Improving Sulforaphane Bioavailability from Cooked Broccoli

Total Page:16

File Type:pdf, Size:1020Kb

Improving Sulforaphane Bioavailability from Cooked Broccoli IMPROVING SULFORAPHANE BIOAVAILABILITY FROM COOKED BROCCOLI BY YANLING WANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Food Science and Human Nutrition with a concentration in Food Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2019 Urbana, Illinois Doctoral Committee: Associate Professor Michael J. Miller, Chair Professor Emeritus Elizabeth H. Jeffery, Director of Research Professor John A. Juvik Assistant Professor Zeynep Madak-Erdogan Adjunct Professor Mark A. Berhow ABSTRACT Broccoli is a nutritious food containing many macro- and micro-nutrients. Most consumers prefer cooked broccoli (CB); unfortunately, the enzyme myrosinase is inactivated by heat, resulting in the failure of glucoraphanin (GRP) hydrolysis to sulforaphane (SF), the potent anti- cancer compound in broccoli. Certain unknown bacteria in the gut microbiota also have myrosinase-like activities that can hydrolyze GRP and release bioactive SF. However, the activity from bacteria is low compared to that from plant. The overall objective of this study is to identify ways to improve SF formation and absorption (bioavailability) from CB, through better understanding the mechanism. Our first hypothesis was that frequent intake of CB would enrich the bacteria that contain myrosinase-like activity, therefore enhancing SF bioavailability and bioactivity. Our data show that no less than 4 days of CB diet greatly alters the cecal microbiota composition in rats, and increases the myrosinase-like activity of cecal microbiota ex vivo. Increased colonocyte NAD(P)H: quinone oxidoreductase 1 activity (one marker of SF bioactivity) in rats fed with no less than 7 days of a CB diet also indicates enhanced SF bioactivity by frequent intake of CB. The myrosinase-like activity of cecal microbiota is lost when the 4 day CB diet was switched back to a control diet for an additional 3 days, suggesting that the increase in SF bioavailability requires intake of CB on a daily basis. Whether the myrosinase-like activity or the abundance of the myrosinase-containing bacteria is induced by a CB diet remains unknown and needs to be further investigated. In the next study, we compared the effect of frequent intake of CB and raw broccoli (RB) in prevention of dextran sulfate sodium (DSS)-induced colitis in mice. Our data show that frequent intake of a CB diet is as effective as a RB diet in lessening damage by DSS, evidenced by a decreased disease activity index, attenuated colon length shrinkage, less endotoxin (lipopolysaccharide) leakage into blood, and less severe colon lesions as assessed by ii histopathology. Intriguingly, mRNA expression of pro-inflammatory cytokines indicated that broccoli anti-inflammatory action may be through inhibition of the IL-6 trans-signaling pathway, as evidenced by reversal of the DSS-increased expression of IL-6, CCR2 and vascular cell adhesion molecule 1 (VCAM-1). Our next hypothesis was that the quercetin-3-O-sophoroside (QS), the major flavonoid in broccoli, could improve the bioavailability of SF from CB, by modifying the gut microbiota composition. Because no literature existed on health-related properties of QS, we considered that it was essential to first understand the disposition of QS per se. Our data show that QS is absorbed intact in the small intestine and partly methylated to isorhamnetin sophoroside (methylated QS). No quercetin aglycone or its typical phase II metabolites were observed. With this important piece of information about where and how QS is absorbed and metabolized, future studies will be able to study whether the intact QS improves SF bioavailability from CB and whether this effect, if present, is dependent on gut microbiota. iii TABLE OF CONTENTS CHAPTER 1: Introduction ..................................................................................................1 1.1 Introduction ....................................................................................................................1 1.2 References ......................................................................................................................3 CHAPTER 2: Literature Review .........................................................................................4 2.1 Broccoli Composition ....................................................................................................4 2.2 Broccoli and Health .......................................................................................................5 2.3 Glucoraphanin and Sulforaphane ...................................................................................8 2.4 Quercetin Glycosides and Quercetin ...........................................................................12 2.5 Tables and Figures .......................................................................................................26 2.6 References ....................................................................................................................31 CHAPTER 3: Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates ............................................................................40 3.1 Introduction ..................................................................................................................40 3.2 Materials and Methods .................................................................................................42 3.3 Results ..........................................................................................................................46 3.4 Discussion ....................................................................................................................49 3.5 Conclusions ..................................................................................................................52 3.6 Tables and Figures .......................................................................................................53 3.7 References ....................................................................................................................59 CHAPTER 4: Lightly Cooked Broccoli Is as Effective as Raw Broccoli in Mitigating Dextran Sulfate Sodium-Induced Colitis in Mice ..............................................................64 4.1 Introduction ..................................................................................................................64 iv 4.2 Materials and Methods .................................................................................................66 4.3 Results ..........................................................................................................................73 4.4 Discussion ....................................................................................................................78 4.5 Conclusions ..................................................................................................................85 4.6 Tables and Figures .......................................................................................................86 4.7 References ....................................................................................................................93 CHAPTER 5: Purification, Absorption and Metabolism of Quercetin-3-O-Sophoroside, the Major Quercetin in Brassica ........................................................................................97 5.1 Introduction ..................................................................................................................97 5.2 Methods........................................................................................................................98 5.3 Results ........................................................................................................................103 5.4 Discussion ..................................................................................................................107 5.5 Conclusions ................................................................................................................111 5.6 Table and Figures .......................................................................................................112 5.7 References ..................................................................................................................119 CHAPTER 6: Conclusions and Future Directions...........................................................123 6.1 Conclusions and Future Directions ............................................................................123 6.2 References ..................................................................................................................128 APPENDIX A: Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates ..........................................................................129 APPENDIX B: Lightly Cooked Broccoli Is as Effective as Raw Broccoli in Mitigating Dextran Sulfate Sodium-Induced Colitis in Mice ............................................................142 v CHAPTER 1: Introduction 1.1 Introduction Broccoli and other crucifers are well appreciated as important anti-cancer and anti- inflammation vegetables. Whereas most consumers prefer cooked broccoli (CB), the enzyme myrosinase is inactivated by heat, resulting in the failure of glucoraphanin (GRP) hydrolysis to sulforaphane (SF), the potent anti-cancer compound in broccoli. Therefore,
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Critical Evaluation of Gene Expression Changes in Human Tissues In
    Review Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies Biljana Pokimica 1 and María-Teresa García-Conesa 2,* 1 Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia; [email protected] 2 Research Group on Quality, Safety and Bioactivity of Plant Foods, Campus de Espinardo, Centro de Edafologia y Biologia Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100 Murcia, Spain * Correspondence: [email protected]; Tel.: +34-968-396276 Received: 4 June 2018; Accepted: 19 June 2018; Published: 22 June 2018 Abstract: Pre-clinical cell and animal nutrigenomic studies have long suggested the modulation of the transcription of multiple gene targets in cells and tissues as a potential molecular mechanism of action underlying the beneficial effects attributed to plant-derived bioactive compounds. To try to demonstrate these molecular effects in humans, a considerable number of clinical trials have now explored the changes in the expression levels of selected genes in various human cell and tissue samples following intervention with different dietary sources of bioactive compounds. In this review, we have compiled a total of 75 human studies exploring gene expression changes using quantitative reverse transcription PCR (RT-qPCR). We have critically appraised the study design and methodology used as well as the gene expression results reported. We herein pinpoint some of the main drawbacks and gaps in the experimental strategies applied, as well as the high interindividual variability of the results and the limited evidence supporting some of the investigated genes as potential responsive targets.
    [Show full text]
  • Figure 1. Metabolism of Glucoraphanin and Glucobrassicin to Biologically Active Metabolites
    Legend to Figures: Figure 1. Metabolism of glucoraphanin and glucobrassicin to biologically active metabolites. (A) Sulforaphane is released from glucoraphanin by the plant enzyme myrosinase. Red dashed arrow marks the reactive carbon atom subject to glutathione conjugation. (B) Sulforaphane is metabolized via the mercapturic acid pathway into active metabolites. Glutathione-S-transferase (GST) first conjugates a GSH molecule (Glu-Cys-Gly) to the reactive carbon on sulforaphane. Glutamate is then removed by γ- glutamyltranspeptidase (GTP), followed by removal of the glycine residue by cysteinylglycinase (CGase). Cysteine is then acetylated by an acetyltransferase (AT) to sulforaphane-N-acetylcysteine, which is excreted in the urine. (C) Indole-3-carbinol is released from the glucosinolate glucobrassicin by myrosinase and undergoes spontaneous condensation in the acidic environment of the gut. Diindolylmethane (DIM) is the most abundant post-absorption acid condensation product. Acid condensation products can be modified further post-absorption. LTr1: Linear trimer 1. LTr2: Linear trimer 2. Structures from PubChem at National Center for Biotechnology Information (NCBI). Figure 2. Selected non-epigenetic effects of sulforaphane and I3C/DIM on prostate cancer cells. Sulforaphane (SFN) and I3C/DIM inhibit the Akt signaling axis, a signaling pathway often hyperactive in prostate cancer. Inhibition of this pathway decreases pro-survival signaling by mTOR, Akt, and NFkB. Sulforaphane and I3C/DIM treatment also lead to changes in gene expression (blue arrow) that trigger growth arrest and apoptosis. The expression of proteins controlling the cell cycle (e.g. p21, p27, CDK6) are altered to effect growth arrest, and apoptosis is finally induced through the mitochondrial pathway. Abbreviations: AR – Androgen Receptor, CDK6 – cyclin dependant kinase 6, IAP – inhibitors of apoptosis.
    [Show full text]
  • Effects of Cruciferous Vegetable Consumption on Urinary
    Cancer Epidemiology, Biomarkers & Prevention 997 Effects of Cruciferous Vegetable Consumption on Urinary Metabolites of the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone in Singapore Chinese Stephen S. Hecht,1 Steven G. Carmella,1 Patrick M.J. Kenney,1 Siew-Hong Low,2 Kazuko Arakawa,3 and Mimi C. Yu3 1University of Minnesota Cancer Center, Minneapolis, Minnesota; 2Department of Community, Occupational, and Family Medicine, National University of Singapore, Singapore; and 3Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California Abstract Vegetable consumption, including cruciferous vegeta- major glucosinolates in seven of the nine cruciferous bles, is protective against lung cancer, but the mechan- vegetables, accounting for 70.0% to 93.2% of all glu- isms are poorly understood. The purpose of this study cosinolates in these vegetables. There was a significant was to investigate the effects of cruciferous vegetable correlation (P = 0.01) between increased consumption consumption on the metabolism of the tobacco-specific of glucobrassicins and decreased levels of NNAL in lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1- urine after adjustment for number of cigarettes smoked butanone (NNK) in smokers. The study was carried out per day; similar trends were observed for NNAL-Glucs in Singapore Chinese, whose mean daily intake of (P = 0.08) and NNAL plus NNAL-Glucs (P = 0.03). cruciferous vegetables is three times greater than that These results are consistent with those of previous of people in the United States. Eighty-four smokers studies, which demonstrate that indole-3-carbinol de- provided urine samples and were interviewed about creases levels of urinary NNAL probably by inducing dietary habits using a structured questionnaire, which hepatic metabolism of NNK.
    [Show full text]
  • A Natural Antimicrobial Ingredient
    Mustard: A Natural Antimicrobial Ingredient Did you know? Mustard has natural antimicrobial properties, the bioactive compounds ‐ glucosinolates in mustard, are converted to the antimicrobial isothiocyanates in the presence of water Natural preservative functionality of mustard can be very valuable to the food industry Mustard isothiocyanates can effect up to a 5‐log reduction of E. coli 0157:H7 in fermented meats Mustard Essential Oils (MEO) can be added to bakery products to inhibit fungal growth and production of aflatoxins Glucosinolates from deheated / deodorized (bland) mustard can be converted into highly antimicrobial isothiocyanate by bacterial myrosinase‐like enzyme action present in E. coli, 0157:H7, Staphylococcus carnosus and Pediococcus pentosaceus11,12,13 and in L. monocytogenes, Enterococcus faecalis, Staphylococcus aureus and Salmonella typhimurium Mustard’s inherent antimicrobial properties should fit well with the food industry’s growing interest and increasing consumer demand for the use of a natural preservative to enhance food safety and increase shelf‐life of prepared packaged foods with a “clean label” claim. Mustards in Foods Mustards (Yellow and Brown) are commercially available as whole seeds, ground/cracked seeds, meals or flour forms and are widely used in the manufacture of condiments, salad dressings, pickles, sauces, processed meats and as substitutes for egg ingredients. While mainly used as a spice or for its functional properties, mustard can also provide raw and processed foods protection against pathogenic and spoilage microorganisms. Antimicrobial Bioactives in Mustard All mustards, Yellow (& White) (Sinapis alba) and Brown/Oriental (Brassica juncea), contain glucosinolates. It is these glucosinolates and their isothiocyanate (ITC) breakdown products which contribute to its natural antimicrobial activity and to the heat and pungency of mustard.
    [Show full text]
  • THE Glucosinolates & Cyanogenic Glycosides
    THE Glucosinolates & Cyanogenic Glycosides Assimilatory Sulphate Reduction - Animals depend on organo-sulphur - In contrast, plants and other organisms (e.g. fungi, bacteria) can assimilate it - Sulphate is assimilated from the environment, reduced inside the cell, and fixed to sulphur containing amino acids and other organic compounds Assimilatory Sulphate Reduction The Glucosinolates The Glucosinolates - Found in the Capparales order and are the main secondary metabolites in cruciferous crops The Glucosinolates - The glucosinolates are a class of organic compounds (water soluble anions) that contain sulfur, nitrogen and a group derived from glucose - Every glucosinolate contains a central carbon atom which is bond via a sulfur atom to the glycone group, and via a nitrogen atom to a sulfonated oxime group. In addition, the central carbon is bond to a side group; different glucosinolates have different side groups The Glucosinolates Central carbon atom The Glucosinolates - About 120 different glucosinolates are known to occur naturally in plants. - They are synthesized from certain amino acids: methionine, phenylalanine, tyrosine or tryptophan. - The plants contain the enzyme myrosinase which, in the presence of water, cleaves off the glucose group from a glucosinolate The Glucosinolates -Post myrosinase activity the remaining molecule then quickly converts to a thiocyanate, an isothiocyanate or a nitrile; these are the active substances that serve as defense for the plant - To prevent damage to the plant itself, the myrosinase and glucosinolates
    [Show full text]
  • Isothiocyanates from Cruciferous Vegetables
    Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Promotoren Prof. dr. Peter J. van Bladeren Hoogleraar Toxicokinetiek en Biotransformatie, leerstoelgroep Toxicologie, Wageningen Universiteit Prof. dr. ir. Ivonne M.C.M. Rietjens Hoogleraar Toxicologie, Wageningen Universiteit Copromotor Dr. Wouter H.J. Vaes Productmanager Nutriënten en Biomarker analyse, TNO Kwaliteit van Leven, Zeist Promotiecommissie Prof. dr. Aalt Bast Universiteit Maastricht Prof. dr. ir. M.A.J.S. (Tiny) van Boekel Wageningen Universiteit Prof. dr. Renger Witkamp Wageningen Universiteit Prof. dr. Ruud A. Woutersen Wageningen Universiteit / TNO, Zeist Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG (Voeding, Levensmiddelen- technologie, Agrobiotechnologie en Gezondheid) Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 13 februari 2009 des namiddags te half twee in de Aula. Title Isothiocyanates from cruciferous vegetables: kinetics, biomarkers and effects Author Martijn Vermeulen Thesis Wageningen University, Wageningen, The Netherlands (2009) with abstract-with references-with summary in Dutch ISBN 978-90-8585-312-1 ABSTRACT Cruciferous vegetables like cabbages, broccoli, mustard and cress, have been reported to be beneficial for human health. They contain glucosinolates, which are hydrolysed into isothiocyanates that have shown anticarcinogenic properties in animal experiments. To study the bioavailability, kinetics and effects of isothiocyanates from cruciferous vegetables, biomarkers of exposure and for selected beneficial effects were developed and validated. As a biomarker for intake and bioavailability, isothiocyanate mercapturic acids were chemically synthesised as reference compounds and a method for their quantification in urine was developed.
    [Show full text]
  • TR-584: Indole-3-Carbinol (CASRN 700-06-1) in F344/N Rats
    NTP TECHNICAL REPORT ON THE TOXICOLOGY STUDIES OF INDOLE-3-CARBINOL (CASRN 700-06-1) IN F344/N RATS AND B6C3F1/N MICE AND TOXICOLOGY AND CARCINOGENESIS STUDIES OF INDOLE-3-CARBINOL IN HARLAN SPRAGUE DAWLEY RATS AND B6C3F1/N MICE (GAVAGE STUDIES) NTP TR 584 JULY 2017 NTP Technical Report on the Toxicology Studies of Indole-3-carbinol (CASRN 700-06-1) in F344/N Rats and B6C3F1/N Mice and Toxicology and Carcinogenesis Studies of Indole-3-carbinol in Harlan Sprague Dawley Rats and B6C3F1/N Mice (Gavage Studies) Technical Report 584 July 2017 National Toxicology Program Public Health Service U.S. Department of Health and Human Services ISSN: 2378-8925 Research Triangle Park, North Carolina, USA Indole-3-carbinol, NTP TR 584 Foreword The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute.
    [Show full text]
  • Advances in Nanomaterials As Novel Elicitors of Pharmacologically Active
    RSC Advances View Article Online REVIEW View Journal | View Issue Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized Cite this: RSC Adv.,2019,9, 40404 metabolites: current status and future outlooks Sumaira Anjum, *a Iram Anjum,a Christopher Hano b and Sidra Kousarc During the last few decades major advances have shed light on nanotechnology. Nanomaterials have been widely used in various fields such as medicine, energy, cosmetics, electronics, biotechnology and pharmaceuticals. Owing to their unique physicochemical characteristics and nanoscale structures, nanoparticles (NPs) have the capacity to enter into plant cells and interact with intracellular organelles and various metabolites. The effects of NPs on plant growth, development, physiology and biochemistry have been reported, but their impact on plant specialized metabolism (aka as secondary metabolism) still remains obscure. In reaction to environmental stress and elicitors, a common response in plants results in the production or activation of different types of specialized metabolites (e.g., alkaloids, terpenoids, Creative Commons Attribution 3.0 Unported Licence. phenolics and flavonoids). These plant specialized metabolites (SMs) are important for plant adaptation to an adverse environment, but also a huge number of them are biologically active and used in various commercially-valued products (pharmacy, cosmetic, agriculture, food/feed). Due to their wide array of applications, SMs have attracted much attention to explore and develop new strategies to enhance their production in plants. In this context, NPs emerged as a novel class of effective elicitors to enhance the production of various plant SMs. In recent years, many reports have been published regarding the elicitation of SMs by different types of NPs.
    [Show full text]
  • PYK10 Myrosinase Reveals a Functional Coordination Between Endoplasmic Reticulum Bodies and Glucosinolates in Arabidopsis Thaliana
    The Plant Journal (2017) 89, 204–220 doi: 10.1111/tpj.13377 PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana Ryohei T. Nakano1,2,3, Mariola Pislewska-Bednarek 4, Kenji Yamada5,†, Patrick P. Edger6,‡, Mado Miyahara3,§, Maki Kondo5, Christoph Bottcher€ 7,¶, Masashi Mori8, Mikio Nishimura5, Paul Schulze-Lefert1,2,*, Ikuko Hara-Nishimura3,*,#,k and Paweł Bednarek4,*,# 1Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Koln,€ Germany, 2Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Koln,€ Germany, 3Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, 4Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland, 5Department of Cell Biology, National Institute of Basic Biology, Okazaki 444-8585, Japan, 6Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA, 7Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany, and 8Ishikawa Prefectural University, Nonoichi, Ishikawa 834-1213, Japan Received 29 March 2016; revised 30 August 2016; accepted 5 September 2016; published online 19 December 2016. *For correspondence (e-mails [email protected]; [email protected]; [email protected]). #These authors contributed equally to this work. †Present address: Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland. ‡Present address: Department of Horticulture, Michigan State University, East Lansing, MI, USA. §Present address: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
    [Show full text]
  • Glucosinolates As Undesirable Substances in Animal Feed1
    The EFSA Journal (2008) 590, 1-76 Glucosinolates as undesirable substances in animal feed1 Scientific Panel on Contaminants in the Food Chain (Question N° EFSA-Q-2003-061) Adopted on 27 November 2007 PANEL MEMBERS Jan Alexander, Guðjón Atli Auðunsson, Diane Benford, Andrew Cockburn, Jean-Pierre Cravedi, Eugenia Dogliotti, Alessandro Di Domenico, Maria Luisa Férnandez-Cruz, Peter Fürst, Johanna Fink-Gremmels, Corrado Lodovico Galli, Philippe Grandjean, Jadwiga Gzyl, Gerhard Heinemeyer, Niklas Johansson, Antonio Mutti, Josef Schlatter, Rolaf van Leeuwen, Carlos Van Peteghem and Philippe Verger. SUMMARY Glucosinolates (alkyl aldoxime-O-sulphate esters with a β-D-thioglucopyranoside group) occur in important oil- and protein-rich agricultural crops, including among others Brassica napus (rapeseed of Canola), B. campestris (turnip rape) and Sinapis alba (white mustard), all belonging to the plant family of Brassicaceae. They are present in all parts of these plants, with the highest concentrations often found in seeds. Several of these Brassica species are important feed ingredients and some species are also commonly used in human nutrition such as cauliflower, cabbages, broccoli and Brussels sprouts. Glucosinolates and their breakdown products determine the typical flavour and (bitter) taste of these vegetables. 1For citation purposes: Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the European Commission on glucosinolates as undesirable substances in animal feed, The EFSA Journal (2008) 590, 1- 76 © European Food Safety Authority, 2008 Glucosinolates as undesirable substances in animal feed The individual glucosinolates vary in structure and the configuration of their side chain. They are hydrophilic and rather stable and remain in the press cake of oilseeds when these are processed and de-oiled.
    [Show full text]
  • Opposing Effects of Glucosinolates on a Specialist Herbivore and Its Predators
    Journal of Applied Ecology 2011, 48, 880–887 doi: 10.1111/j.1365-2664.2011.01990.x Chemically mediated tritrophic interactions: opposing effects of glucosinolates on a specialist herbivore and its predators Rebecca Chaplin-Kramer1*, Daniel J. Kliebenstein2, Andrea Chiem3, Elizabeth Morrill1, Nicholas J. Mills1 and Claire Kremen1 1Department of Environmental Science Policy & Management, University of California, Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA; 2Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; and 3Department of Integrative Biology, University of California, Berkeley, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720, USA Summary 1. The occurrence of enemy-free space presents a challenge to the top-down control of agricultural pests by natural enemies, making bottom-up factors such as phytochemistry and plant distributions important considerations for successful pest management. Specialist herbivores like the cabbage aphid Brevicoryne brassicae co-opt the defence system of plants in the family Brassicaceae by sequestering glucosinolates to utilize in their own defence. The wild mustard Brassica nigra,analter- nate host for cabbage aphids, contains more glucosinolates than cultivated Brassica oleracea,and these co-occur in agricultural landscapes. We examined trade-offs between aphid performance and predator impact on these two host plants to test for chemically mediated enemy-free space. 2. Glucosinolate content of broccoli B. oleracea and mustard B. nigra was measured in plant mat- ter and in cabbage aphids feeding on each food source. Aphid development, aphid fecundity, preda- tion and predator mortality, and field densities of aphids and their natural enemies were also tested for each food source.
    [Show full text]