Endophytic Fungi from the Roots of Horseradish (Armoracia Rusticana)

Total Page:16

File Type:pdf, Size:1020Kb

Endophytic Fungi from the Roots of Horseradish (Armoracia Rusticana) Szűcs et al. BMC Plant Biology (2018) 18:85 https://doi.org/10.1186/s12870-018-1295-4 RESEARCH ARTICLE Open Access Endophytic fungi from the roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate - myrosinase - isothiocyanate system Zsolt Szűcs1, Tamás Plaszkó1, Zoltán Cziáky5, Attila Kiss-Szikszai2, Tamás Emri3, Regina Bertóti4, László Tamás Sinka5, Gábor Vasas1 and Sándor Gonda1* Abstract Background: The health of plants is heavily influenced by the intensively researched plant microbiome. The microbiome has to cope with the plant’s defensive secondary metabolites to survive and develop, but studies that describe this interaction are rare. In the current study, we describe interactions of endophytic fungi with a widely researched chemical defense system, the glucosinolate - myrosinase - isothiocyanate system. The antifungal isothiocyanates are also of special interest because of their beneficial effects on human consumers. Results: Seven endophytic fungi were isolated from horseradish roots (Armoracia rusticana), from the genera Fusarium, Macrophomina, Setophoma, Paraphoma and Oidiodendron. LC-ESI-MS analysis of the horseradish extract incubated with these fungi showed that six of seven strains could decompose different classes of glucosinolates. Aliphatic, aromatic, thiomethylalkyl and indolic glucosinolates were decomposed by different strains at different rates. SPME-GC-MS measurements showed that two strains released significant amounts of allyl isothiocyanate into the surrounding air, but allyl nitrile was not detected. The LC-ESI-MS analysis of many strains’ media showed the presence of allyl isothiocyanate - glutathione conjugate during the decomposition of sinigrin. Four endophytic strains also accepted sinigrin as the sole carbon source. Isothiocyanates inhibited the growth of fungi at various concentrations, phenylethyl isothiocyanate was more potent than allyl isothiocyanate (mean IC50 was 2.30-fold lower). As a control group, ten soil fungi from the same soil were used. They decomposed glucosinolates with lower overall efficiency: six of ten strains had insignificant or weak activities and only three could use sinigrin as a carbon source. The soil fungi also showed lower AITC tolerance in the growth inhibition assay: the median IC50 values were 0.1925 mM for endophytes and 0.0899 mM for soil fungi. Conclusions: The host’s glucosinolates can be used by the tested endophytic fungi as nutrients or to gain competitive advantage over less tolerant species. These activities were much less apparent among the soil fungi. This suggests that the endophytes show adaptation to the host plant’s secondary metabolites and that host metabolite specific activities are enriched in the root microbiome. The results present background mechanisms enabling an understanding of how plants shape their microbiome. Keywords: Myrosinase, Endophytes, Glucosinolate, Isothiocyanate, Fungal enzyme * Correspondence: [email protected]; [email protected] 1Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, Debrecen H-4010, Hungary Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Szűcs et al. BMC Plant Biology (2018) 18:85 Page 2 of 15 Background Despitealltheabove,theendophytes’ interaction with It is now well established that the plant microbiome the plant defense metabolites is not that studied. affects the health of plants, just as the much more The glucosinolate (GSL) - myrosinase (MYR) - isothio- researched human microbiome influences ours [1]. Of cyanate (ITC) chemical defense system is present in course, the complex groups of microbes also interact Brassicaceae, Capparaceae, Resedaceae and Moringaceae. with the plant metabolites. Some natural products are It is one of the most researched plant defense systems co-products of the endophytes and the plants; several [11]. Myrosinase (EC 3.2.1.147, thioglucoside glucohy- endophytes can selectively transform the plant’ssec- drolase) catalyzes the reaction between a glucosinolate ondary metabolites [2]. Endophytic fungi are an inten- and water to yield glucose and a thiohydroximate. The sively studied subset of the plant microbiome. A huge free thiohydroximate subsequently spontaneously rear- amount of scientific literature is gathering on this ranges to isothiocyanates and byproducts (Fig. 1)[12, group, which is not that straightforward to define [3, 13]. Most isothiocyanates are extremely pungent and 4]. Various definitions exist, but they are usually con- exert various bioactivities due to their reactive -NCS sidered non-pathogenic strains that live inside plants groups, which results in strong antimicrobial, insecti- without causing apparent symptoms [3, 4]. Endo- cidal and other effects [12]. This chemical defense sys- phytes are very good subjects for drug discovery. The tem is present in vegetables of the Brassicaceae with possibility of finding new natural products is a signifi- various glucosinolates. Interestingly, the isothiocyanates cant driving force of the research of these fungi [5]. have beneficial effects on humans, making the Brassica- Endophytes are also well studied for production of ceae crops healthy functional foods. Regular consump- different enzymes that operate under special condi- tion of low amounts of isothiocyanates can prevent tions, for example, endophytes isolated from plants different human diseases [12]. living in saline habitats, harbor enzymes that can op- Glucosinolates are chemically stable and are sepa- erate at high salt concentrations [6]. Their beneficial rated from their activating enzyme – MYR – by interaction with plants also has potential uses in crop compartmentalization. They typically come in contact protection and plant health promotion (e.g. biocon- in planta when the plant tissue is damaged. There is trol, salt tolerance [7, 8]).However,thenon- a considerable variability of the actual separation pathogenic lifestyle can not be considered stable [3, strategy that depends on species, organ, developmen- 4]. “True” endophytes sometimes become latent path- tal stage and many other factors [11]. Myrosinase and ogens, and this has severe agricultural impact [9, 10]. the GSLs are usually stored in separate cells, but this Fig. 1 The glucosinolate – myrosinase – isothiocyanate system and its interactions with fungi and members of the ecosystem. Known sources of enzymes are color coded: Plants: black, fungi or bacteria: red, insects: blue. Abbreviations: ESP, epithionitrile specifier protein, NSP, nitrile specifier protein, TFP, thiocyanate-forming protein. References: [13, 56, 61, 62] Szűcs et al. BMC Plant Biology (2018) 18:85 Page 3 of 15 is not always the case. The GSL - ITC system is this activity would make this system more complex. therefore considered a “chemical bomb” that is trig- Also, in such an approach, a direct comparison with gered by the attack of pathogens and herbivores [11]. some control group of fungi would be desirable so that The isothiocyanates were shown to have potent anti- the specificity of the phenomenon can be assessed. fungal activity in many papers (e.g. [14–16]). It is an The aim of the current study was to test the hypoth- interesting question how endophytes tolerate the iso- esis that endophytes interfere with the GSL - MYR - thiocyanates of the plants. Actually, myrosinase activ- ITC chemical defense system of plants. The main ques- ity can benefit microorganisms, as it enables them to tions are: 1., Do endophytes tolerate the ITCs of the host obtain glucose from the thioglucoside. For endo- better than non-endophytic fungi? 2., Can endophytes phytes, there would be an additional benefit as it decompose GSLs? Can they use them as a carbon would give them the option to disarm the “chemical source? 3., How specific is the activity of the endo- bomb” of the host. Of course, they have to cope with phytes? To answer the above questions, we used isolated the toxicity of the released ITCs or prevent its release fungal root endophytes from Armoracia rusticana (as shown for an Aspergillus sp. strain [17]). MYR (horseradish), a Brassicaceae crop with a very high abun- activity was shown to be present in many microbial dance of ITCs. The strains were grown on horseradish organisms including Aspergillus sp., Fusarium sp. [18], extract to test their glucosinolate decomposing capacity Citrobacter [19], Enterobacter [20]aswellasmany and their ability to produce various decomposition prod- other species. Strains capable of metabolizing ucts. Their ITC tolerance and ability to use GSLs as a glucosinolates are part of the human gut microbial sole carbon source was also examined. As a reference community [21–23]. group, a set of soil fungi from the same soil was used. Regarding effects of endophytes on the host’ssecondary metabolome, not many studies have been published to date. Methods A study has
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Transient Receptor Potential Channel Promiscuity Frustrates Constellation
    the sole sensor responsible for noxious cold responses in M+A+ LETTER neurons (1). However, TRPA1 is also activated by cooling and underlies at least part of the noxious cold responsiveness of Transient receptor potential channel AITC-sensitive neurons (3). Third, the authors used nicardipine 2+ promiscuity frustrates to selectively inhibit CaV1-type voltage-gated Ca channels (1). However, several dihydropyridines, including nicardipine, also constellation pharmacology act as TRPA1 agonists (4). These considerations led us to propose an alternative Sensory neurons from the trigeminal and dorsal root ganglia molecular interpretation of the difference between M+A− (DRG) have nerve endings in the skin and mucosa, where they and M+A+ neurons, which is in much better agreement with detect environmental stimuli and convey this information to published work. In accord with the authors, we conclude that the central nervous system. Several members of the transient M+A− neurons express TRPM8 but lack expression of receptor potential (TRP) superfamily of ion channels act as TRPA1. In contrast to the authors, we propose that M+A+ prime molecular sensors for thermal and chemical stimuli in neurons express TRPA1 as the prime cold and menthol these sensory neurons. However, it is incompletely understood sensor (2, 3). This interpretation is consistent with published how TRP channel expression and modulation affect the stimulus observations that menthol responses in M+A− but not in sensitivities of distinct neuronal subtypes. M+A+ neurons are inhibited by TRPM8 antagonists (5) In a recent article, Teichert et al. (1) described a “constellation and that TRPA1-mediated responses to cold in neurons are pharmacology approach” to identify and characterize subtypes characterized by a higher (colder) threshold (3).
    [Show full text]
  • Glucosinolates and Their Important Biological and Anti Cancer Effects: a Review
    Jordan Journal of Agricultural Sciences, Volume 11, No.1 2015 Glucosinolates and their Important Biological and Anti Cancer Effects: A Review V. Rameeh * ABSTRACT Glucosinolates are sulfur-rich plant metabolites of the family of Brassicace and other fifteen families of dicotyledonous angiosperms including a large number of edible species. At least 130 different glucosinolates have been identified. Following tissue damage, glucosinolates undergo hydrolysis catalysed by the enzyme myrosinase to produce a complex array of products which include volatile isothiocyanates and several compounds with goitrogenic and anti cancer activities. Glucosinolates are considered potential source of sulfur for other metabolic processes under low-sulfur conditions, therefore the breakdown of glucosinolates will be increased under sulfur deficiency. However, the pathway for sulfur mobilization from glucosinolates has not been determined.Glucosinolates and their breakdown products have long been recognized for their fungicidal, bacteriocidal, nematocidal and allelopathic properties and have recently attracted intense research interest because of their cancer chemoprotective attributes. Glucosinolate derivatives stop cancer via destroying cancer cells, and they also suppress genes that create new blood vessels, which support tumor growth and spread. These organic compounds also reduce the carcinogenic effects of many environmental toxins by boosting the expression of detoxifying enzymes. Keywords: Brassicace, dicotyledonous, mobilisation, myrosinase,sulfur. INTRODUCTION oxazolidinethiones and nitriles (Fenwick et al., 1983). Glucosinolates can be divided into three classes based on Glucosinolates are sulfur- and nitrogen-containing the structure of different amino acid precursors(Table 1): plant secondary metabolites common in the order 1. Aliphatic glucosinolates derived from methionine, Capparales, which comprises the Brassicaceae family isoleucine, leucine or valine, 2.
    [Show full text]
  • Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management
    Agron. Sustain. Dev. 30 (2010) 311–348 Available online at: c INRA, EDP Sciences, 2009 www.agronomy-journal.org DOI: 10.1051/agro/2009025 for Sustainable Development Review article Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review Ishita Ahuja,JensRohloff, Atle Magnar Bones* Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway (Accepted 5 July 2009) Abstract – Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management.
    [Show full text]
  • Chapter Four – TRPA1 Channels: Chemical and Temperature Sensitivity
    CHAPTER FOUR TRPA1 Channels: Chemical and Temperature Sensitivity Willem J. Laursen1,2, Sviatoslav N. Bagriantsev1,* and Elena O. Gracheva1,2,* 1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA 2Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA *Corresponding author: E-mail: [email protected], [email protected] Contents 1. Introduction 90 2. Activation and Regulation of TRPA1 by Chemical Compounds 91 2.1 Chemical activation of TRPA1 by covalent modification 91 2.2 Noncovalent activation of TRPA1 97 2.3 Receptor-operated activation of TRPA1 99 3. Temperature Sensitivity of TRPA1 101 3.1 TRPA1 in mammals 101 3.2 TRPA1 in insects and worms 103 3.3 TRPA1 in fish, birds, reptiles, and amphibians 103 3.4 TRPA1: Molecular mechanism of temperature sensitivity 104 Acknowledgments 107 References 107 Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflam- mation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function.
    [Show full text]
  • Volume 73 Some Chemicals That Cause Tumours of the Kidney Or Urinary Bladder in Rodents and Some Other Substances
    WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS VOLUME 73 SOME CHEMICALS THAT CAUSE TUMOURS OF THE KIDNEY OR URINARY BLADDER IN RODENTS AND SOME OTHER SUBSTANCES 1999 IARC LYON FRANCE WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS Some Chemicals that Cause Tumours of the Kidney or Urinary Bladder in Rodents and Some Other Substances VOLUME 73 This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 13–20 October 1998 1999 IARC MONOGRAPHS In 1969, the International Agency for Research on Cancer (IARC) initiated a programme on the evaluation of the carcinogenic risk of chemicals to humans involving the production of critically evaluated monographs on individual chemicals. The programme was subsequently expanded to include evaluations of carcinogenic risks associated with exposures to complex mixtures, life-style factors and biological agents, as well as those in specific occupations. The objective of the programme is to elaborate and publish in the form of monographs critical reviews of data on carcinogenicity for agents to which humans are known to be exposed and on specific exposure situations; to evaluate these data in terms of human risk with the help of international working groups of experts in chemical carcinogenesis and related fields; and to indicate where additional research efforts are needed. The lists of IARC evaluations are regularly updated and are available on Internet: http://www.iarc.fr/.
    [Show full text]
  • Synthesis of Isothiocyanates Using DMT/NMM/Tso− As a New Desulfurization Reagent
    molecules Article Synthesis of Isothiocyanates Using DMT/NMM/TsO− as a New Desulfurization Reagent Łukasz Janczewski 1,* , Dorota Kr˛egiel 2 and Beata Kolesi ´nska 1 1 Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; [email protected] 2 Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: Thirty-three alkyl and aryl isothiocyanates, as well as isothiocyanate derivatives from esters of coded amino acids and from esters of unnatural amino acids (6-aminocaproic, 4-(aminomethyl)benzoic, and tranexamic acids), were synthesized with satisfactory or very good yields (25–97%). Synthesis was performed in a “one-pot”, two-step procedure, in the presence of organic base (Et3N, DBU or NMM), and carbon disulfide via dithiocarbamates, with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4- methylmorpholinium toluene-4-sulfonate (DMT/NMM/TsO−) as a desulfurization reagent. For the synthesis of aliphatic and aromatic isothiocyanates, reactions were carried out in a microwave reactor, and selected alkyl isothiocyanates were also synthesized in aqueous medium with high yields (72–96%). Isothiocyanate derivatives of L- and D-amino acid methyl esters were synthesized, under conditions without microwave radiation assistance, with low racemization (er 99 > 1), and their absolute configuration was confirmed by circular dichroism. Isothiocyanate derivatives of natural and unnatural amino acids were evaluated for antibacterial activity on E. coli and S. aureus bacterial strains, where the Citation: Janczewski, Ł.; Kr˛egiel,D.; most active was ITC 9e.
    [Show full text]
  • Figure 1. Metabolism of Glucoraphanin and Glucobrassicin to Biologically Active Metabolites
    Legend to Figures: Figure 1. Metabolism of glucoraphanin and glucobrassicin to biologically active metabolites. (A) Sulforaphane is released from glucoraphanin by the plant enzyme myrosinase. Red dashed arrow marks the reactive carbon atom subject to glutathione conjugation. (B) Sulforaphane is metabolized via the mercapturic acid pathway into active metabolites. Glutathione-S-transferase (GST) first conjugates a GSH molecule (Glu-Cys-Gly) to the reactive carbon on sulforaphane. Glutamate is then removed by γ- glutamyltranspeptidase (GTP), followed by removal of the glycine residue by cysteinylglycinase (CGase). Cysteine is then acetylated by an acetyltransferase (AT) to sulforaphane-N-acetylcysteine, which is excreted in the urine. (C) Indole-3-carbinol is released from the glucosinolate glucobrassicin by myrosinase and undergoes spontaneous condensation in the acidic environment of the gut. Diindolylmethane (DIM) is the most abundant post-absorption acid condensation product. Acid condensation products can be modified further post-absorption. LTr1: Linear trimer 1. LTr2: Linear trimer 2. Structures from PubChem at National Center for Biotechnology Information (NCBI). Figure 2. Selected non-epigenetic effects of sulforaphane and I3C/DIM on prostate cancer cells. Sulforaphane (SFN) and I3C/DIM inhibit the Akt signaling axis, a signaling pathway often hyperactive in prostate cancer. Inhibition of this pathway decreases pro-survival signaling by mTOR, Akt, and NFkB. Sulforaphane and I3C/DIM treatment also lead to changes in gene expression (blue arrow) that trigger growth arrest and apoptosis. The expression of proteins controlling the cell cycle (e.g. p21, p27, CDK6) are altered to effect growth arrest, and apoptosis is finally induced through the mitochondrial pathway. Abbreviations: AR – Androgen Receptor, CDK6 – cyclin dependant kinase 6, IAP – inhibitors of apoptosis.
    [Show full text]
  • Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach
    Article Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach Justyna Maliszewska 1,*, Milena Jankowska 2, Hanna Kletkiewicz 1, Maria Stankiewicz 2 and Justyna Rogalska 1 1 Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (H.K.); [email protected] (J.R.) 2 Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (M.J.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-56611-44-63 Academic Editor: Pin Ju Chueh Received: 5 November 2018; Accepted: 17 December 2018; Published: 18 December 2018 Abstract: Capsaicin is known to activate heat receptor TRPV1 and induce changes in thermoregulatory processes of mammals. However, the mechanism by which capsaicin induces thermoregulatory responses in invertebrates is unknown. Insect thermoreceptors belong to the TRP receptors family, and are known to be activated not only by temperature, but also by other stimuli. In the following study, we evaluated the effects of different ligands that have been shown to activate (allyl isothiocyanate) or inhibit (camphor) heat receptors, as well as, activate (camphor) or inhibit (menthol and thymol) cold receptors in insects. Moreover, we decided to determine the effect of agonist (capsaicin) and antagonist (capsazepine) of mammalian heat receptor on the American cockroach’s thermoregulatory processes. We observed that capsaicin induced the decrease of the head temperature of immobilized cockroaches. Moreover, the examined ligands induced preference for colder environments, when insects were allowed to choose the ambient temperature.
    [Show full text]
  • Effects of Cruciferous Vegetable Consumption on Urinary
    Cancer Epidemiology, Biomarkers & Prevention 997 Effects of Cruciferous Vegetable Consumption on Urinary Metabolites of the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone in Singapore Chinese Stephen S. Hecht,1 Steven G. Carmella,1 Patrick M.J. Kenney,1 Siew-Hong Low,2 Kazuko Arakawa,3 and Mimi C. Yu3 1University of Minnesota Cancer Center, Minneapolis, Minnesota; 2Department of Community, Occupational, and Family Medicine, National University of Singapore, Singapore; and 3Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California Abstract Vegetable consumption, including cruciferous vegeta- major glucosinolates in seven of the nine cruciferous bles, is protective against lung cancer, but the mechan- vegetables, accounting for 70.0% to 93.2% of all glu- isms are poorly understood. The purpose of this study cosinolates in these vegetables. There was a significant was to investigate the effects of cruciferous vegetable correlation (P = 0.01) between increased consumption consumption on the metabolism of the tobacco-specific of glucobrassicins and decreased levels of NNAL in lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1- urine after adjustment for number of cigarettes smoked butanone (NNK) in smokers. The study was carried out per day; similar trends were observed for NNAL-Glucs in Singapore Chinese, whose mean daily intake of (P = 0.08) and NNAL plus NNAL-Glucs (P = 0.03). cruciferous vegetables is three times greater than that These results are consistent with those of previous of people in the United States. Eighty-four smokers studies, which demonstrate that indole-3-carbinol de- provided urine samples and were interviewed about creases levels of urinary NNAL probably by inducing dietary habits using a structured questionnaire, which hepatic metabolism of NNK.
    [Show full text]
  • Benzyl Isothiocyanate As an Adjuvant Chemotherapy Option for Head and Neck Squamous Cell Carcinoma Mary Allison Wolf [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2014 Benzyl Isothiocyanate as an Adjuvant Chemotherapy Option for Head and Neck Squamous Cell Carcinoma Mary Allison Wolf [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Medical Biochemistry Commons, Medical Cell Biology Commons, and the Oncology Commons Recommended Citation Wolf, Mary Allison, "Benzyl Isothiocyanate as an Adjuvant Chemotherapy Option for Head and Neck Squamous Cell Carcinoma" (2014). Theses, Dissertations and Capstones. Paper 801. This Dissertation is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. Benzyl Isothiocyanate as an Adjuvant Chemotherapy Option for Head and Neck Squamous Cell Carcinoma A dissertation submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences By Mary Allison Wolf Approved by Pier Paolo Claudio, M.D., Ph.D., Committee Chairperson Richard Egleton, Ph.D. W. Elaine Hardman, Ph.D. Jagan Valluri, Ph.D. Hongwei Yu, PhD Marshall University May 2014 DEDICATION “I sustain myself with the love of family”—Maya Angelou To my wonderful husband, loving parents, and beautiful daughter—thank you for everything you have given me. ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my mentor Dr. Pier Paolo Claudio. He has instilled in me the skills necessary to become an independent and successful researcher.
    [Show full text]
  • Selected Kefir Water from Malaysia Attenuates Hydrogen Peroxide
    antioxidants Article Selected Kefir Water from Malaysia Attenuates Hydrogen Peroxide-Induced Oxidative Stress by Upregulating Endogenous Antioxidant Levels in SH-SY5Y Neuroblastoma Cells Muganti Rajah Kumar 1, Swee Keong Yeap 2, Han Chung Lee 2, Nurul Elyani Mohamad 1,3 , Muhammad Nazirul Mubin Aziz 1, Melati Khalid 4, Mas Jaffri Masarudin 1,5 , Adam Thean Chor Leow 1 , Janna Ong Abdullah 1 and Noorjahan Banu Alitheen 1,5,* 1 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor Darul Ehsan, Malaysia; [email protected] (M.R.K.); [email protected] (N.E.M.); [email protected] (M.N.M.A.); [email protected] (M.J.M.); [email protected] (A.T.C.L.); [email protected] (J.O.A.) 2 China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia; [email protected] (S.K.Y.); [email protected] (H.C.L.) 3 Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia Citation: Kumar, M.R.; Yeap, S.K.; 4 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Lee, H.C.; Mohamad, N.E.; Nazirul Serdang 43400 UPM, Selangor Darul Ehsan, Malaysia; [email protected] Mubin Aziz, M.; Khalid, M.; 5 UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Masarudin, M.J.; Leow, A.T.C.; Serdang 43400 UPM, Selangor Darul Ehsan, Malaysia Abdullah, J.O.; Alitheen, N.B. * Correspondence: [email protected]; Tel.: +603-976-97471 Selected Kefir Water from Malaysia Attenuates Hydrogen Abstract: Kefir, a fermented probiotic drink was tested for its potential anti-oxidative, anti-apoptotic, Peroxide-Induced Oxidative Stress by and neuroprotective effects to attenuate cellular oxidative stress on human SH-SY5Y neuroblastoma Upregulating Endogenous cells.
    [Show full text]