High Frequency of Thermodesulfovibrio Spp. and Anaerolineaceae in Association with Methanoculleus Spp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advance View Proofs
Microbes Environ. Vol. XX, No. X, XXX–XXX, XXXX https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME12193 Isolation and Characterization of a Thermophilic, Obligately Anaerobic and Heterotrophic Marine Chloroflexi Bacterium from a Chloroflexi-dominated Microbial Community Associated with a Japanese Shallow Hydrothermal System, and Proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. TAKURO NUNOURA1*, MIHO HIRAI1, MASAYUKI MIYAZAKI1, HIROMI KAZAMA1, HIROKO MAKITA1, HISAKO HIRAYAMA1, YASUO FURUSHIMA2, HIROYUKI YAMAMOTO2, HIROYUKI IMACHI1, and KEN TAKAI1 1Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan; and 2Marine Biodiversity Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan (Received October 23, 2012—Accepted January 6, 2013—Published online May 11, 2013) A novel marine thermophilic and heterotrophic Anaerolineae bacterium in the phylum Chloroflexi, strain SW7T, was isolated from an in situ colonization system deployed in the main hydrothermal vent of the Taketomi submarine hot spring field located on the southern part of Yaeyama Archipelago, Japan. The microbial community associated with the hydrothermal vent was predominated by thermophilic heterotrophs such as Thermococcaceae and Anaerolineae, and the next dominant population was thermophilic sulfur oxidizers. Both aerobic and anaerobic hydrogenotrophs including methanogens were detected as minor populations. During the culture-dependent viable count analysis in this study, an Anaerolineae strain SW7T was isolated from an enrichment culture at a high dilution rate. Strain SW7T was an obligately anaerobic heterotroph that grew with fermentation and had non-motileProofs thin rods 3.5–16.5 µm in length and 0.2 µm in width constituting multicellular filaments. -
Revised Supplement 1: Reference List for Figure 1
Revised Supplement 1: Reference list for Figure 1. Manuscript title: Process disturbances in agricultural biogas production – causes, mechanisms and effects on the biogas microbiome: A review Susanne Theuerl 1,*, Johanna Klang 1, Annette Prochnow 1,2 1 Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Exth-Allee 100, 14469 Potsdam, Germany, [email protected] (ST), [email protected] (JK), [email protected] (AP) 2 Humboldt-Universität zu Berlin, Albrecht-Daniel-Thaer-Institute for Agricultural and Horticultural Sciences, Hinter der Reinhardtstr. 6-8, 10115 Berlin, Germany * Correspondence: [email protected] Tel.: +49-331-5699-900 References of Figure 1 1Abt et al. 2010, 2Parizzi et al. 2012, 3Hahnke et al. 2016 and Tomazetto et al. 2018, 4Ueki et al. 2006 and Gronow et al. 2011, 5Grabowski et al. 2005, 6Chen and Dong 2005, 7Avgustin et al. 1997 and Purushe et al. 2010, 8Yamada et al. 2006 and Matsuura et al. 2015, 9Yamada et al. 2007 and Matsuura et al. 2015, 10Sun et al. 2016, 11Suen et al. 2011, 12Hahnke et al. 2014 and Tomazetto et al. 2016, 13Mechichi et al. 1999, 14Koeck et al. 2015a and 2015b, 15Tomazetto et al. 2017, 16Fonknechten et al. 2010, 17Chen et al. 2010, 18Nishiyama et al. 2009, 19Sieber et al. 2010, 20Plerce et al. 2008, 21Westerholm et al. 2011 and Müller et al. 2015, 22Ueki et al. 2014, 23Jackson et al. 1999 and McInerney et al. 2007, 24Ma et al. 2017, 25Harmsen et al. 1998 and Plugge et al. 2012, 26Menes and Muxi 2002, Mavromatis et al. 2013 and Hania et al. -
Analyzing Metagenome Data Obtained by High-Throughput Sequencing
Centrum für Biotechnologie Analyzing Metagenome Data Obtained by High-Throughput Sequencing A. Pühler Center for Biotechnology Bielefeld University International Conference: Getting Post 2010 Biodiversity Targets Right Bragança Paulista/SP, Brazil December 11th – 15th, 2010 Content of Talk • Sequence analysis of the metagenome of a model microbial community • Analysis of assembled contigs and single reads by the help of completely sequenced genomes • The functional and taxonomic analysis of single reads using the software programs MetaSAMS and CARMA • The taxonomic analysis of a model microbial community based on 16S-rDNA sequences Sequence Analysis of the Metagenome of a Model Microbial Community (Part I) • Sequencing devices at the CeBiTec of Bielefeld University • Introduction of the model microbial community residing in an agrigultural biogas production • Sequence analysis of the metagenome of the model microbial community High-Throughput Sequencing Devices at the CeBiTec of Bielefeld University Sequencing techniques high-throughput sequencing ABI 3730xl DNA Genome Sequencer Genome Analyzer Analyzer (Applied GS FLX (Roche) (Illumina, Inc.) Biosystems) Genomics Platform Bioinformatics expertise and environment professional data evaluation Bioinformatics Platform Comparison of Different Sequencing Technologies Sequencing techniques ABI 3730xl DNA Genome Sequencer Genome Analyzer Analyzer (Applied GS FLX (Roche) (Illumina, Inc.) Biosystems) read length: 1100 bp 400 bp 150 bp sequenced bases/run: 0,1 Mb 500 Mb 45 Gb The GS FLX system is evidently best suited for a metagenome analysis since it offers long read length combined with an acceptable output. Metagenome Analysis of a Model Microbial Community Residing in a Biogas Production Plant Using Ultrafast Sequencing Biogas production from primary renewable products Biogas is produced during anaerobic digestion of biomass by specific microbial consortia Characteristics of the Analyzed Biogas Plant Located Close to the City of Bielefeld . -
An Integrated Study on Microbial Community in Anaerobic Digestion Systems
An Integrated Study on Microbial Community in Anaerobic Digestion Systems DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yueh-Fen Li Graduate Program in Environmental Science The Ohio State University 2013 Dissertation Committee: Dr. Zhongtang Yu, Advisor Dr. Brian Ahmer Dr. Richard Dick Dr. Olli Tuovinen Copyrighted by Yueh-Fen Li 2013 Abstract Anaerobic digestion (AD) is an attractive microbiological technology for both waste treatment and energy production. Microorganisms are the driving force for the whole transformation process in anaerobic digesters. However, the microbial community underpinning the AD process remains poorly understood, especially with respect to community composition and dynamics in response to variations in feedstocks and operations. The overall objective was to better understand the microbiology driving anaerobic digestion processes by systematically investigating the diversity, composition and succession of microbial communities, both bacterial and archaeal, in anaerobic digesters of different designs, fed different feedstocks, and operated under different conditions. The first two studies focused on propionate-degrading bacteria with an emphasis on syntrophic propionate-oxidizing bacteria. Propionate is one of the most important intermediates and has great influence on AD stability in AD systems because it is inhibitory to methanogens and it can only be metabolized through syntrophic propionate- oxidizing acetogenesis under methanogenic conditions. In the first study (chapter 3), primers specific to the propionate-CoA transferase gene (pct) were designed and used to construct clone libraries, which were sequenced and analyzed to investigate the diversity and distribution of propionate-utilizing bacteria present in the granular and the liquid portions of samples collected from four digesters of different designs, fed different ii feedstocks, and operated at different temperatures. -
Methanogens Diversity During Anaerobic Sewage Sludge Stabilization and the Effect of Temperature
processes Article Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature Tomáš Vítˇez 1,2, David Novák 3, Jan Lochman 3,* and Monika Vítˇezová 1,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] 2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic 3 Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (M.V.); Tel.: +420-549-495-602 (J.L.); Tel.: +420-549-497-177 (M.V.) Received: 29 June 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: Anaerobic sludge stabilization is a commonly used technology. Most fermenters are operated at a mesophilic temperature regime. Modern trends in waste management aim to minimize waste generation. One of the strategies can be achieved by anaerobically stabilizing the sludge by raising the temperature. Higher temperatures will allow faster decomposition of organic matter, shortening the retention time, and increasing biogas production. This work is focused on the description of changes in the community of methanogenic microorganisms at different temperatures during the sludge stabilization. At higher temperatures, biogas contained a higher percentage of methane, however, there was an undesirable accumulation of ammonia in the fermenter. Representatives of the hydrogenotrophic genus Methanoliea were described at all temperatures tested. At temperatures up to 50 ◦C, a significant proportion of methanogens were also formed by acetoclastic representatives of Methanosaeta sp. and acetoclastic representatives of the order Methanosarcinales. -
Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community During the Anaerobic Digestion of Hydrolyzed Corncob
energies Article Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob Luz Breton-Deval 1 , Ilse Salinas-Peralta 1 , Jaime Santiago Alarcón Aguirre 2, Belkis Sulbarán-Rangel 2,* and Kelly Joel Gurubel Tun 2,* 1 Catedras Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; [email protected] (L.B.-D.); [email protected] (I.S.-P.) 2 Department of Water and Energy, University of Guadalajara Campus Tonalá, Tonalá 45425, Mexico; [email protected] * Correspondence: [email protected] (B.S.-R.); [email protected] (K.J.G.T.); Tel.: +52-33-2000-2300 (K.J.G.T.) Abstract: Maize forms the basis of Mexican food. As a result, approximately six million tons of corncob are produced each year, which represents an environmental issue, as well as a potential feedstock for biogas production. This research aimed to analyze the taxonomic and functional shift in the microbiome of the fermenters using a whole metagenome shotgun approach. Two strategies were used to understand the microbial community at the beginning and the end of anaerobic digestion: (i) phylogenetic analysis to infer the presence and coverage of clade-specific markers to assign taxonomy and (ii) the recovery of the individual genomes from the samples using the binning of the assembled scaffolds. The results showed that anaerobic digestion brought some noticeable changes and the main microbial community was composed of Corynebacterium variable, Desulfovibrio desulfuricans, Vibrio furnissii, Shewanella spp., Actinoplanes spp., Pseudoxanthomonas spp., Saccharomonospora azurea, Citation: Breton-Deval, L.; Agromyces spp., Serinicoccus spp., Cellulomonas spp., Pseudonocardia spp., Rhodococcus rhodochrous, Salinas-Peralta, I.; Alarcón Aguirre, Sphingobacterium spp. -
Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus Hugenholtzii and Three Candidate Species from China and Japan
fmicb-12-632731 April 27, 2021 Time: 13:56 # 1 ORIGINAL RESEARCH published: 03 May 2021 doi: 10.3389/fmicb.2021.632731 Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan Scott C. Thomas1*, Devon Payne1†, Kevin O. Tamadonfar1†, Cale O. Seymour1, Jian-Yu Jiao2,3, Senthil K. Murugapiran1,4†, Dengxun Lai1, Rebecca Lau5,6, Edited by: Benjamin P. Bowen5,6, Leslie P. Silva5,6, Katherine B. Louie5,6, Marcel Huntemann5,6, Jesse G. Dillon, Alicia Clum5,6, Alex Spunde5,6, Manoj Pillay5,6, Krishnaveni Palaniappan5,6, California State University, Long Neha Varghese5,6, Natalia Mikhailova5,6, I-Min Chen5,6, Dimitrios Stamatis5,6, Beach, United States T. B. K. Reddy5,6, Ronan O’Malley5,6, Chris Daum5,6, Nicole Shapiro5,6, Natalia Ivanova5,6, Reviewed by: Nikos C. Kyrpides5,6, Tanja Woyke5,6, Emiley Eloe-Fadrosh5,6, Trinity L. Hamilton4, Andrew Decker Steen, Paul Dijkstra7, Jeremy A. Dodsworth8, Trent R. Northen5,6, Wen-Jun Li2,3 and The University of Tennessee, Brian P. Hedlund1,9* Knoxville, United States Vera Thiel, 1 School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States, 2 School of Life Sciences, Sun German Collection of Microorganisms Yat-sen University, Guangzhou, China, 3 State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant and Cell Cultures GmbH (DSMZ), Resources and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China, 4 Department of Plant Germany and Microbial Biology, The BioTechnology Institute, University of Minnesota, St. Paul, MN, United States, 5 The Department of Energy Joint Genome Institute, Berkeley, CA, United States, 6 Environmental Genomics and Systems Biology Division, *Correspondence: Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 7 Department of Biological Sciences, Center Scott C. -
Efficient Synergistic Single-Cell Genome Assembly
bioRxiv preprint doi: https://doi.org/10.1101/002972; this version posted February 24, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Efficient synergistic single-cell genome assembly Narjes S. Movahedi1,3,7, Zeinab Taghavi1,4,7, Mallory Embree2, Harish Nagarajan2, Karsten Zengler2,5, and 1,6 Hamidreza Chitsaz 1Department of Computer Science, Wayne State University, Detroit, MI 2Department of Bioengineering, University of California, San Diego, CA [email protected] [email protected] [email protected] [email protected] 7These authors contributed equally to this work. Running title: Synergistic single-cell genome assembly Corresponding author: H. Chitsaz Department of Computer Science Wayne State University 5057 Woodward Ave Suite 3010 Detroit, MI 48202 Tel: 313-577-6782 [email protected] Keywords: Single-cell genomics, sequence assembly 1 bioRxiv preprint doi: https://doi.org/10.1101/002972; this version posted February 24, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract As the vast majority of all microbes are unculturable, single-cell sequencing has become a significant method to gain insight into microbial physiology. Single-cell sequencing methods, currently powered by multiple displacement genome amplification (MDA), have passed important milestones such as finishing and closing the genome of a prokaryote. -
A Genomic Journey Through a Genus of Large DNA Viruses
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2013 Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses Adrien Jeanniard Aix-Marseille Université David D. Dunigan University of Nebraska-Lincoln, [email protected] James Gurnon University of Nebraska-Lincoln, [email protected] Irina V. Agarkova University of Nebraska-Lincoln, [email protected] Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Jeanniard, Adrien; Dunigan, David D.; Gurnon, James; Agarkova, Irina V.; Kang, Ming; Vitek, Jason; Duncan, Garry; McClung, O William; Larsen, Megan; Claverie, Jean-Michel; Van Etten, James L.; and Blanc, Guillaume, "Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses" (2013). Virology Papers. 245. https://digitalcommons.unl.edu/virologypub/245 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adrien Jeanniard, David D. Dunigan, James Gurnon, Irina V. Agarkova, Ming Kang, Jason Vitek, Garry Duncan, O William McClung, Megan Larsen, Jean-Michel Claverie, James L. Van Etten, and Guillaume Blanc This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/245 Jeanniard, Dunigan, Gurnon, Agarkova, Kang, Vitek, Duncan, McClung, Larsen, Claverie, Van Etten & Blanc in BMC Genomics (2013) 14. -
The Ecology of the Chloroflexi in Full-Scale Activated Sludge 2 Wastewater Treatment Plants
bioRxiv preprint doi: https://doi.org/10.1101/335752; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The ecology of the Chloroflexi in full-scale activated sludge 2 wastewater treatment plants 3 Marta Nierychlo1, Aleksandra Miłobędzka2,3, Francesca Petriglieri1, Bianca 4 McIlroy1, Per Halkjær Nielsen1, and Simon Jon McIlroy1§* 5 1Center for Microbial Communities, Department of Chemistry and Bioscience, 6 Aalborg University, Aalborg, Denmark 7 2Microbial Ecology and Environmental Biotechnology Department, Institute of 8 Botany, Faculty of Biology, University of Warsaw; Biological and Chemical 9 Research Centre, Żwirki i Wigury 101, Warsaw 02-089, Poland 10 3Department of Biology, Faculty of Building Services, Hydro and Environmental 11 Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland 12 * Corresponding author: Simon Jon McIlroy, Center for Microbial Communities, 13 Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 14 DK-9220 Aalborg, Denmark; Tel.: +45 9940 3573; Fax: +45 9814 1808; Email: 15 [email protected] 16 § Present address: Australian Centre for Ecogenomics, University of Queensland, 17 Australia 1 bioRxiv preprint doi: https://doi.org/10.1101/335752; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Lists of Names of Prokaryotic Candidatus Taxa
NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code. -
Special Issue: Significance of Culturing Microbes in the Omics Era
Microbes Environ. Vol. 24, No. 3, 205–216, 2009 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.ME09151S Special issue: Significance of culturing microbes in the omics era Minireview Cultivation of Uncultured Chloroflexi Subphyla: Significance and Ecophysiology of Formerly Uncultured Chloroflexi ‘Subphylum I’ with Natural and Biotechnological Relevance Special Issue TAKESHI YAMADA1, and YUJI SEKIGUCHI2* 1Department of Ecological Engineering, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi 441–8580, Japan; and 2Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba 305–8566, Japan (Received May 31, 2009—Accepted July 30, 2009—Published online August 20, 2009) Cultivation-independent molecular surveys have shown members of the bacterial phylum Chloroflexi to be ubiqui- tous in various natural and artificial ecosystems. Among the subphylum-level taxa of the Chloroflexi known to date, the formerly uncultured ‘subphylum I’ had well been recognized as a typical group that contains a number of environ- mental gene clones with no culture representatives. In order to reveal their ecophysiology, attempts were made over the past decade to domesticate them into laboratory cultures, and significant advances have been made in cultivating strains belonging to the group. The microorganisms characterized so far include seven species in six genera, i.e., Anaerolinea, Levilinea, Leptolinea, Bellilinea, Longilinea, and Caldilinea, and were proposed to represent two classes, Anaerolineae and Caldilineae, providing solid insights into the phenotypic and genetic properties common to the group. Another subphylum-level uncultured group of the Chloroflexi, i.e., the class Ktedonobacteria, has also been represented recently by a cultured strain.