Mineral Commodities of Newfoundland and Labrador Zinc and Lead

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Commodities of Newfoundland and Labrador Zinc and Lead MINERAL COMMODITIES OF NEWFOUNDLAND AND LABRADOR ZINC AND LEAD Mines Branch Mineral Commodities of Newfoundland and Labrador Zinc and Lead Foreword his is the first in a series of summary publications covering the principal mineral commodities of the Province. It’s pur- Tpose is to act as a source of initial information for explorationists and to provide a bridge to the detailed repository of information that is contained in the maps and reports of the provincial and federal geological surveys, as well as in numerous exploration-assessment reports. The information contained in this series is accessible via the internet at the Geological Survey of Newfoundland and Labrador web site http://www.nr.gov.nl.ca/mines&en/geosurvey/ Publications in the Series Zinc and Lead (Number 1, revised 2008); Nickel (Number 2, revised 2008); Copper (Number 3, revised 2007); Gold (Number 4, revised 2008); Uranium in Labrador (Number 5, 2008) Additional Sources of Information urther information is available in the publications of the geological surveys of Newfoundland and Labrador and Canada. FThe Geological Survey of Newfoundland and Labrador also holds a considerable inventory of exploration-assessment files available for onsite inspection at its St. John's headquarters and for download via the Geological Survey of Newfoundland and Labrador web site http://www.nr.gov.nl.ca/mines&en/geosurvey/. Descriptions of individual mineral occurrences are available through the provincial Mineral Occurrence Database System (MODS), which is accessible from the Survey’s web site. Up- to-date overviews of mining developments and exploration activity targeting copper are available on-line at http://www.nr. gov.nl.ca/mines&en/ Contact Addresses Geological Survey of Newfoundland and Labrador Geological Survey of Canada Department of Natural Resources 601 Booth Street P.O. Box 8700 Ottawa, ON, Canada St. John’s, NL, Canada K1A 0E8 A1B 4J6 Tel. 613.995.4342 Tel. 709.729.3159 Fax 613.943.0646 Fax 709.729.4491 Long distance (Canada and USA) 1.888.252.4301 http://www.nr.gov.nl.ca/mines&en/geosurvey/ http://www.NRCan.gc.ca/gsc/ NOTE he purchaser agrees not to provide a digital reproduction or copy of this product to a third party. Derivative products Tshould acknowledge the source of the data. DISCLAIMER he Geological Survey, a division of the Department of Natural Resources (the “authors and publishers”), retains the sole Tright to the original data and information found in any product produced. The authors and publishers assume no legal lia- bility or responsibility for any alterations, changes or misrepresentations made by third parties with respect to these products or the original data. Furthermore, the Geological Survey assumes no liability with respect to digital reproductions or copies of original products or for derivative products made by third parties. Please consult with the Geological Survey in order to ensure originality and correctness of data and/or products. Compiled by R.J. Wardle, 2000 Reprinted with minor revisions, 2008 Front Cover: Colloform sphalerite ore, Daniel’s Harbour mine. Mineral Commodities of Newfoundland and Labrador Zinc and Lead Introduction inc was the most important non-ferrous metallic Zcommodity produced in Newfoundland between 1928 and 1990. During this period, 2.3 million tonnes of the metal were produced with an in situ value of US$3.1 billion, using present day prices. Lead, apart from some early ventures, was generally produced only as a by-product of other mining operations for a total production of 1.22 million tonnes at a present day in situ value of US$556 million. The two most important geological environments for zinc and lead mineralization in Newfoundland are the carbonate platform rocks of western Newfound- land, which host Mississippi Valley-type (MVT) deposits, and the volcanic terranes of central New- foundland, which host numerous volcanogenic mas- sive sulphide (VMS) deposits. Lead, and to a lesser extent zinc, also occur in a number of vein-hosted epi- genetic occurrences that locally formed the basis for 19th century mining operations, but which are gener- ally uneconomic in today's markets. The first recorded production of lead in New- foundland was from vein deposits at the La Manche Mine of Placentia Bay in 1855. Attempts were made to develop other mines between 1860 and 1885; how- ever, these were all based on small epigenetic veins Figure 1. The Lucky Strike Glory Hole S the first and none managed any sustained period of production Buchans Mine. or profitability. Modern mining of zinc and lead began in 1928 Carbonate-Hosted Mineralization with the development of the Buchans volcanic-hosted Environments deposits located in central Newfoundland (Figure 1). Further discoveries followed, and the Zinc was the he principal mineralization envi- Buchans operations remained in Tronments of this type are found production until their eventual most important non- in the carbonate rocks of the depletion in 1984. In the mean- ferrous metallic commodity Humber Zone that form the time, exploration in the western western margin of the New- Newfoundland carbonate plat- produced in Newfoundland during foundland Appalachians. Three form had led to the discovery in the period 1928 to 1990 when 2.3 rock units host zinc–lead miner- 1963 of the Daniel's Harbour alization in the Humber Zone, zinc deposit. This came into pro- million tonnes of the metal the most important of which is duction in 1975 and closed in 1990, were produced. the Cambro-Ordovician platformal again following depletion of the ore carbonate sequence that stretches from reserves. the Port au Port Peninsula in the south to the top of the Great Northern Peninsula (Figure 2). The predomi- Although there is currently no production of zinc nant mineralization consists of sphalerite–galena and or lead in the Province, there remains considerable pyrite filling secondary voids as a replacement of car- potential for future discoveries. bonate beds and as the matrix to collapse breccias. 1 Mineral Commodities of Newfoundland and Labrador Generally, this mineralization is considered to be of Mississippi Valley-type (MVT) and comparable to other deposits of this type found in the western plat- formal sequences of the Appalachian Orogen (e.g., Great Northern Peninsula ZINC and LEAD OCCURRENCES of NEWFOUNDLAND Port au Port Peninsula Goodyear Daniel’s Harbour Lead Cove Bonne Bay Trapper the lead and zinc deposits of Tennessee). Mineraliza- HUMBER ZONE tion is found throughout the sequence but predomi- nantly within the Port au Port and St. George groups Port Aux Basques (Figure 3). Sphalerite is the dominant ore mineral and Turners Ridge Round Pond Strickland HUMBER ZONE Zinc and Lead Neoproterozoic to Ordovician OVERLAP SEQUENCES Baie Verte Peninsula Figure 2. Galena #1 vein Clastic and metasedimentary Silverdale Meso Neoproterozoic rocks Devonian to Carboniferous sedimentary rocks DUNNAGE Zn-Pb mineral occurrences Platformal carbonate rocks Silurian sedimentary and volcanic rocks ZONE Basal clastic, carbonate and volcanic rocks #6 Trench – Simplified geological map of Newfoundland showing location of major zinc and lead occurrences. Gneisses and granites Barasway de Cerf Grand Falls -producing Fig. 6 Major past mine Winter Hill Significant undeveloped deposit Significant occurrence Gander DUNNAGE & GANDER ZONES Cambrian to Silurian Selected minor occurrence GANDER Carbonate-hosted ZONE Clastic-hosted Neoproterozoic Ordovician St. Lawrence Marine clastic and Volcanic-hosted volcanic rocks Marystown Granite-related- Ophiolitic rocks vein-hosted Non-igneous vein-hosted INTRUSIVE ROCKS Metasedimentary rocks and migmatite Silvercliff – Ordovician Devonian intrusions Neoproterozoic Cambrian intrusions AVA L ON Z ON E – 2 AVAL ON ZON E Neoproterozoic to Ordovician– St. John’s Subaerial marine sedimentary rocks Mafic and felsic volcanic rocks – Mineral Commodities of Newfoundland and Labrador Zinc and Lead was preceded by the development of a secondary por- platform. These include vein-hosted and void-fill osity in association with formation of pseudobreccia. sphalerite–galena occurrences in sparry and fine- The latter is a replacement product in which “frag- grained dolomite of the Cambrian Port au Port Group ments” of earlier dolomitized limestone are left float- on the tip of the Great Northern Peninsula, and near ing in a matrix of secondary sparry dolomite (Figure Corner Brook in the south. These are too numerous to 4). Other true breccias in the vicinity of the deposits be all shown on Figure 2 but are depicted schemati- are related to solution collapse, probably in response cally in Figure 3. to the local emergence of the platform and consequent karstification of the carbonate rocks below a regional A different style of mineralization is found with- unconformity. in the brecciated and reefoid Carboniferous rocks that PREDOMINANTLY PREDOMINANTLY ALLOCHTHONOUS CARBONATE ROCKS CLASTIC ROCKS SEQUENCE Figure 3. Setting of zinc–lead MAINLAND Daniel’s Harbour-type SANDSTONE occurrence limestone zinc–lead mineraliza- tion in relation to TABLE HEAD SEDIMENT INFILL GROUP Aguathuna Fm. OF PALEO-DEPRESSION paleodepressions and ORDOVICIAN ZINC ORE ZONE pseudobreccia. Column at left shows ST. GEORGE Catoche GROUP Fm. stratigraphic position of Daniel’s Harbour 1000 pseudobreccia pseudobreccia PORT AU PORT GROUP and other MVT zinc– collapse breccia lead occurrences (after limestone 500 m 50 m LABRADOR Lane, 1984). CAMBRIAN GROUP PRECAMBRIAN BASEMENT 0100 m 0 The single major example
Recommended publications
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Lead in Your Home Portrait Color
    Protect Your Family From Lead in Your Home United States Environmental Protection Agency United States Consumer Product Safety Commission United States Department of Housing and Urban Development March 2021 Are You Planning to Buy or Rent a Home Built Before 1978? Did you know that many homes built before 1978 have lead-based paint? Lead from paint, chips, and dust can pose serious health hazards. Read this entire brochure to learn: • How lead gets into the body • How lead afects health • What you can do to protect your family • Where to go for more information Before renting or buying a pre-1978 home or apartment, federal law requires: • Sellers must disclose known information on lead-based paint or lead- based paint hazards before selling a house. • Real estate sales contracts must include a specifc warning statement about lead-based paint. Buyers have up to 10 days to check for lead. • Landlords must disclose known information on lead-based paint or lead-based paint hazards before leases take efect. Leases must include a specifc warning statement about lead-based paint. If undertaking renovations, repairs, or painting (RRP) projects in your pre-1978 home or apartment: • Read EPA’s pamphlet, The Lead-Safe Certifed Guide to Renovate Right, to learn about the lead-safe work practices that contractors are required to follow when working in your home (see page 12). Simple Steps to Protect Your Family from Lead Hazards If you think your home has lead-based paint: • Don’t try to remove lead-based paint yourself. • Always keep painted surfaces in good condition to minimize deterioration.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Mercury and Lead Pollution: Still a Critical Issue in Europe
    06 December 2007 Mercury and Lead Pollution: still a Critical Issue in Europe Human activities release heavy metals into the atmosphere where they are also transported across national boundaries. This results in air, soil and water pollution through the deposition of heavy metals in environments that are located far away from the actual emission sources. Atmospheric deposition of mercury and lead in particular are calculated to be too high, affecting respectively 51.2% and 7.4% of EU-25 ecosystems respectively in 2000. Heavy metals such as cadmium, lead and mercury can result in serious health risks (e.g. lung damage, kidney diseases, nervous system failures, etc.) and can be harmful to the environment (e.g. soil and water pollution, accumulation in plants). In 1979, the European Union (EU) signed the Long-range Transboundary Air Pollution Convention (LRTAP1), which was the first international legally binding instrument dealing with problems of air pollution on a broad regional basis, including pollution due to heavy metals emissions. In Europe, research programs focusing on heavy metals are already in place, including the EU-funded project ESPREME 2, which aims at developing methods and identifying strategies to support EU environmental policy-making for reducing the emissions and thus the harmful impacts of heavy metals. In the framework of the LRTAP, a methodology 3 was developed to assess the critical loads of heavy metals for both terrestrial and aquatic ecosystems, as well as for human health. The critical load is a measure of how much metal input from anthropogenic sources a system can tolerate. It is the threshold below which significant harmful effects on human health and on the environment do not occur, according to present knowledge.
    [Show full text]
  • Three Related Topics on the Periodic Tables of Elements
    Three related topics on the periodic tables of elements Yoshiteru Maeno*, Kouichi Hagino, and Takehiko Ishiguro Department of physics, Kyoto University, Kyoto 606-8502, Japan * [email protected] (The Foundations of Chemistry: received 30 May 2020; accepted 31 July 2020) Abstaract: A large variety of periodic tables of the chemical elements have been proposed. It was Mendeleev who proposed a periodic table based on the extensive periodic law and predicted a number of unknown elements at that time. The periodic table currently used worldwide is of a long form pioneered by Werner in 1905. As the first topic, we describe the work of Pfeiffer (1920), who refined Werner’s work and rearranged the rare-earth elements in a separate table below the main table for convenience. Today’s widely used periodic table essentially inherits Pfeiffer’s arrangements. Although long-form tables more precisely represent electron orbitals around a nucleus, they lose some of the features of Mendeleev’s short-form table to express similarities of chemical properties of elements when forming compounds. As the second topic, we compare various three-dimensional helical periodic tables that resolve some of the shortcomings of the long-form periodic tables in this respect. In particular, we explain how the 3D periodic table “Elementouch” (Maeno 2001), which combines the s- and p-blocks into one tube, can recover features of Mendeleev’s periodic law. Finally we introduce a topic on the recently proposed nuclear periodic table based on the proton magic numbers (Hagino and Maeno 2020). Here, the nuclear shell structure leads to a new arrangement of the elements with the proton magic-number nuclei treated like noble-gas atoms.
    [Show full text]
  • Recovery of Silver, Gold, and Lead from a Complex Sulfide Ore Using Ferric Chloride, Thiourea, and Brine Leach Solutions
    PLEASE DO NOT REI10VE FROM LIBRARY iRIi9022 i Bureau of M ines Report of Investigations/1986 Recovery of Silver, Gold, and Lead From a Complex Sulfide Ore Using Ferric Chloride, Thiourea, and Brine Leach Solutions By R. G. Sandberg and J. L. Huiatt UNITED STATES DEPARTMENT OF THE INTERIOR Report of Investigations 9022 Recovery of Silver, Gold, and Lead From a Complex Sulfide Ore Using Ferric Chloride, Thiourea, and Brine Leach Solutions By R. G. Sandberg and J. L. Huiatt UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel. Secretary BUREAU OF MINES Robert C. Horton. Director Library of Congress Cataloging in Publicatiori Data: Sandberg, R. G. (Richard G.) Recovery of silver, gold, and lead from a complex sulfide ore using ferric chloride, rhiourea, and brine leach solurions. (Repon of invesrigarions / Unired Srares Deparrmenr of rhe Inrerior, Bureau of Mines; 9022) Bibliography: p. 14. Supr. of Docs. no.: I 28.23: 9022. 1. Silver-Merallurgy. 2. Gold-Merallurgy. 3. Lead-Merallurgy. 4. Leaching. 5. Ferric chloride. 6. Salr. I. Huiarl, J. L. II. Tide. III. Series: Repon of invesrigarions (Unired Srares. Bureau of Mines) ; 9022. TN23.U43 [TN770] 6228 (669'.231 1\6-600056 CONTENTS Abstract............................................................................................................... 1 Introduction. .......................................................................................................... 2 Materials.. .. .. .. .. .. .. .. .. .. .. .... .. .. ...... .. .. .. .. • .. .. .. .• .. ... .. .. .. .. .. .. .
    [Show full text]
  • Nature No. 2468, Vol
    FEBRUARY IS, 1917J NATURE LETTERS TO THE EDITOR. and in Paris, several of them fam l-us for their atomic- weight determinations, doubt has lingered with r-egard [The Editor does not hold himself responsible for to our results for the very much more difficult case of opinions expressed by his correspondents. Neither thorium lead. In the first place, no one but myself can he undertake to return, or to correspond with has been able to obtain a suitable material by which the writers of, rejected manuscripts intended for to test the question, and I, of course, can claim no this or any other part of NATURE. No notice is previous experience of atomic-weight work. In the taken of anonymous communications.] second place, there has been an unfortunate confusion The Atomic Weight of "Thorium" Lead. between my material, Ceylon thorite, and thorianite, IN continuation of preliminary work published by a totally distinct mixed thorium and uranium Ceylon Mr. H. Hyman and myself (Trans. Chern. Soc., 1914, mineral. Lastly, there has been the widespread view, due :v., 1402) I gave an account in NATURE, February 4, to Holmes and Lawson, Fajans, and others, mainly 1915, p. 615, of the preparation of 80 grams of lead derived from geological evidence, that thorium-E, the from Ceylon thorite and of the determination of its isotope of lead resulting from the ultimate change of density in comparison with that of ordinary lead, thorium, was not sufficiently stable to accumulate over which proved the thorite lead to be 0'26 per cent. geological periods of time.
    [Show full text]
  • Lead Poisoning and Gold Mining in Nigeria's Zamfara State
    A HEAVY PRICE: LEAD POISONING AND GOLD MINING IN nigeria’s ZAMFARA STATE Photographs by Marcus Bleasdale/VII for Human Rights Watch A boy in a compound in Bagega, Zamfara State, Nigeria. Many families processed ore in their compounds, crushing and grinding the rocks in their homes. Because of the lead poisoning, most families have stopped processing in their homes and the operations have been moved a short distance from the village. Some walls in these compounds are made with sediment from a nearby pond that is likely highly contaminated with lead from nearby ore processing. These walls contaminate the compound with lead over time. Since 2010 ongoing, widespread, acute lead poisoning in Zamfara state has killed at least 400 children. Considered the worst outbreak of lead poisoning in modern history, more than 3,500 affected children require urgent, life- saving treatment. Less than half are receiving it. Among adults there are high rates of infertility and miscarriage. Left: The mother of this child lost two of her four children to lead poisoning. Zamfara is a mineral-rich state, with significant deposits of gold. The acute lead poisoning in Zamfara is a result of artisanal gold mining: small scale mining done with rudimentary tools. Miners crush and grind ore to extract gold, and in the process release dust that is highly contaminated with lead. Children in affected areas are exposed to this dust when they are laboring in the processing site, when their relatives return home covered with dust on their clothes and hands, and when the processing occurs in their home.
    [Show full text]
  • How to Find out If You Have a Lead Service Line (PDF)
    How to Find Out if You Have a Lead Service Line Trenton Water Works (TWW) needs your help in identifying the lead and galvanized steel service lines in the city’s water system. Galvanized steel service lines may be lead lined or have goosenecks that are made of lead material. Services that contain lead materials pose known health risks. TWW is currently undergoing a Lead Service Line Replacement Program which offers limited replacement of service lines made of lead material at a highly discounted rate. If you HAVE NOT received an invitation into the Lead Service Line Program, it means that TWW’s records indicate that you DO NOT have a lead or galvanized steel service line. TWW needs your help in confirming these records. Please perform steps 1-5 listed below and send your lead service line material results, along with your address, to [email protected]. Material Verification Test What you will need: a house key or coin and a magnet. Steps to testing your water service line material: 1. Find the water meter on your property. 2. Look for the pipe that comes through the outside wall of your home and connects to your meter. 3. Use a key or coin to gently scratch the pipe (like you would scratch a lottery ticket). If the pipe is painted, use sandpaper to expose the metal first. 4. Place the magnet on the pipe to see if it sticks to the pipe. 5. Determine your pipe material and send your results and address to [email protected]. Material Verification Test To find out if you have a copper, lead or galvanized steel service on your property, you (or your landlord) can perform a material verification test on the water service line where it connects to the water meter to determine the material of the water service line on your property.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • New Methods of Cleaning up Heavy Metal in Soils and Water
    ENVIRONMENTAL SCIENCE AND TECHNOLOGY BRIEFS FOR CITIZENS by M. Lambert, B.A. Leven, and R.M. Green New Methods of Cleaning Up Heavy Metal in Soils and Water Innovative solutions to an environmental problem This publication is published by the Hazard- ous Substance Research Centers as part of There are several options for treating Joplin. Here, mine spoils (locally called their Technical Outreach Services for Com- or cleaning up soils contaminated with chat) cover much of the open space in- munities (TOSC) program series of Environ- heavy metals. This paper discusses side the city, and contain high levels of mental Science and Technology Briefs for three of those methods. lead, zinc, and cadmium. Heavy metal Citizens. If you would like more information about the TOSC program, contact your re- contamination can be carried with soil gional coordinator: Introduction particles swept away from the initial At many sites around the nation, heavy areas of pollution by wind and rain. Northeast HSRC metals have been mined, smelted, or Once these soil particles have settled, New Jersy Institute of Technology Otto H. York CEES used in other industrial processes. The the heavy metals may spread into the 138 Warren St. waste (tailings, smelter slag, etc.) has surroundings, polluting new areas. Newark, NJ 07102 sometimes been left behind to pollute Cleanup (or remediation) technologies (201) 596-5846 surface and ground water. The heavy available for reducing the harmful ef- Great Plains/Rocky Mountain HSRC metals most frequently encountered in fects at heavy metal-contaminated sites Kansas State University this waste include arsenic, cadmium, include excavation (physical removal of 101 Ward Hall chromium, copper, lead, nickel, and the contaminated material), stabiliza- Manhattan, KS 66506 zinc, all of which pose risks for human tion of the metals in the soil on site, (800) 798-7796 health and the environment.
    [Show full text]
  • Extraction of Lead and Zinc from a Rotary Kiln Oxidizing Roasting Cinder
    metals Article Extraction of Lead and Zinc from a Rotary Kiln Oxidizing Roasting Cinder Junhui Xiao 1,2,3,* , Kai Zou 1,3, Wei Ding 1,3, Yang Peng 1,3 and Tao Chen 1,3 1 Sichuan Engineering Lab of Non-Metallic Mineral Powder Modification and High-Value Utilization, Southwest University of Science and Technology, Mianyang 621010, China; [email protected] (K.Z.); [email protected] (W.D.); [email protected] (Y.P.); [email protected] (T.C.) 2 Key Laboratory of Sichuan Province for Comprehensive Utilization of Vanadium and Titanium Resources, Panzhihua University, Panzhihua 61700, China 3 Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China * Correspondence: [email protected] or [email protected]; Tel.: +86-139-9019-0544 Received: 28 February 2020; Accepted: 1 April 2020; Published: 2 April 2020 Abstract: In this study, sulfuric acid leaching and gravity shaking-table separation by shaking a table are used to extract lead and zinc from a Pb-Zn oxidizing roasting cinder. The oxidizing roasting cinder—containing 16.9% Pb, 30.5% Zn, 10.3% Fe and 25.1% S—was obtained from a Pb-Zn sulfide ore in the Hanyuan area of China by a flotation-rotary kiln oxidizing roasting process. Anglesite and lead oxide were the main Pb-bearing minerals, while zinc sulfate, zinc oxide and zinc ferrite were the main Zn-bearing minerals. The results show that a part of lead contained in lead oxide is transformed to anglesite, and a 3PbO PbSO H O-dominated new lead mineral phase after acid leaching.
    [Show full text]