The Classification of Alvar Vegetation in the Interlake Region of Manitoba, Canada

Total Page:16

File Type:pdf, Size:1020Kb

The Classification of Alvar Vegetation in the Interlake Region of Manitoba, Canada The Classification of Alvar Vegetation in the Interlake Region of Manitoba, Canada by Pauline K. Catling A thesis submitted to the Department of Biological Sciences of the University of Manitoba in partial fulfilment of the degree of MASTERS OF SCIENCE Department of Biological Sciences University of Manitoba Winnipeg, Manitoba Canada Copyright © 2016 Pauline K. Catling “Language adorns a science as clothes adorn the body. He who cannot do honour to his clothes must needs let them do honour to him. If elsewhere in the world only eloquent doctors had been allowed to write, less would be known than there is today.” Carl Linneaus 1745 i Abstract Alvars are globally rare rock barren ecosystems on limestone pavement. This thesis focused on the quantitative classification of vegetation of Manitoba alvars, the relationships between vegetation patterns and environmental factors and the effects of grazing on vegetation. Vegetation plots were completed across twenty sites. Cluster analysis, indicator species analysis and PCA were used to describe eight vegetation types. A RDA revealed moisture regime, soil depth, bare rock cover and disturbance (grazing and browsing) are the most important factors affecting floristic composition. Grazing effects were studied at two sites using paired plots on either side of a fenceline dividing grazed and ungrazed areas. PCA and RDA showed significant difference between vegetation compositions based on grazing. A partitioning of species richness and diversity by introduced and native species revealed that both sites experienced significant replacement by introduced species. Current grazing levels on Manitoba alvars are severely impacting the vegetation of this ecosystem. Key words: alvar, limestone pavement, disturbance, vegetation dynamics, species associations, plant ecology ii Acknowledgements Financial support for this research was provided by The Nature Conservancy of Canada, Manitoba Conservation and the University of Manitoba. I will be forever grateful to the people at Manitoba Conservation, Nature Conservancy of Canada and Sylvan Pasture (including Cary Hamel, Rebekah Neufeld, Nicole Firlotte, Chris Friesen, Dave Roberts and Ed Cosens) who shared their time and expertise. This project would have never been completed so smoothly without your assistance. I am indebted to my supervisors Drs. Bruce Ford and Norm Kenkel who offered insight, direction and patience throughout the project. I would also like to thank my committee members, Drs. Anne Worley and Nicola Koper, for sharing their knowledge, constructive criticism and support. Special thanks are given to my field assistant, Steven Anderson, who showed great patience and tolerance during fieldwork and to the wonderful people at the University of Manitoba Herbarium (Diana Sawatzky and Elizabeth Punter) who always found time to help. Taxonomic verifications for vascular and non-vascular species were made by Elizabeth Punter, Richard Caners and Bruce Ford. Their help with species identification improved the quality of this thesis. Assistance from Chris Deduke and Michele Piercey-Normore identifying lichens was of considerable help. Thank you for your time and knowledge. To my fellow students and friends who provided support through encouragement, endless discussions and all the distractions needed to de-stress, thank you. Special thanks to Jennifer Doering for her assistance learning GIS. Lastly, I would like to express gratitude to my parents, who introduced me to the alvar flora, inspired me and supported me throughout my life, and to my brother who has always been there to encourage me and keep me strong through any rough times. iii Table of Contents Abstract ......................................................................................................................................................... ii Acknowledgements ...................................................................................................................................... iii Table of Contents ......................................................................................................................................... iv List of Tables ............................................................................................................................................... vii List of Figures ............................................................................................................................................... ix Chapter 1: Literature Review ........................................................................................................................ 1 1.1 Discovery and Definition ..................................................................................................................... 1 1.2 Distribution ......................................................................................................................................... 2 1.3 Formation ............................................................................................................................................ 3 1.4 Geology and Soil Conditions of Alvars ................................................................................................ 5 1.5 Climate ................................................................................................................................................ 7 1.6 Vegetation of Alvars ............................................................................................................................ 8 1.6.1 Europe .......................................................................................................................................... 9 1.6.2 North America ............................................................................................................................ 15 1.7 Disturbance Ecology of Alvar Vegetation.......................................................................................... 21 1.7.1 Drought and Flooding ................................................................................................................ 22 1.7.2 Grazing ....................................................................................................................................... 23 1.7.3 Fire ............................................................................................................................................. 25 1.7.4 Anthropogenic Threats .............................................................................................................. 26 1.8 Vegetation Dynamics on Alvars ........................................................................................................ 27 1.9 Similar Rock Barren Ecosystems ....................................................................................................... 29 1.10 Significance of Alvars ...................................................................................................................... 35 1.11 Summary ......................................................................................................................................... 37 1.12 References ...................................................................................................................................... 39 Chapter 2: Study Site and Objectives .......................................................................................................... 53 2.1 Alvars in Manitoba ............................................................................................................................ 53 2.2 Geology and Glaciation History ........................................................................................................ 53 2.3 Climate .............................................................................................................................................. 55 2.4 Alvar Vegetation in Manitoba ........................................................................................................... 57 2.5 Human Settlement and Disturbance History .................................................................................... 58 iv 2.6 Aims and Objectives .......................................................................................................................... 61 2.7 References ........................................................................................................................................ 64 Chapter 3: Alvar Vegetation in Manitoba: Types and Environmental Gradients ....................................... 74 3.1 Vegetation Classification and Plant Ecology ..................................................................................... 74 3.1.1 History of Vegetation Classification ........................................................................................... 74 3.1.2 Classification of Alvar Vegetation .............................................................................................. 75 3.1.3 Classification of Vegetation and the Environment .................................................................... 77 3.1.4 Disturbance and Vegetation Composition ................................................................................. 77 3.1.5 Significance and Objectives ........................................................................................................ 78 3.2 Methods ...........................................................................................................................................
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Phytolacca Esculenta Van Houtte
    168 CONTENTS BOSABALIDIS ARTEMIOS MICHAEL – Glandular hairs, non-glandular hairs, and essential oils in the winter and summer leaves of the seasonally dimorphic Thymus sibthorpii (Lamiaceae) .................................................................................................. 3 SHARAWY SHERIF MOHAMED – Floral anatomy of Alpinia speciosa and Hedychium coronarium (Zingiberaceae) with particular reference to the nature of labellum and epigynous glands ........................................................................................................... 13 PRAMOD SIVAN, KARUMANCHI SAMBASIVA RAO – Effect of 2,6- dichlorobenzonitrile (DCB) on secondary wall deposition and lignification in the stem of Hibiscus cannabinus L.................................................................................. 25 IFRIM CAMELIA – Contributions to the seeds’ study of some species of the Plantago L. genus ..................................................................................................................................... 35 VENUGOPAL NAGULAN, AHUJA PREETI, LALCHHANHIMI – A unique type of endosperm in Panax wangianus S. C. Sun .................................................................... 45 JAIME A. TEIXEIRA DA SILVA – In vitro rhizogenesis in Papaya (Carica papaya L.) ....... 51 KATHIRESAN KANDASAMY, RAVINDER SINGH CHINNAPPAN – Preliminary conservation effort on Rhizophora annamalayana Kathir., the only endemic mangrove to India, through in vitro method ..................................................................................
    [Show full text]
  • Biodiversity Conservation Strategy Habitat Restoration and Enhancement Guidelines and Priorities
    Essex Region Biodiversity Conservation Strategy Habitat Restoration and Enhancement Guidelines and Priorities ! 2002 ! November 29, 2002 Published by: The Essex Region Conservation Authority Prepared by: Dan Lebedyk, Conservation Biologist - Project Co-ordinator With funding support from: Copies* of this report may be obtained from: Essex Region Conservation Authority 360 Fairview Ave. W. Essex ON N8M 1Y6 * Due to the size and cost of producing this document, some restriction in its distribution may be necessary. This report may be cited as: Essex Region Conservation Authority (ERCA). 2002. Essex Region Biodiversity Conservation Strategy - Habitat Restoration and Enhancement Guidelines (Comprehensive Version). Dan Lebedyk, Project Co-ordinator. Essex, Ontario. 181 pp. Acknowledgements Many individuals contributed to the development of this Biodiversity Conservation Strategy for the Essex region. The following individuals and organizations are gratefully acknowledged for their commitment, support, and involvement on the technical steering committee for the project: Terry Anderson Essex County Woodlot Owners Association Jim Boothby Stewardship Co-ordinator, Essex County Stewardship Network Tom Clark Essex County Federation of Agriculture Bob Clay Manager, Western Ontario Field Office, Ducks Unlimited Canada Ken Colthurst Forester, Essex Region Conservation Authority Lee Anne Doyle County Planning Advisor, County of Essex Jodi Dutz EcoServices, Muddy Creek/Two Creeks Implementation Strategy Mark Emery Stewardship Co-ordinator, Essex County
    [Show full text]
  • Experience Southern Öland – Hiking Trails
    HIKING TRAILSHIKING 140 KM Experience southern Öland Hiking trails through the World Heritage MAP SYMBOLS current trail other trails visitors attraction nature reserve CONTENT birdwatching area wildlife area World Heritage 2 bathing place Signature trail Öland: Mörbylångaleden 4 Mörbylångaleden stage 1 6 barbecue area Mörbylångaleden stage 2 8 car park Mörbylångaleden stage 3 10 resting area Mörbylångaleden stage 4 12 Mörbylångaleden stage 5 14 seating Stora alvarleden 16 toilets Nunnedalen 18 wind shelter Ekelundaleden 20 Örnkulleleden 22 Bårby källa 24 Gösslundaleden 26 Gösslunda – Tingstad flisor 28 Penåsa – Tingstad flisor 30 Millersten 32 Penåsa ödeby 34 Eketorpsleden 36 Other trails 38 Allemansrätten 40 iking is like a balm for both body and emerges for all the senses. Presented within this soul. To leave everyday stress behind brochure, are the hiking trails that are looked after for a moment of hiking, whether it is by Mörbylånga municipality with additional tips long or short, whether it is in areas about trails looked after by the County Adminis- Hyou are familiar with or in new terrain, provides trative Board and non-profit associations. an immediate energy boost and peace of mind while your muscles work. When hiking, it is important to keep in mind that you are a guest in nature or on someone’s land. When you also add the landscape of southern A prerequisite for keeping our land open is that Öland to the equation, an unbeatable combination it is respected and used with care. 1 WORLD HERITAGE Stile The agricultural landscape of southern Öland Stiles are placed along the trails. A stile is a type of ladder, over a fence or wall, made so that people can get Southern Öland offers a unique and exceptionally and stone walls to testify to the long history of the over but not livestock.
    [Show full text]
  • Alberta Wetland Classification System – June 1, 2015
    Alberta Wetland Classification System June 1, 2015 ISBN 978-1-4601-2257-0 (Print) ISBN: 978-1-4601-2258-7 (PDF) Title: Alberta Wetland Classification System Guide Number: ESRD, Water Conservation, 2015, No. 3 Program Name: Water Policy Branch Effective Date: June 1, 2015 This document was updated on: April 13, 2015 Citation: Alberta Environment and Sustainable Resource Development (ESRD). 2015. Alberta Wetland Classification System. Water Policy Branch, Policy and Planning Division, Edmonton, AB. Any comments, questions, or suggestions regarding the content of this document may be directed to: Water Policy Branch Alberta Environment and Sustainable Resource Development 7th Floor, Oxbridge Place 9820 – 106th Street Edmonton, Alberta T5K 2J6 Phone: 780-644-4959 Email: [email protected] Additional copies of this document may be obtained by contacting: Alberta Environment and Sustainable Resource Development Information Centre Main Floor, Great West Life Building 9920 108 Street Edmonton Alberta Canada T5K 2M4 Call Toll Free Alberta: 310-ESRD (3773) Toll Free: 1-877-944-0313 Fax: 780-427-4407 Email: [email protected] Website: http://esrd.alberta.ca Alberta Wetland Classification System Contributors: Matthew Wilson Environment and Sustainable Resource Development Thorsten Hebben Environment and Sustainable Resource Development Danielle Cobbaert Alberta Energy Regulator Linda Halsey Stantec Linda Kershaw Arctic and Alpine Environmental Consulting Nick Decarlo Stantec Environment and Sustainable Resource Development would also
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes.
    [Show full text]
  • The Red Data List of Irish Plants
    The Red Data List of Irish Plants The risks that species face are each very different, however, as a guide to the susceptibility of a given species, an agreed set of categories has been established internationally, and these are used to determine the potential risk that a species could become extinct. These categories are:- CRITICALLY ENDANGERED or CR - Species that are declining at a fast rate, and face imminent risk of extinction. ENDANGERED or E - Species that are declining, or grow in habitats likely to be disturbed, 'developed' or facing an ongoing degradation. VULNERABLE or V - Species that are currently not endangered, but would be extremely vulnerable if their habitats are disturbed in the future. There are seven species of plant that require immediate intervention (CR) if we are to save them from joining the fate of 11 other species that are now known to be extinct in Ireland. A number of these are already extinct in the Republic, and are not therefore legally protected under the 1999 Flora Protection Act. In the list below, 188 species of plant are listed, of which 64 are flowering plants, 4 ferns, 14 mosses, 4 liverworts, 1 lichen and 2 algae. Protected=1999 Flora Protection Order; (protected)= formerly protected by 1987 Order; {protected}= formerly protected by 1980 Order; (NI)= protected in Northern Ireland only. EXTINCT (9) Pheasant's-eye Adonis annua -- Corncockle Agrostemma githago Cogal Corn Chamomile Anthemis arvensis Fíogadán goirt Purple Spurge Euphorbia peplis Spuirse dhearg Sea Stock Matthiola sinuata Tonóg chladaigh
    [Show full text]
  • Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR)
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR) Natural Resource Report NPS/GAAR/NRR—2016/1136 ON THIS PAGE Photograph of two hot water outlets in the uppermost part of the A field. The hot springs are surrounded by azonal, lush fern vegetation. The central part of the A field consisted mainly of broken sinter material and very sparse vegetation. Photograph courtesy of Lisa Strecker ON THE COVER Photograph of A field of the Reed River Hot Springs and the Reed River as seen from the slope above the hot springs. The bright green vegetation of the hot springs area contrasts starkly with plant cover on the other side of the Reed River which is characteristic for the area. Photograph courtesy of Lisa Strecker Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR) Natural Resource Report NPS/GAAR/NRR—2016/1136 Lisa Strecker Gates of the Arctic National Park and Preserve 4175 Geist Road Fairbanks, AK 99709 February 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public.
    [Show full text]
  • Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date
    Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date EQUISETACEAE HORSETAIL FAMILY Equisetum arvense L. Field Horsetail FF Equisetum fluviatile L. Water Horsetail LRB Equisetum hyemale L. ssp. affine (Engelm.) Stone Common Scouring-rush BS Equisetum laevigatum A. Braun Smooth Scouring-rush WM Equisetum variegatum Scheich. ex Fried. ssp. Small Horsetail LRB Variegatum DENNSTAEDIACEAE BRACKEN FAMILY Pteridium aquilinum (L.) Kuhn Bracken-Fern COF DRYOPTERIDACEAE TRUE FERN FAMILILY Athyrium filix-femina (L.) Roth ssp. angustum (Willd.) Northeastern Lady Fern FF Clausen Cystopteris bulbifera (L.) Bernh. Bulblet Fern FF Dryopteris carthusiana (Villars) H.P. Fuchs Spinulose Woodfern FF Matteuccia struthiopteris (L.) Tod. Ostrich Fern FF Onoclea sensibilis L. Sensitive Fern FF Polystichum acrostichoides (Michaux) Schott Christmas Fern FF ADDER’S-TONGUE- OPHIOGLOSSACEAE FERN FAMILY Botrychium virginianum (L.) Sw. Rattlesnake Fern FF FLOWERING FERN OSMUNDACEAE FAMILY Osmunda regalis L. Royal Fern WM POLYPODIACEAE POLYPODY FAMILY Polypodium virginianum L. Rock Polypody FF MAIDENHAIR FERN PTERIDACEAE FAMILY Adiantum pedatum L. ssp. pedatum Northern Maidenhair Fern FF THELYPTERIDACEAE MARSH FERN FAMILY Thelypteris palustris (Salisb.) Schott Marsh Fern WM LYCOPODIACEAE CLUB MOSS FAMILY Lycopodium lucidulum Michaux Shining Clubmoss OF Lycopodium tristachyum Pursh Ground-cedar COF SELAGINELLACEAE SPIKEMOSS FAMILY Selaginella apoda (L.) Fern. Spikemoss LRB CUPRESSACEAE CYPRESS FAMILY Juniperus communis L. Common Juniper Jun-E DS Juniperus virginiana L. Red Cedar Jun-E SD Thuja occidentalis L. White Cedar LRB PINACEAE PINE FAMILY Larix laricina (Duroi) K. Koch Tamarack Jun LRB Pinus banksiana Lambert Jack Pine COF Pinus resinosa Sol. ex Aiton Red Pine Jun-M CF Pinery Provincial Park Vascular Plant List 1 Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date Pinus strobus L.
    [Show full text]
  • Rubiaceae) in Africa and Madagascar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Plant Syst Evol (2010) 285:51–64 DOI 10.1007/s00606-009-0255-8 ORIGINAL ARTICLE Adaptive radiation in Coffea subgenus Coffea L. (Rubiaceae) in Africa and Madagascar Franc¸ois Anthony • Leandro E. C. Diniz • Marie-Christine Combes • Philippe Lashermes Received: 31 July 2009 / Accepted: 28 December 2009 / Published online: 5 March 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Phylogeographic analysis of the Coffea subge- biogeographic differentiation of coffee species, but they nus Coffea was performed using data on plastid DNA were not congruent with morphological and biochemical sequences and interpreted in relation to biogeographic data classifications, or with the capacity to grow in specific on African rain forest flora. Parsimony and Bayesian analyses environments. Examples of convergent evolution in the of trnL-F, trnT-L and atpB-rbcL intergenic spacers from 24 main clades are given using characters of leaf size, caffeine African species revealed two main clades in the Coffea content and reproductive mode. subgenus Coffea whose distribution overlaps in west equa- torial Africa. Comparison of trnL-F sequences obtained Keywords Africa Á Biogeography Á Coffea Á Evolution Á from GenBank for 45 Coffea species from Cameroon, Phylogeny Á Plastid sequences Á Rubiaceae Madagascar, Grande Comore and the Mascarenes revealed low divergence between African and Madagascan species, suggesting a rapid and radial mode of speciation. A chro- Introduction nological history of the dispersal of the Coffea subgenus Coffea from its centre of origin in Lower Guinea is pro- Coffeeae tribe belongs to the Ixoroideae monophyletic posed.
    [Show full text]
  • A List of Grasses and Grasslike Plants of the Oak Openings, Lucas County
    A LIST OF THE GRASSES AND GRASSLIKE PLANTS OF THE OAK OPENINGS, LUCAS COUNTY, OHIO1 NATHAN WILLIAM EASTERLY Department of Biology, Bowling Green State University, Bowling Green, Ohio 4-3403 ABSTRACT This report is the second of a series of articles to be prepared as a second "Flora of the Oak Openings." The study represents a comprehensive survey of members of the Cyperaceae, Gramineae, Juncaceae, Sparganiaceae, and Xyridaceae in the Oak Openings region. Of the 202 species listed in this study, 34 species reported by Moseley in 1928 were not found during the present investigation. Fifty-seven species found by the present investi- gator were not observed or reported by Moseley. Many of these species or varieties are rare and do not represent a stable part of the flora. Changes in species present or in fre- quency of occurrence of species collected by both Moseley and Easterly may be explained mainly by the alteration of habitats as the Oak Openings region becomes increasingly urbanized or suburbanized. Some species have increased in frequency on the floodplain of Swan Creek, in wet ditches and on the banks of the Norfolk and Western Railroad right-of-way, along newly constructed roadsides, or on dry sandy sites. INTRODUCTION The grass family ranks third among the large plant families of the world. The family ranks number one as far as total numbers of plants that cover fields, mead- ows, or roadsides are concerned. No other family is used as extensively to pro- vide food or shelter or to create a beautiful landscape. The sedge family does not fare as well in terms of commercial importance, but the sedges do make avail- able forage and food for wild fowl and they do contribute plant cover in wet areas where other plants would not be as well adapted.
    [Show full text]
  • Lowland Calcareous Grassland (Uk Bap Priority Habitat)
    LOWLAND CALCAREOUS GRASSLAND (UK BAP PRIORITY HABITAT) Summary These are unimproved grasslands on base-rich soils in the southern and eastern Scottish lowlands. They consist of mixtures of grasses growing with a rich array of herbs including small base-tolerant herbs. These grasslands typically occur as small patches among mosaics with acid and neutral grasslands (including agriculturally improved grasslands), scrub and rock outcrops, and are most common on southerly aspects. Their total extent in Scotland was estimated in 2004 to be only 46 hectares. They are of high conservation value in being small patches of very concentrated high diversity within larger landscapes dominated by intensively managed farmland. They are home to some uncommon plant species and are an important food source for grazing mammals, invertebrates and birds. They are produced and maintained by grazing, which is needed to keep larger, more vigorous plants in check and thereby maintain high botanical diversity. What is it? Lowland calcareous grasslands are communities of thin, dry, base-rich mineral soils derived from rocks such as limestone, various igneous rocks and some sandstones. They are notable for being generally rich in species, including several small, low-grown herbs. Low shoots or mats of wild thyme Thymus polytrichus are invariably present and serve to distinguish the vegetation from neutral and acid grasslands. Some stands also contain similar low mats of common rockrose Helianthemum nummularium. The main sward is short and made up mainly of the grasses sheep’s fescue Festuca ovina, red fescue F. rubra, crested hair-grass Koeleria cristata, meadow oat-grass Helictotrichon pratense, quaking grass Briza media, spring sedge Carex caryophyllea and glaucous sedge C.
    [Show full text]