of Wilsons and Coopers Creek SOS - Saving our Species Scientific name Common name TSC Act status EPBC Act status SOS stream Wilsons Creek and Coopers Creek are tributaries of the Wilsons River on the Far North Coast of New South Wales. Within the South East Queensland Bioregion, the native flora and fauna of PLANTS this region are among the most diverse in Australia. In the catchment areas of the Wilsons and Corokia whiteana Corokia V V Keep watch Coopers Creek 50 threatened species of flora and fauna can be found and 2 endangered Davidsonia johnsonii Smooth Davidson's Plum E E Site managed ecological communities. Desmodium acanthocladum Thorny Pea V V Site managed What is a threatened species? Diploglottis campbellii Small-leaved Tamarind E E Site managed Plants and animals are assessed on the threats that face them and the level to which they are at Doryanthes palmeri Giant Spear Lily V Keep watch risk of extinction. If the risk is high they are listed in legislation and conservation actions are Drynaria rigidula Basket Fern E Partnership developed for their protection. There are almost 1000 animal and plant species at risk of Elaeocarpus williamsianus Hairy Quandong E E Site managed extinction in NSW. Endiandra hayesii Rusty Rose Walnut V V Data deficient A species is considered threatened if: Endiandra muelleri subsp.
    [Show full text]
  • Improvements in the Sequencing and Assembly of Plant Genomes
    UPDATE Improvements in the sequencing and assembly of plant genomes Priyanka Sharma1, Othman Al-Dossary1,2, Bader Alsubaie1,2, Ibrahim Al-Mssallem2, Onkar Nath1, Neena Mitter1, Gabriel Rodrigues Alves Margarido1,4, Bruce Topp1, Valentine Murigneux3, Ardashir Kharabian Masouleh1, Agnelo Furtado1 and Robert J. Henry1,5,* 1 Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia 2 College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia 3 Genome Innovation Hub, University of Queensland, Brisbane 4072, Australia 4 Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil 5 Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia ABSTRACT This article is an update to https://doi.org/10.1093/gigascience/giaa146 Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness.
    [Show full text]