Emergy and Economic Value

Total Page:16

File Type:pdf, Size:1020Kb

Emergy and Economic Value EMERGY SYNTHESIS 4: Theory and Applications of the Emergy Methodology Proceedings from the Fourth Biennial Emergy Conference, Gainesville, Florida Edited by Mark T. Brown University of Florida Gainesville, Florida Managing Editor Eliana Bardi Alachua County EPD, Gainesville, Florida Associate Editors Daniel E. Campbell US EPA Narragansett, Rhode Island Shu-Li Haung National Taipei University Taipei, Taiwan Enrique Ortega Centre for Sustainable Agriculture Uppsala, Sweden Torbjorn Rydberg Centre for Sustainable Agriculture Uppsala, Sweden David Tilley University of Maryland College Park, Maryland Sergio Ulgiati University of Siena Siena, Italy December 2007 The Center for Environmental Policy Department of Environmental Engineering Sciences University of Florida Gainesville, FL ii 24 Emergy and Economic Value Daniel E. Campbell and Tingting Cai ABSTRACT The value of an item in an environmental system can be determined from two independent perspectives: (1) the perspective of the donor which determines what was required to produce the item and (2) the perspective of the receiver which determines what the person that receives the item is willing to pay for it. These two perspectives give complementary views of the process of valuation, one from the objective basis of input accounting and the other from the subjective basis of human preference. Emergy provides a comprehensive measure for input accounting, whereas, money is a universal measure for human preference. For economic and emergy determinations of value to be used together in a unified analysis, an understanding of the relationship between value as determined by each method is needed. In this paper, we translated economic axioms and laws into Energy Systems Language and used the resulting structural and functional analogies to gain an understanding of the relationship between economic and emergy methods of determining value. We assembled and interpreted data to show the environmental and human service work contributions to the value of products derived from forest resources. These work contributions were aggregated by sector along an economic production chain. A general relationship between the market value of a product in dollars and its emdollar value was proposed and tested using data on the U.S. forest products industry in the early 1990s. The study results indicate that there is a firm basis for using emergy methods to augment and improve current methods of valuing environmental and economic products. INTRODUCTION Value is defined as the amount of one thing that is considered to be a suitable equivalent for something else. The difficulty in assigning value to disparate things is to determine how much of one thing is truly equivalent to something that is very different in its nature and effects. In economics value is a fair price or return for goods and services when exchanged for money and money is used to determine the equivalences based on the relative willingness of the buyers to pay and the sellers to accept payment for the two things. An alternative method for determining the equivalence between any two things is to account for the inputs that were required for the production of each one. If the disparate required inputs can be converted to a common unit, direct equivalents among different things can be determined by summing all major inputs to their respective production processes. Perhaps the best known theory of value based on required inputs is Marx’s labor theory of value (Odum and Scienceman 2005). It is now well-known that Marx’s labor theory of value is incomplete, because the production of goods and services depends on many inputs in addition to labor. Odum (1987, 1988, 1996) presented the concept of emergy, which allows the development of a general theory of value based on inventorying all the inputs to production processes and then converting them first to energy (J) or matter (g) and then to emergy (sej) by multiplying the energy values by the appropriate transformity (sej/J) or the mass values by the appropriate specific emergy (sej/g). -24.1- Chapter 24. Emergy and Economic Value Thus, the question of finding the value of an item in an environmental system can be approached from two independent perspectives: (1) the perspective of the donor which determines what was required to produce the item and (2) the perspective of the receiver which determines the money that the person who receives the item is willing to pay for it. These two perspectives result in separate but complementary methods of valuation, one from the objective basis of input accounting and the other from the subjective basis of human preference. Emergy provides a comprehensive measure for input accounting and money is the universal measure for human preference. Faced with the same problem, the emergy synthesis and economic approaches would use the same data (labor and material costs and quantities) and methods (comparison of alternatives, maximization of decision variables, and determining the effects of a marginal change in those variables on a master variable) but they employ inherently different measures of value to reach a conclusion. Given that these two methods of determining value will always provide independent perspectives on worth, the question becomes, “How are the values determined using these two approaches related to one another?” If we can answer this question we may begin to see how we can use economic and energy methods within a single unified approach to valuation. At present, we can say that where the results of these two methods correspond, managers can have greater confidence in their decisions; where they differ managers are forewarned that more analysis may be needed. AN ENERGY SYSTEMS VIEW OF ECONOMICS Since the transformation of potential energy is the underlying cause of action in all known systems, methods grounded in thermodynamics such as Energy Systems Theory (Odum 1983, 1994) can be applied to gain a deeper understanding of the principles and axioms of many disciplines. The general axioms of a discipline that have been proven to be valid through testing against observed phenomena should be consistent with the laws of thermodynamics, sensu lato, including the 4th and 5th laws as proposed by Lotka (1922) and Odum (1996). Furthermore, we should be able to represent and identify these thermodynamic design principles by translating ideas from other disciplines into an energy systems model of the system. In this way, it should be possible to understand and interpret the principles and analyses of economics, as well as, other disciplines in terms of the thermodynamic and general systems principles codified in Energy Systems Theory (Odum 1994). However, it may not be possible to represent all the features of an energy systems model using the axioms of a particular discipline, when those axioms do not include all the principles needed to describe the system from a thermodynamic point of view, e.g., the lack of self-consistent conservation and entropic principles in economics (Mirowski 1989). Many economists have found it difficult to understand the value added by interpreting economics from the viewpoint of the natural sciences and particularly from the perspective of Energy Systems Theory. However, in this paper when economic laws and axioms are examined from the energy systems point of view (see Results and Discussion), they are found to be logically interpretable in terms of energy systems principles and the thermodynamic laws sensu lato. This gives us a common basis for approaching the important problem of determining value in environmental systems, i.e., systems that include major storages and flows of matter, energy, and information of both human and ecological origin. In particular, in this paper we will elucidate the relationship between value as determined by market economics and value as determined by emergy accounting methods. THE PHILOSOPHICAL BASIS FOR ECONOMIC VALUE It is well-known that money is only paid to people for the work that they do in making a product or in performing a service. Thus, dollars are paid to people for their service in extracting a mineral from the ground, refining it, and transporting it to a place where it is used in the manufacture of an item, but no money is paid to the environment for the work done to produce the mineral ore in the first place. It is obvious that none of the human services generating income from this mineral -24.2- Chapter 24. Emergy and Economic Value would be possible without the concentration of the mineral in an ore body that could be exploited, yet markets attribute all value to human activities and none to the work of the environment. The notion in economics that all value derives from human work and none from the work of nature can be traced to the writings of John Locke (Gates 1998). Locke stated the following in his Chapter “On Property” in “Two Treatises of Government” published in 1764. “Though the earth, and all inferior creatures, be common to all men, yet every man has a property in his own person: this no body has a right to but himself. The labor of his body, and the work of his hands, we may say are properly his. Whatsoever then he removes out of the state that nature hath provided, and left it in, he hath mixed his labour with, and joined to it something that is his own, and thereby makes it his property. It being by him removed from the common state nature hath placed it in, it hath by this labour something annexed to it, that excludes the common right of other men: for this labour being the unquestionable property of the labourer no man but he can have a right to what that is once joined to,” Thus, the implication from this passage in Locke is that nature’s work alone has no value rather value is created when human beings operate on nature; therefore, all value derives from human work and payment should then be made only to humans for creating value.
Recommended publications
  • Emergy Evaluation of Water
    EMERGY EVALUATION OF WATER By ANDRES A. BUENFIL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2001 I dedicate this work to my grandparents Joan and Abe Friedman, as well as to Jacinto, David, Alberto and Ciltalli; but most especially to my mother, Roberta D. Friedman, my first teacher. ACKNOWLEDGMENTS I am very grateful to M.T. Brown and H.T. Odum for their support, advice, and mentoring. Both have inspired me to try to understand and experience this fascinating world. I thank C.L. Montague, D.P. Spangler, P.A. Chadik and C.F. Kiker for their supervision and participation in this dissertation. I also thank the staff and faculty of the Environmental Engineering Sciences Department as well as all the students and staff of the Center for Wetlands for their help during my graduate studies. Financial support for my doctorate research was provided by the U.S. Department of Education and the Environmental Engineering Sciences Department through their Graduate Assistance in Areas of National Need (GAANN) Fellowship program. I thank the University of Florida GAANN program directors, J.M.M. Anderson and J.M. Andino, for their encouragement and assistance through the Fellowship. iii TABLE OF CONTENTS page ACKNOWLEDGMENTS..................................................................................................iii LIST OF TABLES ...........................................................................................................viii
    [Show full text]
  • Emergetic Evaluation of Cattle Rearing in a Montado Farm
    EMERGETIC EVALUATION OF CATTLE REARING IN A MONTADO FARM Ana Margarida Pinto da Fonseca Tese apresentada à Universidade de Évora para obtenção do Grau de Doutor em Gestão Interdisciplinar da Paisagem ORIENTADOR (A/ES): Carlos Alberto Falcão Marques Maria Teresa Pinto Correia ÉVORA, Dezembro 2016 INSTITUTO DE INVESTIGAÇÃO E FORMAÇÃO AVANÇADA UNIVERSIDADE DE ÉVORA Emergetic evaluation of cattle rearing in a Montado farm Ana Margarida Pinto da Fonseca ORIENTADOR (A/ES): Professor Doutor Carlos Alberto Falcão Marques Professora Doutora Maria Teresa Pinto Correia Dissertação Dezembro de 2016 To Julia and my parents, “In fact, the crisis is the result of the overgrowth of financial assets relative to growth of real wealth – basically the opposite of too little liquidity. We need to take a step back and explore some of the fundamentals that growth-obsessed economists and commentators tend to neglect” Herman Daly and Annelli Rufus, 2008 Acknowledgements I am grateful to my supervisors, Professors Carlos Falcão Marques and Teresa Pinto-Correia for their support and encouragement throughout my graduate studies. Professor Daniel Campbell from Environmental Protection Agency, United States, supervised closely my studies, introducing and guiding me through the emergy evaluation method and the energy systems approach, always accompanied with great friendship and affection. Special thanks are also due to the farm owner, his father and the accounting officer of the farm for their patience, constant availability and sympathy. I am grateful to Centro de Geofísica de Évora (Évora Geophysics Center) for their kind help in the collection of meteorological data and to the Soil Laboratory of University of Évora for the soil analyses.
    [Show full text]
  • PRINCIPLES of EMERGY ANALYSIS for PUBLIC POLICY1 Howard T
    Appendix PRINCIPLES OF EMERGY ANALYSIS FOR PUBLIC POLICY1 Howard T. Odum Environmental Engineerin Sciences University of Florid a Gainesville, FL This paper explains EMERGY concepts for maximhhg public wealth, and gives explanations for why the principles are valid. The viewpoint is that the world economy, the nations, and states increase their real wealth and prevail according to these principles. A new quantity, the EMERGY, spelled with an "Mmeasures real wealth. Here we are using "wealth to mean usable products and services however produced. Maximizing the EMERGY is a new tool for those making public policy choices among alternative programs, resources, and appropriations. Choosing actions and patterns with the greatest EMERGY contribution to the public economy maximizes public wealth. Eh4ERGY analysis is not advocated as a tool for estimating market values. This paper explains EMERGY evaluation and its use to improve public policies. Human Choices Consistent with Mudmum Sustainable Wealth Many if not most people of the world assume that the economy is not subjjto scientific prediction but is a result of human free choices by businesses and individuals motivated by their individual needs. A different point of view is that the human economy, like many other self- organizing systems of nature, operates according to principles involving energy, materials, idonnation, hierarchical organization, and consumer uses that reinforce production. If those human choices that lead to successful, continuing wealth fit principles of larger xale self organization, then the economy ultimately uses human choices to follow the scientific laws. The human free choices are the means for finding the maximum public wealth by trial and error.
    [Show full text]
  • EMERGY SYNTHESIS 3: Theory and Applications of the Emergy Methodology
    EMERGY SYNTHESIS 3: Theory and Applications of the Emergy Methodology Proceedings from the Third Biennial Emergy Conference, Gainesville, Florida Edited by Mark T. Brown University of Florida Gainesville, Florida Managing Editor Eliana Bardi University of Florida, Gainesville, Florida Associate Editors Daniel E. Campbell US EPA Narragansett, Rhode Island Vito Comar State University of Mato Grosso do Sul Dourados, Brazil Shu-Li Haung National Taipei University Taipei, Taiwan Torbjorn Rydberg Centre for Sustainable Agriculture Uppsala, Sweden David Tilley University of Maryland College Park, Maryland Sergio Ulgiati University of Siena Siena, Italy November 2005 The Center for Environmental Policy Department of Environmental Engineering Sciences University of Florida Gainesville, FL ii 2 An Energy Systems View of Karl Marx's Concepts of Production and Labor Value Howard T. Odum and David M. Scienceman ABSTRACT This paper explores models of production by Karl Marx and other authors using microcomputer simulation to relate resources and dynamic process. Energy systems diagrams are adopted both to translate many concepts without semantic misunderstanding and to facilitate their pertinent computer simulations. Several models of production and labor value are discussed, including donor-receiver concepts of value, the labor donor concept of value by Marx, Marx’s model of surplus value distribution, capital and price. A dynamic simulation model of Marx's concepts is developed. Finally, Marx’s views are explored using other authors’ interpretations of his concepts. INTRODUCTION, ENERGY SYSTEMS AND THE MODELS OF MARX Now in the new millennium changes in the economy and its relationship to environmental resources, growth, and social welfare raise questions about which measures of value are appropriate for public policy.
    [Show full text]
  • Assessment of Ecosystem Service Value of the Liaohe Estuarine Wetland
    applied sciences Article Assessment of Ecosystem Service Value of the Liaohe Estuarine Wetland Lifeng Li 1, Fangli Su 2,3, Mark T. Brown 4, Haisheng Liu 2,3,* and Tieliang Wang 2,3,* 1 College of Science, Shenyang Agricultural University, Shenyang 110866, China; [email protected] 2 College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China; [email protected] 3 Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Nanjingzi Village, Dongguo Town, Panshan County, Panjin Ctiy 124112, China 4 Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA; mtb@ufl.edu * Correspondence: [email protected] (H.L.); [email protected] (T.W.); Tel.: +86-24-8848-7134 (H.L.); + 86-24-8848-7009 (T.W.) Received: 26 October 2018; Accepted: 4 December 2018; Published: 10 December 2018 Featured Application: This research enhanced the significance of the intermediate-service value of a wetland system, which can draw the government or researchers to pay more attention to wetland management for the sustainability of wetland systems. Abstract: The functions and services of wetland ecosystems to human society have been generally recognized. Currently, most evaluations of wetlands are a comprehensive evaluation of their ultimate value. It is rare to discuss for energy and matter lost and transferred. In this study, emergy theory was used to assess the ultimate and intermediate service values of the Liaohe estuarine wetland ecosystem. Results show that its ultimate service value was $28.2 million, and its intermediate service value was $35,614.03 million. The 1263 time difference between intermediate and ultimate value shows that much server value was dissipated in the form of energy.
    [Show full text]
  • Read Book Habitat Pdf Free Download
    HABITAT PDF, EPUB, EBOOK Roy Simon | 96 pages | 01 Nov 2016 | Image Comics | 9781632158857 | English | Fullerton, United States Habitat PDF Book Take the quiz Citation Do you know the person or title these quotes desc For example, in Britain it has been estimated that various types of rotting wood are home to over species of invertebrate. The chief environmental factors affecting the distribution of living organisms are temperature, humidity, climate, soil and light intensity, and the presence or absence of all the requirements that the organism needs to sustain it. Bibcode : Natur. Loss of habitat is the single greatest threat to any species. In areas where it has become established, it has altered the local fire regimen to such an extant that native plants cannot survive the frequent fires, allowing it to become even more dominant. Whether from natural processes or the activities of man, landscapes and their associated habitats change over time. Biology Botanical terms Ecological terms Plant morphology terms. Dictionary Entries near habitat habitally habitancy habitant habitat habitat form habitat group habitation See More Nearby Entries. We're gonna stop you right there Literally How to use a word that literally drives some pe Retrieved 16 May Simply put, habitat destruction has reduced the majority of species everywhere on Earth to smaller ranges than they enjoyed historically. History at your fingertips. Another cause of disturbance is when an area may be overwhelmed by an invasive introduced species which is not kept under control by natural enemies in its new habitat. National Wildlife Federation. The laws may be designed to protect a particular species or group of species, or the legislation may prohibit such activities as the collecting of bird eggs, the hunting of animals or the removal of plants.
    [Show full text]
  • Emergy Simulator, an Open Source Simulation Platform Dedicated to Systems Ecology and Emergy Studies
    EMERGY SIMULATOR, AN OPEN SOURCE SIMULATION PLATFORM DEDICATED TO SYSTEMS ECOLOGY AND EMERGY STUDIES Raphaël Valyi a,1, Enrique Ortega b, 2 a Candidate for Master of Science and Master of Materials at the Ecole Centrale de Lyon, 36 Av Guy de Collongue 69134 Ecully, France; b Professor at the Food Engineering Faculty of the Unicamp University 6121 CEP 13.083-862 Campinas - SP - Brazil ABSTRACT To develop more objective and more efficient criteria for judging sustainable development, the interactions between human activities and the environment are being simulated more often using various forms of systemic modeling. H.T. Odum was a pioneer in applying modeling concepts from electrical circuitry and irreversible thermodynamics to systems ecologyusually dedicated to electronics andor chemistry. The Emergy Simulator (EmSim) project is a computer implementation of the main concepts of Odum’s Energy Systems Language a.k.a. the Energy Circuit Language. First, with EmSim you can share models through the Internet or export them as drawings. Second, EmSim is able to translate Odum’s Energy Systems diagrams directly into a set of ordinary differential equations that it can then integrate and plot. Finally, EmSim can correctly compute emergies and transformities. If we admit that the emergy of a product is the sum, on a common basis, of all the available energy (eg. exergy) contributions required to make that product (from sun light for solar emergy or from fertile soil for ecological footprint) then EmSim is able propagate the emergy in very complex production networks involving recycling loops and co-productions. If you are able to enter an exergy weigthed causal diagram, then EmSim can compute the emergy of the various products and also infer their transformity! You are welcome to try it on line, learn more and participate at: h ttp://emsim.sourceforge.net a democratic project open for unlimited improvement by otherss.
    [Show full text]
  • Environmental Accounting Using Emergy: Evaluation of the State of West Virginia
    Environmental Accounting Using Emergy: Evaluation of the State of West Virginia By D. E. Campbell 1, S. L. Brandt-Williams 1 M. E. A. Meisch2 1USEPA, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI; 2Dept. Environmental Engineering Sciences, University of North Carolina, Chapel Hill, NC. U.S. Environmental Protection Agency National Health and Environmental Effects Research Laboratory Atlantic Ecology Division Narragansett, RI 02882 1 TABLE OF CONTENTS DISCLAIMER……………………………………………………………………………4 ACKNOWLEDGMENTS………………………………………………………………..4 PREFACE………………………………………………………………………………..4 Significance of the Report………………………………………………………...4 Structure of the Report…………………………………………………………….5 INTRODUCTION………………………………………………………………………...6 METHODS………………………………………………………………………………..7 Understanding the System………………………………………………………...7 Overview of Emergy Analysis Methods…………………………………………..8 Diagramming and Models…………………………………………………8 The Energy Systems Language……………………………………9 Simulation Models……………………………………………….11 The Emergy Tables………………………………………………………11 Data Sources and Model Evaluation……………………………………..12 Transformities……………………………………………………………12 Flow Summary and the Calculation of Indices…………………………..13 Creating the Emergy Income Statement…………………………………………13 Evaluating Renewable Resources………………………………………..13 Evaluating Nonrenewable Resources……………………………………14 Evaluating Exports and Imports…………………………………………15 Determining the Emergy in Materials……………………………16 Determining the Emergy in Services…………………………….17 Creating the
    [Show full text]
  • Ecosystem Biomimetics: Energy System Diagrams for Characterization of Environmental Performance of Buildings
    Author accepted versión. Final publication as: Garcia Holguera, M., Clarke, G., Sprecher, A. & Gaskin, S. (2013) Ecosystem biomimetics: energy system diagrams for characterization of environmental performance of buildings, International Journal of the Constructed Environment, 3(2): 147-165. Ecosystem Biomimetics: Energy System Diagrams for Characterization of Environmental Performance of Buildings Abstract: Ecosystems biomimetics in architecture means learning from ecosystems; that is, learning from complex, resilient, self-organized systems in nature, and transferring valuable ecosystem’s patterns into the architectural field. However, the methodology is incipient and biomimetic tools have to cross disciplines to convey meaning for both ecology and architecture; so qualitative and quantitative tools need to be developed in order to stimulate research. In this paper, an ecological engineering tool, the energy systems diagrams as defined by ecologist H. Odum, is used to represent more than 20 sustainable- rated buildings under the light of ecological systems. The buildings selected are certified projects under the LEED, Living Building Challenge (LBCH) or Passive House (PH) rating systems. The results show that ecological systems diagrams are effective instruments for characterization of the environmental performance of buildings in terms of energy and material flows; and may be serviceable as a shared language between disciplines. The validation of ecological systems diagrams as a useful biomimetic tool gives ground for further research on quantitative instruments to develop a more diverse methodology of ecosystems biomimetics. Keywords: Biomimetics, Biomimicry, Ecomimetics, Sustainable Architecture, Green Building, Energy System Diagrams, Construction Ecology 1. Introduction 1.1. Biomimetics in Architecture Biomimetics, biomimesis, or biomimicry means learning from nature to solve human problems (Benyus 1997).
    [Show full text]
  • Understanding and Measuring Net Positive Business Strategies
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2020 Understanding and Measuring Net Positive Business Strategies Luke Ruffner Robinson Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Biogeochemistry Commons, Business Administration, Management, and Operations Commons, Entrepreneurial and Small Business Operations Commons, Growth and Development Commons, Industrial Technology Commons, Natural Resources Management and Policy Commons, Nature and Society Relations Commons, Other Architecture Commons, Other Environmental Sciences Commons, Other Operations Research, Systems Engineering and Industrial Engineering Commons, Sustainability Commons, and the Technology and Innovation Commons Let us know how access to this document benefits ou.y Recommended Citation Robinson, Luke R., "Understanding and Measuring Net Positive Business Strategies" (2020). Graduate Student Theses, Dissertations, & Professional Papers. https://scholarworks.umt.edu/etd/ This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. UNDERSTANDING AND MEASURING NET POSITIVE BUSINESS STRATEGIES By LUKE RUFFNER ROBINSON Bachelor of Arts, University of Montana, Missoula,
    [Show full text]
  • The Contributions of Watershed Management
    Watershed Management Contributions to Land Stewardship: Case Studies in the Southeast Wayne T. Swank1 and David R. Tilley2 Abstract.—We describe three examples of watershed management several spatial scales and 2) to implement a methodology, studies, at different spatial scales, that provide approaches and infor- emergy analysis, for synthesizing commodity and non- mation useful in enhancing natural resource stewardship in the south- ern Appalachians. A multiple use “pilot” study, initiated 35 years ago commodity values of watershed values and functions. at the Coweeta Hydrologic Laboratory, demonstrates that southern Appalachian forests can be successfully managed for water, timber, wildlife, and recreation. Added benefits of this small scale (144 ha) watershed study are the education and on-the-ground demonstration values. A demonstration project of ecosystem management, initiated in The Regional Setting the early 1990s on a 1820 ha watershed provides an integrated, interdis- ciplinary ecosystem approach to research, planning, and management. Organized around themes of ecosystem restoration, forest sustainability, The region is characterized by three physiographic human and economic values, and ecosystem structure and function, the divisions: the coastal plain, piedmont, and mountains. multifaceted studies are providing new knowledge and management benefits. More recently, regional scale watershed research was initiated Abundant resources, highly diverse and attractive ecosys- on two river basins within a 70,000 km2 area of western North Carolina. tems, demographic shifts, job opportunities, and other The goal is to develop a predictive understanding of the social, eco- socioeconomic factors contribute to a dynamic changing nomic, and environmental factors that drive land use cover changes and South. During the past three decades the population has to evaluate the consequences of change for terrestrial and aquatic increased 54% and the region (13 southern states) was the biodiversity, water quality, and regional carbon cycles.
    [Show full text]
  • Emergy Evaluations of Denmark and Danish Agriculture
    E K O L O G I S K T L A N T B R U K N R 3 7 • M A R S 2 0 0 3 EMERGY EVALUATIONS OF DENMARK AND DANISH AGRICULTURE Assessing the Limits of Agricultural Systems to Power Society Andrew C. Haden Centrum för uthålligt lantbruk Ekologiskt lantbruk – 37 Emergy Evaluations of Denmark and Danish Agriculture Assessing the Limits of Agricultural Systems to Power Society Based on the M.Sc. Thesis, by Andrew C. Haden, at the Department of Rural Development Studies (DRDS), Swedish University of Agricultural Sciences (SLU) Supervisor: Dr. Torbjörn Rydberg, Department of Ecology and Crop Production Science, and the Centre for Sustainable Agriculture (CUL), Swedish University of Agricultural Sciences (SLU). Centrum för uthålligt lantbruk SLU Box 7047 750 07 Uppsala Ecological Agriculture – 37 Centre for Sustainable Agriculture Swedish University of Agricultural Sciences S-750 07 Uppsala ISSN 1102-6758 ISRN SLU-EKBL-EL--37--SE ISBN 91-576-6254-1 Antal sidor: 104 Ämnesord/Key words: Agriculture; Denmark; Emergy; Empower; Energy analysis; Environmental loading; History; Sustainability; Thermodynamics. E K O L O G I S K T L A N T B R U K N R 3 7 • M A R S 2 0 0 3 EMERGY EVALUATIONS OF DENMARK AND DANISH AGRICULTURE Assessing the Limits of Agricultural Systems to Power Society Andrew C. Haden Centrum för uthålligt lantbruk CONTENT ABSTRACT .............................................................................................................................................................. 3 PREFACE ................................................................................................................................................................
    [Show full text]