Making Collection Operations Optimal with Aggressive JIT Compilation

Total Page:16

File Type:pdf, Size:1020Kb

Making Collection Operations Optimal with Aggressive JIT Compilation Making Collection Operations Optimal with Aggressive JIT Compilation Aleksandar Prokopec David Leopoldseder Oracle Labs Johannes Kepler University, Linz Switzerland Austria [email protected] [email protected] Gilles Duboscq Thomas Würthinger Oracle Labs Oracle Labs Switzerland Switzerland [email protected] [email protected] Abstract 1 Introduction Functional collection combinators are a neat and widely ac- Compilers for most high-level languages, such as Scala, trans- cepted data processing abstraction. However, their generic form the source program into an intermediate representa- nature results in high abstraction overheads – Scala collec- tion. This intermediate program representation is executed tions are known to be notoriously slow for typical tasks. We by the runtime system. Typically, the runtime contains a show that proper optimizations in a JIT compiler can widely just-in-time (JIT) compiler, which compiles the intermediate eliminate overheads imposed by these abstractions. Using representation into machine code. Although JIT compilers the open-source Graal JIT compiler, we achieve speedups of focus on optimizations, there are generally no guarantees up to 20× on collection workloads compared to the standard about the program patterns that result in fast machine code HotSpot C2 compiler. Consequently, a sufficiently aggressive – most optimizations emerge organically, as a response to JIT compiler allows the language compiler, such as Scalac, a particular programming paradigm in the high-level lan- to focus on other concerns. guage. Scala’s functional-style collection combinators are a In this paper, we show how optimizations, such as inlin- paradigm that the JVM runtime was unprepared for. ing, polymorphic inlining, and partial escape analysis, are Historically, Scala collections [Odersky and Moors 2009; combined in Graal to produce collections code that is optimal Prokopec et al. 2011] have been somewhat of a mixed bless- with respect to manually written code, or close to optimal. ing. On one hand, they helped Scala gain popularity im- We argue why some of these optimizations are more effec- mensely – code written using collection combinators is more tively done by a JIT compiler. We then identify specific use- concise and easier to write compared to Java-style foreach cases that most current JIT compilers do not optimize well, loops. High-level declarative combinators are exactly the warranting special treatment from the language compiler. kind of paradigm that Scala advocates. And yet, Scala was often criticized for having suboptimal performance because CCS Concepts • Software and its engineering → Just- of its collection framework, with reported performance over- in-time compilers; heads of up to 33× [Biboudis et al. 2014]. Despite several Keywords collections, data-parallelism, program optimiza- attempts at making them more efficient [Dragos and Odersky tion, JIT compilation, functional combinators, partial escape 2009; Prokopec and Petrashko 2013; Prokopec et al. 2015], analysis, iterators, inlining, scalar replacement Scala collections currently have suboptimal performance ACM Reference Format: compare to their Java pendants. Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, Thomas In this paper, we show that, despite the conventional wis- Würthinger 2017. Making Collection Operations Optimal with dom about the HotSpot C2 compiler, most overheads in- Aggressive JIT Compilation . In Proceedings of 8th ACM SIGPLAN troduced by the Scala standard library collections can International Scala Symposium (SCALA’17). ACM, New York, NY, be removed and optimal code can be generated with USA, 12 pages. https://doi.org/10.1145/3136000.3136002 a sufficiently aggressive JIT compiler. We validate this SCALA’17, October 22–23, 2017, Vancouver, Canada claim using the open-source Graal compiler [Duboscq et al. © 2017 Copyright held by the owner/author(s). Publication rights licensed 2013], and we explain how. Concretely: to the Association for Computing Machinery. This is the author’s version of the work. It is posted here for your personal • We identify and explain the abstraction overheads use. Not for redistribution. The definitive Version of Record was published in present in the Scala collections library (Section2). Proceedings of 8th ACM SIGPLAN International Scala Symposium (SCALA’17), • We summarize relevant optimizations used by Graal https://doi.org/10.1145/3136000.3136002. to eliminate those abstractions (Section3). SCALA’17, October 22–23, 2017, Vancouver, Canada A. Prokopec, D. Leopoldseder, G. Duboscq, and T. Würthinger • We present three case studies, showing how Graal’s callsite (e.g. by inlining), the read of the buffer field cannot be optimizations interact to produce optimal collections factored out of the loop, but instead occurs for every element. code (Section4). Finally, most collection operations (in particular, subclasses • We show a detailed performance comparison between of the Iterable trait) create Iterator objects, which store it- the Graal compiler and the HotSpot C2 compiler on eration state. Avoiding the allocation of the Iterator and Scala collections and on several Spark data-processing inlining the logic of its hasNext and next methods generally workloads. We focus both on microbenchmarks and results in more efficient code, but without knowing the con- application benchmarks (Section5). crete implementation of the iterator, replacing iterators with • We postulate that profiling information enables a JIT something more efficient is not possible. compiler to better optimize collection operations com- pared to a static compiler. We then identify the opti- mizations that current JIT compilers are unlikely to do, and conclude that language compilers should fo- cus on optimizing data structures more than on code optimization (Section7). 3 Overview of the Optimizations in Graal Note that the purpose of this paper is not to explain each Graal [Duboscq et al. 2013] is a dynamic optimizing com- of the optimizations used in Graal in detail – this was either piler for the HotSpot VM. Graal is not the default top-tier done elsewhere, or will be done in the future. Rather, the goal compiler in HotSpot, but it can optionally replace the C2 de- is to explain how we made Graal’s optimizations interact fault compiler. Just like the standard C2 compiler, Graal uses in order to produce optimal collections code. To reiterate, feedback-driven optimizations and generates code that spec- we do not claim novelty for any specific optimization that ulates on the method receiver types and the taken control we describe. Instead, we show how the correct set of opti- flow paths. The feedback is based on receiver type profiles mizations is combined to produce optimal collections code. and branch probabilities, and is gathered while the program As such, we hope that our findings will guide the language executes in interpreter mode. When a speculation proves implementors, and drive future design decisions in Scala (as incorrect, Graal deoptimizes the affected part of the code, well as other languages that run on the JVM). and compiles it again later [Duboscq et al. 2014]. An important design aspect in Graal, shared among many 2 Overheads in Scala Collection current JIT compilers, is the focus on intraprocedural analy- Operations sis. When HotSpot detects that a particular method is called On a high-level, we categorize the abstraction overheads many times, it schedules the method for compilation. The JIT present in Scala collections into several groups [Prokopec compiler (C2 or Graal) analyzes the particular method, and et al. 2014]. First, most Scala collections are generic in their attempts to trigger optimizations within its scope. Instead of parameter type. At the same time, Scala relies on type erasure doing inter-procedural analysis, additional optimizations are to eliminate generic type parameters in the intermediate enabled by inlining the callsites inside the current method. code (similar to Java [Bracha et al. 2003]). At the bytecode Graal’s intermediate representation (IR) is partly based level, collection methods such as foldLeft, indexOf or += take on the sea-of-nodes approach [Click and Paleczny 1995]. A arguments of the type Object (in Scala terms, AnyRef). When a program is represented as a directed graph in static single collection is instantiated with a value type, such as Int, most assignment form. Each node produces at most one value. method invocations implicitly allocate heap objects to wrap Control flow is represented with fixed nodes for which suc- values, which is called boxing. cessor edges point downwards in the graph. Data flow is Second, collections form a class hierarchy, with their oper- represented with floating nodes whose input edges point ations defined in base traits. Collection method calls are often upwards. The details of Graal IR are presented in related polymorphic. A compiler that does not know the concrete work [Duboscq et al. 2013]. In section4, we summarize the callee type, cannot easily optimize this call. For example, basic IR nodes that are required for understanding this paper. two apply calls on ArrayBuffer share the same array bounds In the rest of this section, we describe the most important check, but if the static receiver type is the base trait Seq, the high-level optimizations in Graal that are relevant for the rest compiler cannot factor out the common bounds check. of the discussion. To make the presentation more
Recommended publications
  • Incrementalized Pointer and Escape Analysis Frédéric Vivien, Martin Rinard
    Incrementalized Pointer and Escape Analysis Frédéric Vivien, Martin Rinard To cite this version: Frédéric Vivien, Martin Rinard. Incrementalized Pointer and Escape Analysis. PLDI ’01 Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and implementation, Jun 2001, Snowbird, United States. pp.35–46, 10.1145/381694.378804. hal-00808284 HAL Id: hal-00808284 https://hal.inria.fr/hal-00808284 Submitted on 14 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Incrementalized Pointer and Escape Analysis∗ Fred´ eric´ Vivien Martin Rinard ICPS/LSIIT Laboratory for Computer Science Universite´ Louis Pasteur Massachusetts Institute of Technology Strasbourg, France Cambridge, MA 02139 [email protected]­strasbg.fr [email protected] ABSTRACT to those parts of the program that offer the most attrac- We present a new pointer and escape analysis. Instead of tive return (in terms of optimization opportunities) on the analyzing the whole program, the algorithm incrementally invested resources. Our experimental results indicate that analyzes only those parts of the program that may deliver this approach usually delivers almost all of the benefit of the useful results. An analysis policy monitors the analysis re- whole-program analysis, but at a fraction of the cost.
    [Show full text]
  • Generalized Escape Analysis and Lightweight Continuations
    Generalized Escape Analysis and Lightweight Continuations Abstract Might and Shivers have published two distinct analyses for rea- ∆CFA and ΓCFA are two analysis techniques for higher-order soning about programs written in higher-order languages that pro- functional languages (Might and Shivers 2006b,a). The former uses vide first-class continuations, ∆CFA and ΓCFA (Might and Shivers an enrichment of Harrison’s procedure strings (Harrison 1989) to 2006a,b). ∆CFA is an abstract interpretation based on a variation reason about control-, environment- and data-flow in a program of procedure strings as developed by Sharir and Pnueli (Sharir and represented in CPS form; the latter tracks the degree of approxi- Pnueli 1981), and, most proximately, Harrison (Harrison 1989). mation inflicted by a flow analysis on environment structure, per- Might and Shivers have applied ∆CFA to problems that require mitting the analysis to exploit extra precision implicit in the flow reasoning about the environment structure relating two code points lattice, which improves not only the precision of the analysis, but in a program. ΓCFA is a general tool for “sharpening” the precision often its run-time as well. of an abstract interpretation by tracking the amount of abstraction In this paper, we integrate these two mechanisms, showing how the analysis has introduced for the specific abstract interpretation ΓCFA’s abstract counting and collection yields extra precision in being performed. This permits the analysis to opportunistically ex- ∆CFA’s frame-string model, exploiting the group-theoretic struc- ploit cases where the abstraction has introduced no true approxi- ture of frame strings. mation.
    [Show full text]
  • Escape from Escape Analysis of Golang
    Escape from Escape Analysis of Golang Cong Wang Mingrui Zhang Yu Jiang∗ KLISS, BNRist, School of Software, KLISS, BNRist, School of Software, KLISS, BNRist, School of Software, Tsinghua University Tsinghua University Tsinghua University Beijing, China Beijing, China Beijing, China Huafeng Zhang Zhenchang Xing Ming Gu Compiler and Programming College of Engineering and Computer KLISS, BNRist, School of Software, Language Lab, Huawei Technologies Science, ANU Tsinghua University Hangzhou, China Canberra, Australia Beijing, China ABSTRACT KEYWORDS Escape analysis is widely used to determine the scope of variables, escape analysis, memory optimization, code generation, go pro- and is an effective way to optimize memory usage. However, the gramming language escape analysis algorithm can hardly reach 100% accurate, mistakes ACM Reference Format: of which can lead to a waste of heap memory. It is challenging to Cong Wang, Mingrui Zhang, Yu Jiang, Huafeng Zhang, Zhenchang Xing, ensure the correctness of programs for memory optimization. and Ming Gu. 2020. Escape from Escape Analysis of Golang. In Software In this paper, we propose an escape analysis optimization ap- Engineering in Practice (ICSE-SEIP ’20), May 23–29, 2020, Seoul, Republic of proach for Go programming language (Golang), aiming to save Korea. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3377813. heap memory usage of programs. First, we compile the source code 3381368 to capture information of escaped variables. Then, we change the code so that some of these variables can bypass Golang’s escape 1 INTRODUCTION analysis mechanism, thereby saving heap memory usage and reduc- Memory management is very important for software engineering.
    [Show full text]
  • Escape Analysis for Java
    Escape Analysis for Java Jong-Deok Choi Manish Gupta Mauricio Serrano Vugranam C. Sreedhar Sam Midkiff IBM T. J. Watson Research Center P. O. Box 218, Yorktown Heights, NY 10598 jdchoi, mgupta, mserrano, vugranam, smidkiff ¡ @us.ibm.com ¢¤£¦¥¨§ © ¦ § § © § This paper presents a simple and efficient data flow algorithm Java continues to gain importance as a language for general- for escape analysis of objects in Java programs to determine purpose computing and for server applications. Performance (i) if an object can be allocated on the stack; (ii) if an object is an important issue in these application environments. In is accessed only by a single thread during its lifetime, so that Java, each object is allocated on the heap and can be deallo- synchronization operations on that object can be removed. We cated only by garbage collection. Each object has a lock asso- introduce a new program abstraction for escape analysis, the ciated with it, which is used to ensure mutual exclusion when connection graph, that is used to establish reachability rela- a synchronized method or statement is invoked on the object. tionships between objects and object references. We show that Both heap allocation and synchronization on locks incur per- the connection graph can be summarized for each method such formance overhead. In this paper, we present escape analy- that the same summary information may be used effectively in sis in the context of Java for determining whether an object (1) different calling contexts. We present an interprocedural al- may escape the method (i.e., is not local to the method) that gorithm that uses the above property to efficiently compute created the object, and (2) may escape the thread that created the connection graph and identify the non-escaping objects for the object (i.e., other threads may access the object).
    [Show full text]
  • Escape Analysis on Lists∗
    Escape Analysis on Lists∗ Young Gil Parkyand Benjamin Goldberg Department of Computer Science Courant Institute of Mathematical Sciences New York Universityz Abstract overhead, and other optimizations that are possible when the lifetimes of objects can be computed stati- Higher order functional programs constantly allocate cally. objects dynamically. These objects are typically cons Our approach is to define a high-level non-standard cells, closures, and records and are generally allocated semantics that, in many ways, is similar to the stan- in the heap and reclaimed later by some garbage col- dard semantics and captures the escape behavior caused lection process. This paper describes a compile time by the constructs in a functional language. The ad- analysis, called escape analysis, for determining the vantage of our analysis lies in its conceptual simplicity lifetime of dynamically created objects in higher or- and portability (i.e. no assumption is made about an der functional programs, and describes optimizations underlying abstract machine). that can be performed, based on the analysis, to im- prove storage allocation and reclamation of such ob- jects. In particular, our analysis can be applied to 1 Introduction programs manipulating lists, in which case optimiza- tions can be performed to allow whole cons cells in Higher order functional programs constantly allocate spines of lists to be either reclaimed at once or reused objects dynamically. These objects are typically cons without incurring any garbage collection overhead. In cells, closures, and records and are generally allocated a previous paper on escape analysis [10], we had left in the heap and reclaimed later by some garbage col- open the problem of performing escape analysis on lection process.
    [Show full text]
  • Partial Escape Analysis and Scalar Replacement for Java
    Partial Escape Analysis and Scalar Replacement for Java Lukas Stadler Thomas Würthinger Hanspeter Mössenböck Johannes Kepler University Oracle Labs Johannes Kepler University Linz, Austria thomas.wuerthinger Linz, Austria [email protected] @oracle.com [email protected] ABSTRACT 1. INTRODUCTION Escape Analysis allows a compiler to determine whether an State-of-the-art Virtual Machines employ techniques such object is accessible outside the allocating method or thread. as advanced garbage collection, alias analysis and biased This information is used to perform optimizations such as locking to make working with dynamically allocated objects Scalar Replacement, Stack Allocation and Lock Elision, al- as efficient as possible. But even if allocation is cheap, it lowing modern dynamic compilers to remove some of the still incurs some overhead. Even if alias analysis can remove abstractions introduced by advanced programming models. most object accesses, some of them cannot be removed. And The all-or-nothing approach taken by most Escape Anal- although acquiring a biased lock is simple, it is still more ysis algorithms prevents all these optimizations as soon as complex than not acquiring a lock at all. there is one branch where the object escapes, no matter how Escape Analysis can be used to determine whether an ob- unlikely this branch is at runtime. ject needs to be allocated at all, and whether its lock can This paper presents a new, practical algorithm that per- ever be contended. This can help the compiler to get rid of forms control flow sensitive Partial Escape Analysis in a dy- the object's allocation, using Scalar Replacement to replace namic Java compiler.
    [Show full text]
  • Compiling Haskell by Program Transformation
    Compiling Haskell by program transformation a rep ort from the trenches Simon L Peyton Jones Department of Computing Science University of Glasgow G QQ Email simonpjdcsglaacuk WWW httpwwwdcsglaacuksimonpj January Abstract Many compilers do some of their work by means of correctnesspre se rving and hop e fully p erformanceimproving program transformations The Glasgow Haskell Compiler GHC takes this idea of compilation by transformation as its warcry trying to express as much as p ossible of the compilation pro cess in the form of program transformations This pap er rep orts on our practical exp erience of the transformational approach to compilation in the context of a substantial compiler The paper appears in the Proceedings of the European Symposium on Programming Linkoping April Introduction Using correctnesspreserving transformations as a compiler optimisation is a wellestablished technique Aho Sethi Ullman Bacon Graham Sharp In the functional programming area esp ecially the idea of compilation by transformation has received quite a bit of attention App el Fradet Metayer Kelsey Kelsey Hudak Kranz Steele A transformational approach to compiler construction is attractive for two reasons Each transformation can b e implemented veried and tested separately This leads to a more mo dular compiler design in contrast to compilers that consist of a few huge passes each of which accomplishes a great deal In any framework transformational or otherwise each optimisation often exp oses new opp ortunities for other optimisations
    [Show full text]
  • Current State of EA and Its Uses in The
    Jfokus 2020 Current state of EA and Charlie Gracie Java Engineering Group at Microsoft its uses in the JVM Overview • Escape Analysis and Consuming Optimizations • Current State of Escape Analysis in JVM JITs • Escape Analysis and Allocation Elimination in Practice • Stack allocation 2 Escape Analysis and Consuming Optimizations 3 What is Escape Analysis? • Escape Analysis is a method for determining the dynamic scope of objects -- where in the program an object can be accessed. • Escape Analysis determines all the places where an object can be stored and whether the lifetime of the object can be proven to be restricted only to the current method and/or thread. 4 https://en.wikipedia.org/wiki/Escape_analysis Partial Escape Analysis • A variant of Escape Analysis which tracks object lifetime along different control flow paths of a method. • An object can be marked as not escaping along one path even though it escapes along a different path. 5 https://en.wikipedia.org/wiki/Escape_analysis EA Consuming Optimizations 1. Monitor elision • If an object does not escape the current method or thread, then operations can be performed on this object without synchronization 2. Stack allocation • If an object does not escape the current method, it may be allocated in stack memory instead of heap memory 3. Scalar replacement • Improvement to (2) by breaking an object up into its scalar parts which are just stored as locals 6 Current State of Escape Analysis in JVM JITs 7 HotSpot C2 EA and optimizations • Flow-insensitive1 implementation based on the
    [Show full text]
  • Evaluating the Impact of Thread Escape Analysis on a Memory Consistency Model-Aware Compiler
    Evaluating the Impact of Thread Escape Analysis on a Memory Consistency Model-aware Compiler Chi-Leung Wong1 Zehra Sura2 Xing Fang3 Kyungwoo Lee3 Samuel P. Midki®3 Jaejin Lee4 David Padua1 Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA fcwong1,[email protected] IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA [email protected] Purdue University, West Lafayette, IN, USA fxfang,kwlee,[email protected] Seoul National University, Seoul, Korea [email protected] Abstract. The widespread popularity of languages allowing explicitly parallel, multi-threaded programming, e.g. Java and C#, have focused attention on the issue of memory model design. The Pensieve Project is building a compiler that will enable both language designers to pro- totype di®erent memory models, and optimizing compilers to adapt to di®erent memory models. Among the key analyses required to implement this system are thread escape analysis, i.e. detecting when a referenced object is accessible by more than one thread, delay set analysis, and synchronization analysis. In this paper, we evaluate the impact of di®erent escape analysis algo- rithms on the e®ectiveness of the Pensieve system when both delay set analysis and synchronization analysis are used. Since both analyses make use of results of escape analyses, their precison and cost is dependent on the precision of the escape analysis algorithm. It is the goal of this paper to provide a quantitative evalution of this impact. 1 Introduction In shared memory parallel programs, di®erent threads of the program commu- nicate with each other by reading from and writing to shared memory locations.
    [Show full text]
  • Hotspot VM Graal VM
    Polyglot on the JVM with Graal Thomas Wuerthinger Senior Research Director, Oracle Labs @thomaswue Java User Group Zurich, 15 of December 2016 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Safe Harbor Statement The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in connection with any Oracle product or service remains at the sole discretion of Oracle. Any views expressed in this presentation are my own and do not necessarily reflect the views of Oracle. Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 3 One language to rule them all? Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | One Language to Rule Them All? Let’s ask Stack Overflow… Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | The World Is Polyglot better is Lower 3 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 6 Graal Overview A new compiler for HotSpot written in Java and with a focus on speculative optimiZations. JVMCI and Graal includedin JDK9, modified version of JDK8 available via OTN. HotSpot VM Graal VM Client Server Client Graal Compiler Compiler Interface JVMCI Java Interface HotSpot HotSpot C++ Copyright © 2016, Oracle
    [Show full text]
  • Pointer Analysis for Source-To-Source Transformations
    Pointer Analysis for Source-to-Source Transformations Marcio Buss∗ Stephen A. Edwards† Bin Yao Daniel Waddington Department of Computer Science Network Platforms Research Group Columbia University Bell Laboratories, Lucent Technologies New York, NY 10027 Holmdel, NJ 07733 {marcio,sedwards}@cs.columbia.edu {byao,dwaddington}@lucent.com Abstract p=&x; p=&y; q=&z; p=q; x=&a; y=&b; z=&c; We present a pointer analysis algorithm designed for Andersen [1] Steensgaard [15] Das [5] Heintze [8] source-to-source transformations. Existing techniques for p q p q p q p q pointer analysis apply a collection of inference rules to a dismantled intermediate form of the source program, mak- x y z x,y,z x,y z x y z ing them difficult to apply to source-to-source tools that generally work on abstract syntax trees to preserve details a b c a,b,c a,b,c a b c of the source program. Our pointer analysis algorithm operates directly on the Figure 1. Results of various flow-insensitive abstract syntax tree of a C program and uses a form of stan- pointer analysis algorithms. dard dataflow analysis to compute the desired points-to in- formation. We have implemented our algorithm in a source- to-source translation framework and experimental results dismantling the program into increasingly lower-level rep- show that it is practical on real-world examples. resentations that deliberately discard most of the original structure of the source code to simplify its analysis. 1 Introduction By contrast, source-to-source techniques strive to pre- serve everything about the structure of the original source The role of pointer analysis in understanding C programs so that only minimal, necessary changes are made.
    [Show full text]
  • Compiler Construction
    Compiler construction PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 10 Dec 2011 02:23:02 UTC Contents Articles Introduction 1 Compiler construction 1 Compiler 2 Interpreter 10 History of compiler writing 14 Lexical analysis 22 Lexical analysis 22 Regular expression 26 Regular expression examples 37 Finite-state machine 41 Preprocessor 51 Syntactic analysis 54 Parsing 54 Lookahead 58 Symbol table 61 Abstract syntax 63 Abstract syntax tree 64 Context-free grammar 65 Terminal and nonterminal symbols 77 Left recursion 79 Backus–Naur Form 83 Extended Backus–Naur Form 86 TBNF 91 Top-down parsing 91 Recursive descent parser 93 Tail recursive parser 98 Parsing expression grammar 100 LL parser 106 LR parser 114 Parsing table 123 Simple LR parser 125 Canonical LR parser 127 GLR parser 129 LALR parser 130 Recursive ascent parser 133 Parser combinator 140 Bottom-up parsing 143 Chomsky normal form 148 CYK algorithm 150 Simple precedence grammar 153 Simple precedence parser 154 Operator-precedence grammar 156 Operator-precedence parser 159 Shunting-yard algorithm 163 Chart parser 173 Earley parser 174 The lexer hack 178 Scannerless parsing 180 Semantic analysis 182 Attribute grammar 182 L-attributed grammar 184 LR-attributed grammar 185 S-attributed grammar 185 ECLR-attributed grammar 186 Intermediate language 186 Control flow graph 188 Basic block 190 Call graph 192 Data-flow analysis 195 Use-define chain 201 Live variable analysis 204 Reaching definition 206 Three address
    [Show full text]