Matrix Metalloproteinase 12 Silencing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metalloproteinase-9 and Chemotaxis Inflammatory Cell Production of Matrix AQARSAASKVKVSMKF, Induces 5, Α a Site on Laminin
A Site on Laminin α5, AQARSAASKVKVSMKF, Induces Inflammatory Cell Production of Matrix Metalloproteinase-9 and Chemotaxis This information is current as of September 25, 2021. Tracy L. Adair-Kirk, Jeffrey J. Atkinson, Thomas J. Broekelmann, Masayuki Doi, Karl Tryggvason, Jeffrey H. Miner, Robert P. Mecham and Robert M. Senior J Immunol 2003; 171:398-406; ; doi: 10.4049/jimmunol.171.1.398 Downloaded from http://www.jimmunol.org/content/171/1/398 References This article cites 64 articles, 24 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/171/1/398.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology A Site on Laminin ␣5, AQARSAASKVKVSMKF, Induces Inflammatory Cell Production of Matrix Metalloproteinase-9 and Chemotaxis1 Tracy L. Adair-Kirk,* Jeffrey J. Atkinson,* Thomas J. -
Collagenase and Elastase Activities in Human and Murine Cancer Cells and Their Modulation by Dimethylformamide
University of Rhode Island DigitalCommons@URI Open Access Master's Theses 1983 COLLAGENASE AND ELASTASE ACTIVITIES IN HUMAN AND MURINE CANCER CELLS AND THEIR MODULATION BY DIMETHYLFORMAMIDE David Ray Olsen University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Olsen, David Ray, "COLLAGENASE AND ELASTASE ACTIVITIES IN HUMAN AND MURINE CANCER CELLS AND THEIR MODULATION BY DIMETHYLFORMAMIDE" (1983). Open Access Master's Theses. Paper 213. https://digitalcommons.uri.edu/theses/213 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. COLLAGENASE AND ELASTASE ACTIVITIES IN HUMAN AND MURINE CANCER CELLS AND THEIR MODULATION BY DIMETHYLFORMAMIDE BY DAVID RAY OLSEN A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PHARMACOLOGY AND TOXICOLOGY UNIVERSITY OF RHODE ISLAND 1983 MASTER OF SCIENCE THESIS OF DAVID RAY OLSEN APPROVED: Thesis Committee / / Major Professor / • l / .r Dean of the Graduate School UNIVERSITY OF RHODE ISLAND 1983 ABSTRACT Olsen, David R.; M.S., University of Rhode Island, 1983. Collagenase and Elastase Activities in Human and Murine Cancer Cells and Their Modulation by Dimethyl formamide. Major Professor: Dr. Clinton O. Chichester. The transformation from carcinoma in situ to in vasive carcinoma occurs when tumor cells traverse extra cellular matracies allowing them to move into paren chymal tissues. Tumor invasion may be aided by the secretion of collagen and elastin degrading proteases from tumor and tumor-associated cells. -
Discovery and Optimization of Selective Inhibitors of Meprin Α (Part II)
pharmaceuticals Article Discovery and Optimization of Selective Inhibitors of Meprin α (Part II) Chao Wang 1,2, Juan Diez 3, Hajeung Park 1, Christoph Becker-Pauly 4 , Gregg B. Fields 5 , Timothy P. Spicer 1,6, Louis D. Scampavia 1,6, Dmitriy Minond 2,7 and Thomas D. Bannister 1,2,* 1 Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA; [email protected] (C.W.); [email protected] (H.P.); [email protected] (T.P.S.); [email protected] (L.D.S.) 2 Department of Chemistry, Scripps Research, Jupiter, FL 33458, USA; [email protected] 3 Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA; [email protected] 4 The Scripps Research Molecular Screening Center, Scripps Research, Jupiter, FL 33458, USA; [email protected] 5 Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str.1, 24118 Kiel, Germany; fi[email protected] 6 Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA 7 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA * Correspondence: [email protected] Abstract: Meprin α is a zinc metalloproteinase (metzincin) that has been implicated in multiple diseases, including fibrosis and cancers. It has proven difficult to find small molecules that are capable Citation: Wang, C.; Diez, J.; Park, H.; of selectively inhibiting meprin α, or its close relative meprin β, over numerous other metzincins Becker-Pauly, C.; Fields, G.B.; Spicer, which, if inhibited, would elicit unwanted effects. -
2335 Roles of Molecules Involved in Epithelial/Mesenchymal Transition
[Frontiers in Bioscience 13, 2335-2355, January 1, 2008] Roles of molecules involved in epithelial/mesenchymal transition during angiogenesis Giulio Ghersi Dipartimento di Biologia Cellulare e dello Sviluppo, Universita di Palermo, Italy TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Extracellular matrix 3.1. ECM and integrins 3.2. Basal lamina components 4. Cadherins. 4.1. Cadherins in angiogenesis 5. Integrins. 5.1. Integrins in angiogenesis 6. Focal adhesion molecules 7. Proteolytic enzymes 7.1. Proteolytic enzymes inhibitors 7.2. Proteolytic enzymes in angiogenesis 8. Perspective 9. Acknowledgements 10. References 1.ABSTRACT 2. INTRODUCTION Formation of vessels requires “epithelial- Growth of new blood vessels (angiogenesis) mesenchymal” transition of endothelial cells, with several plays a key role in several physiological processes, such modifications at the level of endothelial cell plasma as vascular remodeling during embryogenesis and membranes. These processes are associated with wound healing tissue repair in the adult; as well as redistribution of cell-cell and cell-substrate adhesion pathological processes, including rheumatoid arthritis, molecules, cross talk between external ECM and internal diabetic retinopathy, psoriasis, hemangiomas, and cytoskeleton through focal adhesion molecules and the cancer (1). Vessel formation entails the “epithelial- expression of several proteolytic enzymes, including matrix mesenchymal” transition of endothelial cells (ECs) “in metalloproteases and serine proteases. These enzymes with vivo”; a similar phenotypic exchange can be induced “in their degradative action on ECM components, generate vitro” by growing ECs to low cell density, or in “wound molecules acting as activators and/or inhibitors of healing” experiments or perturbing cell adhesion and angiogenesis. The purpose of this review is to provide an associated molecule functions. -
Untangling the Protease Web in COPD: Metalloproteinases in the Silent Zone
Editorial Thorax: first published as 10.1136/thoraxjnl-2015-208204 on 14 January 2016. Downloaded from derived proteases capable of generating Untangling the protease web in COPD: leucocyte chemotaxins and activating TGFβ.12 Measures of small airway disease metalloproteinases in the silent zone were associated with a different MMP sig- nature again, comprising MMP-3, MMP-7, Simon R Johnson MMP-8, MMP-9 and MMP-10. The stron- gest association being with MMP-8. The differing MMP profiles associated with The idea that unregulated protease activity unfortunately the reality is not that small airway obstruction and emphysema underlies the pathogenesis of COPD has straightforward. The rapidly expanding highlight that small airway remodelling is been prominent since the recognition that number of non-ECM MMP substrates has required for airflow obstruction in COPD, genetic loss of α1 antitrypsin led to highlighted a large number of biological independent of loss of elastic recoil due to unregulated neutrophil elastase activity processes modified by MMPs and created emphysema. and premature emphysema.1 Increased potential new opportunities to intervene The challenge is to understand how proteolysis by other proteases, particularly therapeutically in COPD. For example, these tissue-remodelling enzymes contrib- the matrix metalloproteinases (MMPs), proteomic-based interrogation of animal ute to the airway pathology of COPD. has since been implicated in COPD. The models of inflammation has identified This study highlights the need to consider MMPs are a family of over 20 zinc- around 150 discrete protein substrates of the roles of proteases in other aspects of dependent endopeptidases, initially identi- MMP-12 in vivo. -
MINIREVIEW Complex Role of Matrix Metalloproteinases in Angiogen- Esis
Cell Research (1998), 8, 171-177 MINIREVIEW Complex role of matrix metalloproteinases in angiogen- esis SANG QING XIANG AMY* Biochemistry Division, Department of Chemistry, Florida State University, Tallahassee, Florida 32306-4390, USA ABSTRACT Matrix metalloproteinases (MMPs) and tissue in- hibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis, the process of new blood vessel formation. Interstitial collagenase (MMP-1), 72 kDa gelatinase A/type IV collagenase (MMP-2), and 92 kDa gelatinase B/type IV collagenase (MMP-9) dissolve ex- tracellular matrix (ECM) and may initiate and promote angiogenesis. TIMP-1, TIMP-2, TIMP-3, and possibly, TIMP-4 inhibit neovascularization. A new paradigm is emerging that matrilysin (MMP-7), MMP-9, and metal- loelastase (MMP-12) may block angiogenesis by convert- ing plasminogen to angiostatin, which is one of the most potent angiogenesis antagonists. MMPs and TIMPs play a complex role in regulating angiogenesis. An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to al- low the control of angiogenesis, e.g. the stimulation of angiogenesis for coronary collateral circulation formation; while the inhibition for treating arthritis and cancer. Key word s: Collagenases, tissue inhibitors of metallo- proteinases, neovascularization, plasmino- gen angiostatin converting enzymes, ex- tracellular matrix. * Corresponding author: Professor Qing Xiang Amy Sang, Department of Chemistry, 203 Dittmer Laboratory of Chemistry Building, Florida State University, Tallahassee, Florida 32306-4390, USA Phone: (850) 644-8683 Fax: (850) 644-8281 E-mail: [email protected]. 171 MMPs in angiogenesis Significance of matrix metalloproteinases in angiogenesis Matrix metalloproteinases (MMPs) are a family of highly homologous zinc en- dopeptidases that cleave peptide bonds of the extracellular matrix (ECM) proteins, such as collagens, laminins, elastin, and fibronectin[1, 2, 3]. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
An Investigation of ADAM-Like Decysin 1 in Macrophage-Mediated Inflammation and Crohn’S Disease
An Investigation of ADAM-like Decysin 1 in Macrophage-mediated Inflammation and Crohn’s Disease By Nuala Roisin O’Shea A thesis submitted to UCL for the degree of Doctor of Philosophy Division of Medicine Declaration I, Nuala Roisin O’Shea, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Crohn’s disease (CD) is now recognised as a defective host response to bacteria in genetically susceptible individuals. The role of innate immunity and impaired bacterial clearance are widely accepted. In this thesis the role of ADAM-like, Decysin-1 (ADAMDEC1) in macrophage-mediated inflammation and gut mucosal immunity is explored. Using transcriptomic analysis of monocyte derived macrophages (MDM) ADAMDEC1 was identified as grossly under expressed in a subset of patients with CD. ADAMDEC1 was found to be highly selective to the intestine, peripheral blood monocyte-derived and lamina propria macrophages. It was shown to be an inflammatory response gene, upregulated in response to bacterial antigens and inflammation. ADAMDEC1 was expressed in prenatal and germ free mice, demonstrating exposure to a bacterial antigen is not a prerequisite for expression. Adamdec1 knock out mice were used to investigate the role of ADAMDEC1 in vivo. Adamdec1-/- mice displayed an increased susceptibility to dextran sodium sulphate (DSS), Citrobacter rodentium and Salmonella typhimurium induced colitis. In Adamdec1-/- mice, bacterial translocation and systemic infection were increased in bacterial models of colitis. These results suggest that individuals with grossly attenuated expression of ADAMDEC1 may be at an increased risk of developing intestinal inflammation as a consequence of an impaired ability to handle enteric bacterial pathogens. -
Gent Forms of Metalloproteinases in Hydra
Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin. -
An Adverse Role for Matrix Metalloproteinase 12 After Spinal Cord Injury in Mice
The Journal of Neuroscience, November 5, 2003 • 23(31):10107–10115 • 10107 Development/Plasticity/Repair An Adverse Role for Matrix Metalloproteinase 12 after Spinal Cord Injury in Mice Jennifer E. A. Wells,1 Tiffany K. Rice,1 Robert K. Nuttall,3 Dylan R. Edwards,3 Hakima Zekki,4 Serge Rivest,4 V. Wee Yong1,2 Departments of 1Clinical Neurosciences and 2Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, 3School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom, and 4Laboratory of Molecular Endocrinology and Department of Anatomy and Physiology, Laval University, Quebec, Quebec G1V 4G2, Canada We investigated the role of matrix metalloproteinases (MMPs) in acute spinal cord injury (SCI). Transcripts encoding 22 of the 23 known mammalian MMPs were measured in the mouse spinal cord at various time points after injury. Although there were significant changes in the expression levels of multiple MMPs, MMP-12 was increased 189-fold over normal levels, the highest of all MMPs examined. To evaluate the role of MMP-12 in SCI, spinal cord compression was performed in wild-type (WT) and MMP-12 null mice. Behavioral analyses were conducted for 4 weeks using the Basso–Beattie–Bresnahan (BBB) locomotor rating scale as well as the inclined plane test. The results show that MMP-12 null mice exhibited significantly improved functional recovery compared with WT controls. Twenty-eight days after injury, the BBB score in the MMP-12 group was 7, representing extensive movement of all three hindlimb joints, compared with 4 in the WT group, representing only slight movement of these joints. -
Effects of Collagen-Derived Bioactive Peptides and Natural Antioxidant
www.nature.com/scientificreports OPEN Efects of collagen-derived bioactive peptides and natural antioxidant compounds on Received: 29 December 2017 Accepted: 19 June 2018 proliferation and matrix protein Published: xx xx xxxx synthesis by cultured normal human dermal fbroblasts Suzanne Edgar1, Blake Hopley1, Licia Genovese2, Sara Sibilla2, David Laight1 & Janis Shute1 Nutraceuticals containing collagen peptides, vitamins, minerals and antioxidants are innovative functional food supplements that have been clinically shown to have positive efects on skin hydration and elasticity in vivo. In this study, we investigated the interactions between collagen peptides (0.3–8 kDa) and other constituents present in liquid collagen-based nutraceuticals on normal primary dermal fbroblast function in a novel, physiologically relevant, cell culture model crowded with macromolecular dextran sulphate. Collagen peptides signifcantly increased fbroblast elastin synthesis, while signifcantly inhibiting release of MMP-1 and MMP-3 and elastin degradation. The positive efects of the collagen peptides on these responses and on fbroblast proliferation were enhanced in the presence of the antioxidant constituents of the products. These data provide a scientifc, cell-based, rationale for the positive efects of these collagen-based nutraceutical supplements on skin properties, suggesting that enhanced formation of stable dermal fbroblast-derived extracellular matrices may follow their oral consumption. Te biophysical properties of the skin are determined by the interactions between cells, cytokines and growth fac- tors within a network of extracellular matrix (ECM) proteins1. Te fbril-forming collagen type I is the predomi- nant collagen in the skin where it accounts for 90% of the total and plays a major role in structural organisation, integrity and strength2. -
ADAM10 (A-3): Sc-48400
SAN TA C RUZ BI OTEC HNOL OG Y, INC . ADAM10 (A-3): sc-48400 BACKGROUND APPLICATIONS ADAM (a disintegrin and metalloprotease) proteins are a family of over 30 ADAM10 (A-3) is recommended for detection of ADAM10 of mouse, rat and membrane-anchored, glycosylated, Zn 2+ -dependent proteases that are involved human origin by Western Blotting (starting dilution 1:200, dilution range in cell-cell, cell-matrix interface-related processes including fertilization, mus - 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein cl e fusion, secretion of TNF (tumor necrosis factor α) and modulation of the (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution neurogenic function of Notch and Delta. ADAM proteins possess a signal- range 1:50-1:500), immunohistochemistry (including paraffin-embedded domain, a pro-domain, a metalloprotease domain, a disintegrin domain (inte - sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase grin ligand), a cysteine-rich region, an epidermal growth factor-like domain, ELISA (starting dilution 1:30, dilution range 1:30-1:3000). a transmembrane domain and a cytoplasmic tail. ADAMs are expressed in Suitable for use as control antibody for ADAM10 siRNA (h): sc-41410, brain, testis, epididymis, ovary, breast, placenta, liver, heart, lung, bone and ADAM10 siRNA (m): sc-41411, ADAM10 siRNA (r): sc-270165, ADAM10 muscle, and catalyze proteolysis, adhesion, fusion and intracellular signaling. shRNA Plasmid (h): sc-41410-SH, ADAM10 shRNA Plasmid (m): sc-41411- SH, ADAM10 is a TNF-processing enzyme that cleaves pro-TNF, a membrane- ADAM10 shRNA Plasmid (r): sc-270165-SH, ADAM10 shRNA (h) Lentiviral bound precusor protein, at Ala 76-Val 77, which causes membrane shedding Particles: sc-41410-V, ADAM10 shRNA (m) Lentiviral Particles: sc-41411-V of soluble TNF.