The Stem Cell Ocular Regenerative Medicine— STORM—Center Is
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Masqueraders of Age-Related Macular Degeneration
COVER STORY Masqueraders of Age-related Macular Degeneration A number of inherited retinal diseases phenocopy AMD. BY RONY GELMAN, MD, MS; AND STEPHEN H. TSANG, MD, PHD ge-related macular degeneration (AMD) is a leading cause of central visual loss among the elderly population in the developed world. The Currently, there are no published A non-neovascular form is characterized by mac- guidelines to prognosticate ular drusen and other abnormalities of the retinal pigment epithelium (RPE) such as geographic atrophy (GA) and Stargardt macular degeneration. hyperpigmented areas in the macula. The neovascular form is heralded by choroidal neovascularization (CNV), with subsequent development of disciform scarring. ABCA4 defect heterozygote carrier may be as high as This article reviews the pathologic and diagnostic char- one in 20.11,12 An estimated 600 disease-causing muta- acteristics of inherited diseases that may masquerade as tions in the ABCA4 gene exist, of which the three most AMD. The review is organized by the following patterns common mutations account for less than 10% of the of inheritance: autosomal recessive (Stargardt disease and disease phenotypes.13 cone dystrophy); autosomal dominant (cone dystrophy, The underlying pathology of disease in STGD involves adult vitelliform dystrophy, pattern dystrophy, North accumulation of lipofuscin in the RPE through a process Carolina macular dystrophy, Doyne honeycomb dystro- of disc shedding and phagocytosis.14,15 Lipofuscin is toxic phy, and Sorsby macular dystrophy); X-linked (X-linked to the RPE; furthermore, A2E, a component of lipofuscin, retinoschisis); and mitochondrial (maternally inherited causes inhibition of 11-cis retinal regeneration16 and diabetes and deafness). complement activation. -
Genetic Defects of CHM and Visual Acuity Outcome in 24 Choroideremia
www.nature.com/scientificreports OPEN Genetic defects of CHM and visual acuity outcome in 24 choroideremia patients from 16 Japanese families Takaaki Hayashi1,2*, Shuhei Kameya3, Kei Mizobuchi2, Daiki Kubota3, Sachiko Kikuchi3, Kazutoshi Yoshitake4, Atsushi Mizota5, Akira Murakami6, Takeshi Iwata4 & Tadashi Nakano2 Choroideremia (CHM) is an incurable progressive chorioretinal dystrophy. Little is known about the natural disease course of visual acuity in the Japanese population. We aimed to investigate the genetic spectrum of the CHM gene and visual acuity outcomes in 24 CHM patients from 16 Japanese families. We measured decimal best-corrected visual acuity (BCVA) at presentation and follow-up, converted to logMAR units for statistical analysis. Sanger and/or whole-exome sequencing were performed to identify pathogenic CHM variants/deletions. The median age at presentation was 37.0 years (range, 5–76 years). The mean follow-up interval was 8.2 years. BCVA of the better-seeing eye at presentation was signifcantly worsened with increasing age (r = 0.515, p < 0.01), with a high rate of BCVA decline in patients > 40 years old. A Kaplan–Meier survival curve suggested that a BCVA of Snellen equivalent 20/40 at follow-up remains until the ffties. Fourteen pathogenic variants, 6 of which were novel [c.49 + 5G > A, c.116 + 5G > A, p.(Gly176Glu, Glu177Ter), p.Tyr531Ter, an exon 2 deletion, and a 5.0-Mb deletion], were identifed in 15 families. No variant was found in one family only. Our BCVA outcome data are useful for predicting visual prognosis and determining the timing of intervention in Japanese patients with CHM variants. -
Neuroanatomy Crash Course
Neuroanatomy Crash Course Jens Vikse ∙ Bendik Myhre ∙ Danielle Mellis Nilsson ∙ Karoline Hanevik Illustrated by: Peder Olai Skjeflo Holman Second edition October 2015 The autonomic nervous system ● Division of the autonomic nervous system …………....……………………………..………….…………... 2 ● Effects of parasympathetic and sympathetic stimulation…………………………...……...……………….. 2 ● Parasympathetic ganglia ……………………………………………………………...…………....………….. 4 Cranial nerves ● Cranial nerve reflexes ………………………………………………………………….…………..…………... 7 ● Olfactory nerve (CN I) ………………………………………………………………….…………..…………... 7 ● Optic nerve (CN II) ……………………………………………………………………..…………...………….. 7 ● Pupillary light reflex …………………………………………………………………….…………...………….. 7 ● Visual field defects ……………………………………………...................................…………..………….. 8 ● Eye dynamics …………………………………………………………………………...…………...………….. 8 ● Oculomotor nerve (CN III) ……………………………………………………………...…………..………….. 9 ● Trochlear nerve (CN IV) ………………………………………………………………..…………..………….. 9 ● Trigeminal nerve (CN V) ……………………………………………………................…………..………….. 9 ● Abducens nerve (CN VI) ………………………………………………………………..…………..………….. 9 ● Facial nerve (CN VII) …………………………………………………………………...…………..………….. 10 ● Vestibulocochlear nerve (CN VIII) …………………………………………………….…………...…………. 10 ● Glossopharyngeal nerve (CN IX) …………………………………………….……….…………...………….. 10 ● Vagus nerve (CN X) …………………………………………………………..………..…………...………….. 10 ● Accessory nerve (CN XI) ……………………………………………………...………..…………..………….. 11 ● Hypoglossal nerve (CN XII) …………………………………………………..………..…………...…………. -
Retinitis Pigmentosa Precision Panel Overview Indications Clinical
Retinitis Pigmentosa Precision Panel Overview Retinitis Pigmentosa (RP) comprises a complex group of inherited dystrophies characterized by degeneration and dysfunction of the retina, affecting photoreceptor and pigment epithelial function. RP can be an isolated finding or be part of a syndrome that can be inherited in a dominant, recessive or X-linked pattern. This disease presents as progressive loss of night and peripheral vision, leading to a constricted visual field and markedly diminished vision. The clinical presentation of these findings is highly variable, some patients being affected during childhood while others are asymptomatic well into adulthood. There is an increase in mortality rate due to psychiatric comorbidities. The Igenomix Retinitis Pigmentosa Precision Panel can be used to make an accurate and directed diagnosis as well as a differential diagnosis of blindness ultimately leading to a better management and prognosis of the disease. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes involved. Indications The Igenomix Retinitis Pigmentosa Precision Panel is indicated for those patients with a clinical suspicion or diagnosis with or without the following manifestations: - Family history of RP - Night blindness - Progressive constriction of the visual field, usually peripheral - Cataracts - Sensation of sparking lights (photopsias) - Headache Clinical Utility The clinical utility of this panel is: - The genetic and molecular confirmation for an accurate clinical diagnosis of a symptomatic patient. - Early initiation of multidisciplinary treatment in the form of medical care with vitamin A and other antioxidants and surgical care for potential cataract extraction or retinal prosthesis. -
Structural Brain Abnormalities in Patients with Primary Open-Angle Glaucoma: a Study with 3T MR Imaging
Glaucoma Structural Brain Abnormalities in Patients with Primary Open-Angle Glaucoma: A Study with 3T MR Imaging Wei W. Chen,1–3 Ningli Wang,1,3 Suping Cai,3,4 Zhijia Fang,5 Man Yu,2 Qizhu Wu,5 Li Tang,2 Bo Guo,2 Yuliang Feng,2 Jost B. Jonas,6 Xiaoming Chen,2 Xuyang Liu,3,4 and Qiyong Gong5 PURPOSE. We examined changes of the central nervous system CONCLUSIONS. In patients with POAG, three-dimensional MRI in patients with advanced primary open-angle glaucoma revealed widespread abnormalities in the central nervous (POAG). system beyond the visual cortex. (Invest Ophthalmol Vis Sci. 2013;54:545–554) DOI:10.1167/iovs.12-9893 METHODS. The clinical observational study included 15 patients with bilateral advanced POAG and 15 healthy normal control subjects, matched for age and sex with the study group. Retinal rimary open angle glaucoma (POAG) has been defined nerve fiber layer (RNFL) thickness was measured by optical formerly by intraocular morphologic changes, such as coherence tomography (OCT). Using a 3-dimensional magne- P progressive retinal ganglion cell loss and defects in the retinal tization-prepared rapid gradient-echo sequence (3D–MP-RAGE) nerve fiber layer (RNFL), and by corresponding psychophysical of magnetic resonance imaging (MRI) and optimized voxel- abnormalities, such as visual field loss.1 Recent studies by based morphometry (VBM), we measured the cross-sectional various researchers, however, have suggested that the entire area of the optic nerve and optic chiasm, and the gray matter visual pathway may be involved in glaucoma.2–23 Findings from volume of the brain. -
Retinitis Pigmentosa: a Brief Review of the Genetic and Clinical Aspects
Retinitis Pigmentosa: A Brief Review of the Genetic and Clinical Aspects of the Disease Itia Dowdell Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL, USA School of Health Professions Honors Program, University of Alabama at Birmingham, Birmingham, AL, USA Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, USA Abstract Retinitis Pigmentosa (RP) is a heterogeneous set of inherited retinal diseases that affects 1 in 3,000–7,000 people worldwide. Typical onset is from 10–30 years old and most forms are progressive, often leading to blindness. Defects in more than 200 genes have been identified that cause RP. The disease is characterized as a progressive rod-cone dystrophy that presents with night blindness, loss of peripheral vision, waxy pallor of the optic disc, pigmentary changes, and a reduced visual field. There are different modes of transmission of RP: autosomal dominant (ADRP), autosomal recessive (arRP), X-linked (XLRP) and mitochondrial. The genetics behind the different forms of RP and the degree of severity vary, although some overlap, thus contributing to the difficulty of differential diagnosis. RP can manifest either as a non-syndromic disease, or as part of a syndrome, such as in Usher’s syndrome (hearing and vision loss) and BardetBiedl syndrome (a ciliopathy). The purpose of this review is to summarize the major genetic and molecular findings, as well as the diseases, associated with RP. Due to space limitations, this review is not fully comprehensive. Keywords: Retinitis pigmentosa, non-syndromic retinitis pigmentosa, rod-cone dystrophy, rhodopsin Introduction Retinitis pigmentosa (RP) is a heterogeneous set of inherited retinal diseases. -
Asymmetries of Dark and Bright Negative Afterimages Are Paralleled by Subcortical on and OFF Poststimulus Responses
1984 • The Journal of Neuroscience, February 22, 2017 • 37(8):1984–1996 Systems/Circuits Asymmetries of Dark and Bright Negative Afterimages Are Paralleled by Subcortical ON and OFF Poststimulus Responses X Hui Li,1,2 X Xu Liu,1,2 X Ian M. Andolina,1 Xiaohong Li,1 Yiliang Lu,1 Lothar Spillmann,3 and Wei Wang1 1Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China, 2University of Chinese Academy of Sciences, Shanghai 200031, China, and 3Department of Neurology, University of Freiburg, 79085 Freiburg, Germany Humans are more sensitive to luminance decrements than increments, as evidenced by lower thresholds and shorter latencies for dark stimuli. This asymmetry is consistent with results of neurophysiological recordings in dorsal lateral geniculate nucleus (dLGN) and primary visual cortex (V1) of cat and monkey. Specifically, V1 population responses demonstrate that darks elicit higher levels of activation than brights, and the latency of OFF responses in dLGN and V1 is shorter than that of ON responses. The removal of a dark or bright disc often generates the perception of a negative afterimage, and here we ask whether there also exist asymmetries for negative afterimages elicited by dark and bright discs. If so, do the poststimulus responses of subcortical ON and OFF cells parallel such afterimage asymmetries? To test these hypotheses, we performed psychophysical experiments in humans and single-cell/S-potential recordings in cat dLGN. Psychophysically, we found that bright afterimages elicited by luminance decrements are stronger and last longer than dark afterimages elicited by luminance increments of equal sizes. -
Retinitis Pigmentosa and Allied Disorders Yog Raj Sharma, P
JK SCIENCE REVIEW ARTICLE Retinitis Pigmentosa and Allied Disorders Yog Raj Sharma, P. Raja Rami Reddy, Deependra V. Singh Retinitis pigmentosa (RP) is a generic term for a group Visual field loss is insidious, progressive, peripheral of disorders characterized by hereditary diffuse usually and symmetric between two eyes (except x-linked RP bilaterally symmetrical progressive dysfunction, cell loss which can have bizarre and asymmetric patterns). In the and eventual atrophy of retina. Initially photoreceptors majority of patients the earliest defects are relative are involved and subsequently inner retina is damaged. scotomas in the periphery between 30 and 50 degrees Although both rods and cones are involved, damage to from fixation, which enlarge, deepen and coalesce to the rods is predominant. RP may be seen in isolation form a ring of visual field loss. As ring scotomas enlarge (Typical RP) or in association with systemic diseases. toward the far periphery, islands of relatively normal The reported prevalence of typical RP is approximately vision remain usually temporal but occasionally 1: 50000 worldwide. Most commonly 46% of the cases inferiorly. In typical RP the progression of visual loss is are sporadic with only one affected member in a given slow and relentless. Berson et al found that overall about family. X- linked recessive inheritance is least common, 4.6% of remaining visual field was lost per year (3). amounting to 8%. Autosomal dominant inheritance is Central visual loss found in 19% and recessive in 19%. The age of onset This can occur early in typical RP while significant and the natural history of the disease depend on the peripheral field remains cystoid macular edema, macular inheritance. -
Stargardt Disease
Stargardt disease Author: Professor August. F. Deutman1 Creation Date: January 2003 Scientific Editor: Professor Jean-Jacques De Laey 1Institute of Ophthalmology, University Hospital Nijmegen, Postbox 9101, 6500 HB Nijmegen, Netherlands. Abstract Keywords Disease name and synonyms Excluded diseases Definition Frequency Clinical description Management including treatment Etiology Diagnosis References Abstract Stargardt's disease is a form of juvenile hereditary macular degeneration characterized by discrete yellowish round or pisciform flecks around the macula at the level of the retinal pigment epithelium (rpe). Stargardt's disease is the most common hereditary macular dystrophy. Prevalence is estimated between 1 in 8,000 and 1 in 10,000. Disease onset occurs typically in the first or second decade of life and manifests as decreased visual acuity. In the early stages, the macula usually shows discrete rpe changes, followed later by an horizontal ovoid zone of beaten bronze atrophy. In final stages, the macula can be associated with central areolar choroidal dystrophy. Fluorescein angiography reveals the characteristic dark choroid (''silence choroidien''), which probably results from the accumulation of lipofuscin in the rpe. This disease has usually an autosomal recessive inheritance pattern but some dominant pedigrees have been reported. The autosomal type has been associated with mutations in the ABCR gene, which encodes a transmembrane transporter protein expressed by the rod outer segments. There is currently no treatment available for Stargardt's disease. Keywords Stargardt, Macula, Fundus flavimaculatus Disease name and synonyms Definition • Stargardt’s disease Stargardt’s disease (Stargardt, 1909, 1913, • Fundus flavimaculatus 1916, 1917, 1925; Weleber, 1994; Armstrong et al., 1998) is a form of juvenile hereditary macular Excluded diseases degeneration characterized by discrete yellowish • Cone dystrophy round or pisciform flecks around the macula at the level of the retinal pigment epithelium (rpe). -
Nicole Marie Psaltis, O.D. WJB Dorn VAMC, Columbia SC Residents Day Proposal August 30, 2010
Nicole Marie Psaltis, O.D. WJB Dorn VAMC, Columbia SC Residents Day Proposal August 30, 2010 • Abstract ‐ Retinitis pigmentosa (RP) is a group of inheritable eye conditions, constituting retinal and RPE dystrophies, which progress to vision loss. Patients with identical genetic mutations can manifest different phenotypic presentations. This case describes an atypical presentation of RP. • Case History ‐ A 57‐year‐old Caucasian male veteran presented to the Wm. Jennings Bryan Dorn VA Eye Cinic in Columbia, South Carolina on June 23, 2009 ‐ Chief Complaint Decreasing peripheral field of vision The patient had a secondary complaint of painless blurred vision distance and near of gradual onset ‐ Ocular History Hyperopic astigmatism OU Unremarkable ocular health history per patient’s account Last eye exam was 2.5 years ago ‐ Medical History Alcohol abuse Esophageal reflux Hypercholesterolemia Hypothyroidism Depression PTSD Substance Abuse ‐ Medications Citalopram Hydrobromide Hydrochlorothiazide Nicotine Patch Omeprazole Simvastatin Trazodone ‐ Allergies Naproxen ‐ Family Ocular History Unremarkable ‐ Pertinent Findings Entering VA: 20/25+2 OD, 20/25 OS cc Pupils: PERRL (‐) APD EOM: FROM OU CVF: Constricted OU Subjective Refraction: +2.00‐2.00x109 OD +2.25‐1.25x065 OS Anterior Segment Evaluation: WNL OU Tap: 13 mmHg OD, 14 mmHg OS @ 1109 AM DFE: Atrophic presentation with distinct cessation perifoveally OU. Coalesced hyperplastic lesions, rarely in bone spicule appearance, scattered throughout posterior pole OU. Scattered areas of atrophy of scalloped appearance in far periphery to ora serrata. Vessels are mildly narrow and attenuated OU. Maculae were flat and intact OU. The optic nerve cup‐to‐disc ratios are 0.10, round OU. The presentation is symmetrical. -
Colour Vision Deficiency
Eye (2010) 24, 747–755 & 2010 Macmillan Publishers Limited All rights reserved 0950-222X/10 $32.00 www.nature.com/eye Colour vision MP Simunovic REVIEW deficiency Abstract effective "treatment" of colour vision deficiency: whilst it has been suggested that tinted lenses Colour vision deficiency is one of the could offer a means of enabling those with commonest disorders of vision and can be colour vision deficiency to make spectral divided into congenital and acquired forms. discriminations that would normally elude Congenital colour vision deficiency affects as them, clinical trials of such lenses have been many as 8% of males and 0.5% of femalesFthe largely disappointing. Recent developments in difference in prevalence reflects the fact that molecular genetics have enabled us to not only the commonest forms of congenital colour understand more completely the genetic basis of vision deficiency are inherited in an X-linked colour vision deficiency, they have opened the recessive manner. Until relatively recently, our possibility of gene therapy. The application of understanding of the pathophysiological basis gene therapy to animal models of colour vision of colour vision deficiency largely rested on deficiency has shown dramatic results; behavioural data; however, modern molecular furthermore, it has provided interesting insights genetic techniques have helped to elucidate its into the plasticity of the visual system with mechanisms. respect to extracting information about the The current management of congenital spectral composition of the visual scene. colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may Materials and methods be of benefit to those with colour vision deficiency when performing certain tasks, the This article was prepared by performing a evidence suggests that they do not enable primary search of Pubmed for articles on wearers to obtain normal colour ‘colo(u)r vision deficiency’ and ‘colo(u)r discrimination. -
Embryology, Anatomy, and Physiology of the Afferent Visual Pathway
CHAPTER 1 Embryology, Anatomy, and Physiology of the Afferent Visual Pathway Joseph F. Rizzo III RETINA Physiology Embryology of the Eye and Retina Blood Supply Basic Anatomy and Physiology POSTGENICULATE VISUAL SENSORY PATHWAYS Overview of Retinal Outflow: Parallel Pathways Embryology OPTIC NERVE Anatomy of the Optic Radiations Embryology Blood Supply General Anatomy CORTICAL VISUAL AREAS Optic Nerve Blood Supply Cortical Area V1 Optic Nerve Sheaths Cortical Area V2 Optic Nerve Axons Cortical Areas V3 and V3A OPTIC CHIASM Dorsal and Ventral Visual Streams Embryology Cortical Area V5 Gross Anatomy of the Chiasm and Perichiasmal Region Cortical Area V4 Organization of Nerve Fibers within the Optic Chiasm Area TE Blood Supply Cortical Area V6 OPTIC TRACT OTHER CEREBRAL AREASCONTRIBUTING TO VISUAL LATERAL GENICULATE NUCLEUSPERCEPTION Anatomic and Functional Organization The brain devotes more cells and connections to vision lular, magnocellular, and koniocellular pathways—each of than any other sense or motor function. This chapter presents which contributes to visual processing at the primary visual an overview of the development, anatomy, and physiology cortex. Beyond the primary visual cortex, two streams of of this extremely complex but fascinating system. Of neces- information flow develop: the dorsal stream, primarily for sity, the subject matter is greatly abridged, although special detection of where objects are and for motion perception, attention is given to principles that relate to clinical neuro- and the ventral stream, primarily for detection of what ophthalmology. objects are (including their color, depth, and form). At Light initiates a cascade of cellular responses in the retina every level of the visual system, however, information that begins as a slow, graded response of the photoreceptors among these ‘‘parallel’’ pathways is shared by intercellular, and transforms into a volley of coordinated action potentials thalamic-cortical, and intercortical connections.