Restrictions for Cave Information at Lava Beds National Monument

Total Page:16

File Type:pdf, Size:1020Kb

Restrictions for Cave Information at Lava Beds National Monument National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Integrated Monitoring Protocol for Cave Entrance Communities and Cave Environments in the Klamath Network Narrative, Version 1.0 Natural Resource Report NPS/KLMN/NRR—2017/1400 ON THE COVER Caldwell Ice Cave, Lava Beds National Monument Photograph by: Jean K. Krejca Integrated Monitoring Protocol for Cave Entrance Communities and Cave Environments in the Klamath Network Narrative, Version 1.0 Natural Resource Report NPS/KLMN/NRR—2017/1400 Jean K. Krejca1, G. Robert Myers III1, Alice Chung-MacCoubrey2, Eric C. Dinger2, Sean Mohren2,4, David Riggs3, Daniel Sarr2,†, Katrina Smith3, Allison Snyder2, and Shawn Thomas5 Edited by Sonya Daw2 1Zara Environmental LLC Manchaca, Texas 78610 2National Park Service Klamath Network Inventory and Monitoring Program Ashland, Oregon 3NPS Lava Beds National Monument Tule Lake Unit, WWII Valor in the Pacific NM Tulelake, California 96134 4Crater Lake National Park (current affiliation) Crater Lake, Oregon 5Bat Conservation International (current location) Flagstaff, Arizona March 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received formal, high-level peer review based on the importance of its content, or its potentially controversial or precedent-setting nature. Peer review was conducted by highly qualified individuals with subject area technical expertise and was overseen by a peer review manager. Standard operating procedures associated with this protocol received the same level of review as the protocol narrative but are stored as unpublished documents on the National Park Service Integrated Resources Management Applications web portal. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government. This report is available in digital format from the Klamath Inventory and Monitoring Network website and the Natural Resource Publications Management website. To receive this report in a format optimized for screen readers, please email [email protected]. Please cite this publication as: Krejca, J. K., G. R. Myers III, A. Chung-MacCoubrey, E. C. Dinger, S. Mohren, D. Riggs, D. Sarr, K. Smith, A. Snyder, and S. Thomas. 2017. Integrated monitoring protocol for cave entrance communities and cave environments in the Klamath Network: Narrative, Version 1.0. Natural Resource Report NPS/KLMN/NRR—2017/1400. National Park Service, Fort Collins, Colorado. NPS 963/136789, March 2017 ii Contents Page Figures.................................................................................................................................................. vii Tables ................................................................................................................................................... vii Appendices ........................................................................................................................................... vii Revision History Log ............................................................................................................................ ix Standard Operating Procedures ............................................................................................................. xi Executive Summary ............................................................................................................................xiii Acknowledgments ................................................................................................................................ xv 1 Background and Objectives ................................................................................................................ 1 1.1 Introduction .............................................................................................................................. 1 1.2 Monitoring History ................................................................................................................... 2 1.2.1 Monitoring History in Lava Beds ..................................................................................... 2 1.2.2 Monitoring History in Oregon Caves ............................................................................... 4 1.3 Integration of Cave Environment and Entrance Community Vital Signs ................................ 7 1.4 Vital Signs Monitoring Objectives ........................................................................................... 8 1.5 Management Actions ................................................................................................................ 9 2 Parameter Selection and Sampling Design ....................................................................................... 11 2.1 Selected Parameters ................................................................................................................ 11 2.1.1 Abiotic Parameters ......................................................................................................... 11 2.1.2 Biotic Parameters............................................................................................................ 11 2.1.3 Rationale for Selected Parameters .................................................................................. 11 2.1.4 Alternative Parameters Considered ................................................................................ 13 2.2 Sampling Frame and Site Selection ........................................................................................ 14 2.2.1 Oregon Caves ................................................................................................................. 14 2.2.2 Lava Beds ....................................................................................................................... 15 2.2.3 Protocol Development History ....................................................................................... 19 2.3 Delineating Zones and Marking Sites .................................................................................... 19 2.4 Sampling Frequency ............................................................................................................... 21 2.5 Statistical Power ..................................................................................................................... 21 iii Contents (continued) Page 2.5.1 Climate Power Analysis ................................................................................................. 22 2.5.2 Bat Power Analysis ........................................................................................................ 22 2.5.3 Vegetation and Invertebrate Power Analyses ................................................................. 23 3 Methods ............................................................................................................................................. 25 3.1 Schedule ................................................................................................................................. 25 3.2 Facilities and Equipment ........................................................................................................ 25 3.3 Field Methods ......................................................................................................................... 25 3.3.1 Cave Climate (SOP #5) .................................................................................................. 26 3.3.2 Water Levels in Subterranean Pools at ORCA (SOP #4) ............................................... 26 3.3.3 Ice Levels in Ice Caves at LABE (SOP #6).................................................................... 27 3.3.4 Human Visitation (SOP #7) ............................................................................................ 27 3.3.5 Entrance Vegetation Monitoring (SOP #9) .................................................................... 27 3.3.6 Bat Monitoring (SOP #8) ............................................................................................... 28 3.3.7 Scat and Visible Organics (SOP #10) ............................................................................ 29 3.3.8
Recommended publications
  • Supplementary Material 16S Rrna Clone Library
    Kip et al. Biogeosciences (bg-2011-334) Supplementary Material 16S rRNA clone library To investigate the total bacterial community a clone library based on the 16S rRNA gene was performed of the pool Sphagnum mosses from Andorra peat, next to S. magellanicum some S. falcatulum was present in this pool and both these species were analysed. Both 16S clone libraries showed the presence of Alphaproteobacteria (17%), Verrucomicrobia (13%) and Gammaproteobacteria (2%) and since the distribution of bacterial genera among the two species was comparable an average was made. In total a 180 clones were sequenced and analyzed for the phylogenetic trees see Fig. A1 and A2 The 16S clone libraries showed a very diverse set of bacteria to be present inside or on Sphagnum mosses. Compared to other studies the microbial community in Sphagnum peat soils (Dedysh et al., 2006; Kulichevskaya et al., 2007a; Opelt and Berg, 2004) is comparable to the microbial community found here, inside and attached on the Sphagnum mosses of the Patagonian peatlands. Most of the clones showed sequence similarity to isolates or environmental samples originating from peat ecosystems, of which most of them originate from Siberian acidic peat bogs. This indicated that similar bacterial communities can be found in peatlands in the Northern and Southern hemisphere implying there is no big geographical difference in microbial diversity in peat bogs. Four out of five classes of Proteobacteria were present in the 16S rRNA clone library; Alfa-, Beta-, Gamma and Deltaproteobacteria. 42 % of the clones belonging to the Alphaproteobacteria showed a 96-97% to Acidophaera rubrifaciens, a member of the Rhodospirullales an acidophilic bacteriochlorophyll-producing bacterium isolated from acidic hotsprings and mine drainage (Hiraishi et al., 2000).
    [Show full text]
  • Glossary Animal Physiology
    Limnology 1 Weisse - WS99/00 Glossary Limnology 1 Biological Zonation of a lentic System: Most organisms can be classified on the basis of their typical habitat. Benthos: The community of plants and animals that live permanently in or on the sea bottom. Littoral (intertidal zone): The trophogenic zone along the shore till the compensation depth where NPP occurs. It is rich in species diversity and number - especially algae and higher plants. • Epilittoral: Sedentary organisms of the shoreline; e.g. macrophytes, diatoms, etc. • Profundal: Depths of 180m and deeper. Limnion: Temperature related zonation of the open water body of lentic systems; i.e. summer stratification due to solar radiation produces several trophic zones - see also ecological aspects - depth zones. • Epilimnion: The upper warm and illuminated surface layer of a lake; narrower than the trophogenic zone. • Metalimnion: The transitional zone between epi- and hypolimnion; i.e. the zone of the thermocline. • Hypolimnion: The cool and poorly illuminated bottom layer of a lake, below the thermocline. Nekton: Pelagic animals that are active swimmers; i.e. most of the adult fishes. Pelagial: The environment of the open water of a lake, away from the bottom, and not in close proximity to the shoreline. It is Lower in species number and diversity than the benthos. The pelagial of rivers exhibits a directed and continuos flux (spatial relocation = amountH2O/cross-surface area). Plankton: Passively drifting or weakly swimming organisms in fresh waters; i.e. microscopic plants, eggs, larval stages of the nekton and benthos (such as phyto-plankton, zoo-plankton). • Neuston: The epipelagic zone few centimeters below the waterline; i.e.
    [Show full text]
  • Isolation of an Archaeon at the Prokaryote-Eukaryote Interface 3 4 Authors: 5 Hiroyuki Imachi1*, Masaru K
    bioRxiv preprint doi: https://doi.org/10.1101/726976; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: 2 Isolation of an archaeon at the prokaryote-eukaryote interface 3 4 Authors: 5 Hiroyuki Imachi1*, Masaru K. Nobu2*, Nozomi Nakahara1,3, Yuki Morono4, Miyuki 6 Ogawara1, Yoshihiro Takaki1, Yoshinori Takano5, Katsuyuki Uematsu6, Tetsuro Ikuta7, 7 Motoo Ito4, Yohei Matsui8, Masayuki Miyazaki1, Kazuyoshi Murata9, Yumi Saito1, Sanae 8 Sakai1, Chihong Song9, Eiji Tasumi1, Yuko Yamanaka1, Takashi Yamaguchi3, Yoichi 9 Kamagata2, Hideyuki Tamaki2 and Ken Takai1 10 11 *These authors contributed equally to this work. 12 13 Affiliations: 14 1Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), 15 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan 16 2Bioproduction Research Institute, National Institute of Advanced Industrial Science and 17 Technology (AIST), Tsukuba, Japan 18 3Department of Civil and Environmental Engineering, Nagaoka University of 19 Technology, Nagaoka, Japan 20 4Kochi Institute for Core Sample Research, X-star, JAMSTEC, Nankoku, Japan 21 5Biogeochemistry Program, Research Institute for Marine Resources Utilization, 22 JAMSTEC, Yokosuka, Japan 23 6Department of Marine and Earth Sciences, Marine Work Japan Ltd, Yokosuka, Japan 24 7Research Institute for Global Change, JAMSTEC, Yokosuka, Japan 25 8Research Institute for Marine Resources Utilization, JAMSTEC, Yokosuka, Japan 26 9National Institute for Physiological Sciences, Okazaki, Japan 27 28 Corresponding authors: 29 Hiroyuki Imachi, E-mail: [email protected] 30 Masaru K. Nobu, E-mail: [email protected] 31 32 33 1 bioRxiv preprint doi: https://doi.org/10.1101/726976; this version posted August 8, 2019.
    [Show full text]
  • Novel Phosphate-Solubilizing Bacteria Enhance Soil Phosphorus Cycling Following Ecological Restoration of Land Degraded by Mining
    The ISME Journal (2020) 14:1600–1613 https://doi.org/10.1038/s41396-020-0632-4 ARTICLE Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining 1 2 1 2 2 2 2 Jie-Liang Liang ● Jun Liu ● Pu Jia ● Tao-tao Yang ● Qing-wei Zeng ● Sheng-chang Zhang ● Bin Liao ● 1 1,2 Wen-sheng Shu ● Jin-tian Li Received: 22 October 2019 / Revised: 2 March 2020 / Accepted: 10 March 2020 / Published online: 23 March 2020 © The Author(s) 2020. This article is published with open access Abstract Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The gcd gene, encoding an enzyme that mediates inorganic P solubilization, was 1234567890();,: 1234567890();,: predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring gcd, which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling.
    [Show full text]
  • Chapter 4: PROKARYOTIC DIVERSITY
    Chapter 4: PROKARYOTIC DIVERSITY 1. Prokaryote Habitats, Relationships & Biomes 2. Proteobacteria 3. Gram-negative and Phototropic Non-Proteobacteria 4. Gram-Positive Bacteria 5. Deeply Branching Bacteria 6. Archaea 1. Prokaryote Habitats, Relationships & Biomes Important Metabolic Terminology Oxygen tolerance/usage: aerobic – requires or can use oxygen (O2) anaerobic – does not require or cannot tolerate O2 Energy usage: phototroph – uses light as an energy source • all photosynthetic organisms chemotroph – acquires energy from organic or inorganic molecules • organotrophs – get energy from organic molecules • lithotrophs – get energy from inorganic molecules …more Important Terminology Carbon Source: autotroph – uses CO2 as a carbon source • e.g., photoautotrophs or chemoautotrophs heterotroph – requires an organic carbon source • e.g., chemoheterotroph – gets energy & carbon from organic molecules Oligotrophs require few nutrients, the opposite of eutrophs or copiotrophs Facultative vs Obligate (or Strict): facultative – “able to, but not requiring” • e.g., facultative anaerobes can survive w/ or w/o O2 obligate – “absolutely requires” • e.g., obligate anaerobes cannot survive in O2 Symbiotic Relationships Symbiotic relationships (close, direct interactions) between different organisms in nature are of several types: • e.g., humans have beneficial bacteria in their digestive tracts that also benefit from the food we eat (mutualism) Microbiomes All the microorganisms that inhabit a particular organism or environment (e.g., human or
    [Show full text]
  • 7.014 Lectures 16 &17: the Biosphere & Carbon and Energy Metabolism
    MIT Department of Biology 7.014 Introductory Biology, Spring 2005 7.014 Lectures 16 &17: The Biosphere & Carbon and Energy Metabolism Simplified Summary of Microbial Metabolism The metabolism of different types of organisms drives the biogeochemical cycles of the biosphere. Balanced oxidation and reduction reactions keep the system from “running down”. All living organisms can be ordered into two groups1, autotrophs and heterotrophs, according to what they use as their carbon source. Within these groups the metabolism of organisms can be further classified according to their source of energy and electrons. Autotrophs: Those organisms get their energy from light (photoautotrophs) or reduced inorganic compounds (chemoautotrophs), and their carbon from CO2 through one of the following processes: Photosynthesis (aerobic) — Light energy used to reduce CO2 to organic carbon using H2O as a source of electrons. O2 evolved from splitting H2O. (Plants, algae, cyanobacteria) Bacterial Photosynthesis (anaerobic) — Light energy used to reduce CO2 to organic carbon (same as photosynthesis). H2S is used as the electron donor instead of H2O. (e.g. purple sulfur bacteria) Chemosynthesis (aerobic) — Energy from the oxidation of inorganic molecules is used to reduce CO2 to organic carbon (bacteria only). -2 e.g. sulfur oxidizing bacteria H2S → S → SO4 + - • nitrifying bacteria NH4 → NO2 → NO3 iron oxidizing bacteria Fe+2 → Fe+3 methane oxidizing bacteria (methanotrophs) CH4 → CO2 Heterotrophs: These organisms get their energy and carbon from organic compounds (supplied by autotrophs through the food web) through one or more of the following processes: Aerobic Respiration (aerobic) ⎯ Oxidation of organic compounds to CO2 and H2O, yielding energy for biological work.
    [Show full text]
  • Geologic Resources Inventory Report, Wind Cave National Park
    National Park Service U.S. Department of the Interior Natural Resource Program Center Wind Cave National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/087 THIS PAGE: Calcite Rafts record former water levels at the Deep End a remote pool discovered in January 2009. ON THE COVER: On the Candlelight Tour Route in Wind Cave boxwork protrudes from the ceiling in the Council Chamber. NPS Photos: cover photo by Dan Austin, inside photo by Even Blackstock Wind Cave National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/087 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 March 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters.
    [Show full text]
  • Complete Issue
    EDITORIAL EDITORIAL Journal of Cave and Karst Studies Use of FSC-Certified and Recycled Paper MALCOLM S. FIELD Beginning with this issue, the Journal of Cave and The FSC logo is applicable and allowed only for FSC- Karst Studies now includes the Forest Stewardship Certified and Recycled Paper use. By having selected an Council (FSC) logo on the inside cover. According to FSC-certified paper for printing the Journal, we are the FSC web site (http://www.fsc.org/about-fsc.html) provided the right to use the FSC logo. Approved use of ‘‘FSC is an independent, non-governmental, not for profit the seal ensures that the paper and processes that we use organization that was established to promote the respon- for the Journal are being produced in compliance with sible management of the world’s forests. It provides strict guidelines protecting the environment, wildlife, standard setting, trademark assurance and accreditation workers and local communities. services for companies and organizations interested in Interestingly, the Journal has actually been conform- responsible forestry. Products carrying the FSC label are ing to FSC standards for more than a year, which reflects independently certified to assure consumers that they the conservation mindset of the members of the National come from forests that are managed to meet the social, Speleological Society. As is known to many of you, economic and ecological needs of present and future conservation is a major part of the National Speleological generations.’’ Society, although we are more focused on the more FSC certification allows consumers to identify products limited concept of cave and karst conservation (http:// that provide assurance of social and environmental www.caves.org/committee/conservation/).
    [Show full text]
  • Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
    The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT.
    [Show full text]
  • A Comprehensive Survey of Soil Acidobacterial Diversity Using Pyrosequencing and Clone Library Analyses
    The ISME Journal (2009) 3, 442–453 & 2009 International Society for Microbial Ecology All rights reserved 1751-7362/09 $32.00 www.nature.com/ismej ORIGINAL ARTICLE A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses Ryan T Jones1, Michael S Robeson1, Christian L Lauber2, Micah Hamady3, Rob Knight4 and Noah Fierer1,2 1Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA; 2Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA; 3Department of Computer Science, University of Colorado, Boulder, CO, USA and 4Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA Acidobacteria are ubiquitous and abundant members of soil bacterial communities. However, an ecological understanding of this important phylum has remained elusive because its members have been difficult to culture and few molecular investigations have focused exclusively on this group. We generated an unprecedented number of acidobacterial DNA sequence data using pyrosequen- cing and clone libraries (39 707 and 1787 sequences, respectively) to characterize the relative abundance, diversity and composition of acidobacterial communities across a range of soil types. To gain insight into the ecological characteristics of acidobacterial taxa, we investigated the large- scale biogeographic patterns exhibited by acidobacterial communities, and related soil and site characteristics to acidobacterial community assemblage patterns. The 87 soils analyzed by pyrosequencing contained more than 8600 unique acidobacterial phylotypes (at the 97% sequence similarity level). One phylotype belonging to Acidobacteria subgroup 1, but not closely related to any cultured representatives, was particularly abundant, accounting for 7.4% of bacterial sequences and 17.6% of acidobacterial sequences, on average, across the soils.
    [Show full text]
  • Burkholderia Cepacia
    P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, Main Road Bryanston, Johannesburg, South Africa www.thistle.co.za Tel: +27 (011) 463-3260 Fax: +27 (011) 463-3036 OR + 27 (0) 86-538-4484 e-mail : [email protected] Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT00025. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. MICROBIOLOGY LEGEND CYCLE 28 – ORGANISM 6 Burkholderia cepacia Burkholderia cepacia (B. cepacia) is a gram-negative rod that is 1.6-3.2 µm in length and was formerly classified as Pseudomonas. It was discovered in 1949 by Walter Burkholder at Cornell University in rotting onions. B. cepacia is a strict aerobe and a chemo-organotroph with an optimum temperature of 30 to 35⁰C. It is found in soil, water and on plants and can survive longer in wet environments then in dry ones. It is unique in the way that is can be versatile in its uses - plant pathogen, human pathogen, bioremediation agent, and a bio- control agent.
    [Show full text]
  • Wild Caves and Karst Management Plan, Great Basin National Park
    National Park Service U.S. Department of the Interior Great Basin National Park Wild Caves and Karst Management Plan June 2019 ON THE COVER Rapelling in Systems Key Cave, Great Basin National Park NPS Photo by Gretchen Baker THIS PAGE View of Wheeler Peak from Wild Goose Cave, Great Basin National Park NPS Photo by Gretchen Baker Wild Caves and Karst Management Plan Great Basin National Park Baker, NV June 2019 Please cite this publication as: NPS Staff. 2019. Wild Caves and Karst Management Plan, Great Basin National Park. Baker, NV. Signature Page This Wild Caves and Karst Management Plan for Great Basin National Park is Approved by: James Woolsey, Superintendent Date i Executive Summary The Wild Caves and Karst Management Plan (WCKMP) guides management for the thirty-nine known wild caves and 41,000 acres of karst landscape that are contained within Great Basin National Park (GRBA). Caves and karst are significant natural resources and many contain significant cultural resources. The primary goal of the WCKMP is to manage the caves in a manner that will preserve and protect cave resources and processes while allowing for respectful scientific use and recreation in selected caves. More specifically, the intent of this plan is to manage wild caves in GRBA to maintain their geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and NPS Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 gives a definition of what is considered a cave in the park, as well as covering basic cave climate, biology, geology, cultural resources, paleontological resources, and other aspects of cave management currently in place.
    [Show full text]