Ultra-Low Temperature Water-Gas Shift Reaction with Supported Ionic Liquid Phase (SILP) Catalysts

Total Page:16

File Type:pdf, Size:1020Kb

Ultra-Low Temperature Water-Gas Shift Reaction with Supported Ionic Liquid Phase (SILP) Catalysts Ultra-Low Temperature Water-Gas Shift Reaction with Supported Ionic Liquid Phase (SILP) Catalysts Wassergas-Shift-Katalyse mit geträgerten ionischen Flüssigkeiten unter extrem milden Reaktionsbedingungen Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Grades Doktor-Ingenieur vorgelegt von Diplom-Ingenieur Sebastian Werner aus Boppard Erlangen 2011 Lehrstuhl für Chemische Reaktionstechnik Vorstand Prof. Dr. P. Wasserscheid Egerlandstr. 3 91058 Erlangen www.crt.cbi.uni-erlangen.de Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander- Universität Erlangen-Nürnberg. Tag der Einreichung: 10.01.2011 Tag der Promotion: 14.03.2011 Dekan Prof. Dr.-Ing. Reinhard German Berichterstatter: Prof. Dr. Peter Wasserscheid Prof. Dr. Kai-Olaf Hinrichsen Prof. Dr. Jörg Libuda Vorsitzender: Prof. Dr. Martin Hartmann Die vorliegende Arbeit entstand in der Zeit von November 2007 bis November 2010 am Lehrstuhl für Chemische Reaktionstechnik der Friedrich-Alexander- Universität Erlangen-Nürnberg im Rahmen des BMBF-WING Projekts "Sup- ported Ionic Liquid Phase (SILP)-Katalysatoren" (Förderkennzeichen 03X2012H) in Kooperation mit der Süd-Chemie AG (2007-2009). Im Rahmen des Ex- cellenzclusters "Engineering of Advanced Materials (EAM)" der Deutschen Forschungsgemeinschaft (DFG) wurde diese Arbeit weitergeführt (2009-2010). Auf Grund des internationalen Interesses wurde die englische Sprache gewählt. Für meine Eltern. DasProblem erkennenistwichtigeralsdieLösungfinden,denn die genaue Darstellung des Problems führt fast automatisch zur richtigen Lösung. Albert Einstein Danksagung Ich möchte mich an dieser Stelle bei allen am Lehrstuhl für Chemische Reakti- onstechnik bedanken - für kreative Atmosphäre und ein schönes Arbeitsklima! Auch wenn in den meisten Dissertationen eher förmliche Varianten der Dank- sagung zu finden sind, will ich diese Stelle (die ja auch fast die einzige ist, die ich in meiner Muttersprache verfasse), dazu nutzen auch ganz persönlich und offen zu danken. Mein größter Dank geht an Prof. Dr. Peter Wasserscheid für die herausfordern- de Aufgabenstellung und die Betreuung dieser Arbeit. Die unschätzbaren Mög- lichkeiten im Bezug auf Konferenzbesuche und Kontakte - aber auch für das feinfühlige persönliche Coaching/Mentoring, hat mich menschlich wie fachlich sehr viel weiter gebracht! Wenn es wirklich gebrannt hat, warimmer Zeit fürein Gespräch oder eine prompte Antwort - auch das Korrekturlesen dieser Arbeit mal kurz über die Weihnachtsfeiertage ist bestimmt nicht Standard. Danke! Dr. Marco Haumann gilt meine volle Anerkennung - ein Dr.-Ing. ehrenhalber für die vielen Tipps, Ideen und Hilfestellungen auch aus der ingenieurwissen- schaftlichen Ecke, wäre Dir meiner Meinung nach verdient - Danke Marco, das Arbeiten mit Dir als Gruppenleiter war eine wahre Freude. Die Kaffeepausen, lockeren Diskussionsrunden, Konferenzaktionen und auch Koch- und Grill- abende mit Prof. Brinkhoff’s und Dr. Fiege bleiben unvergesslich. Vermissen werde ich selbige sowieso! Viel Erfolg Dir in Korea! Auch Dr. Normen Szesni, Dr. Andreas Geisbauer und Dr. Richard W. Fischer vom Industriepartner Süd-Chemie AG will ich danken. Die wirklich gute Zu- sammenarbeit und die fachlichen Diskussionen haben mir viele neue Einblicke gebracht! Es ist nicht alltäglich, dass man immer ein offenes Ohr bekommt und erst recht nicht, dass sich ein Industriepartner auf so kurzen Zeitskalen auch zu Publikationen durchringt. Ohne diese Kooperation und die externe Reflexi- on der erzielten Ergebnisse wäre vieles nicht so schnell möglich gewesen. Ob bei einem Bier auf der Berghütte im Kaisertal, auf einer Konferenz oder beim Telefonat zwischen Tür und Angel. Sowohl persönlich als auch fachlich war die Zusammenarbeit wirklich super! Dr. Agnes Bittermann und Prof. Dr. Peter Härter vom Lehrstuhl für Anorga- nische Chemie der TU München sei für die Synthese, Charakterisierung und Bereitstellung der Liganden und Komplexe im Rahmen des BMBF Projekts gedankt. Analog auch ein Dank an Dr. Marc Uerdingen von der Merck KGaA für anregende Diskussionen und Bereitstellung der ILs. Auch Frau Dr. Stefa- nie Neuendorf von der Linde AG sei für die Wirschaftlichkeitsabschätzungen und die Messung der Gaslöslichkeiten im Rahmen des Projekts gedankt. Im Rahmen des Excellenzclusters war vor allem die Zusammenarbeit mit der Physikalischen Chemie, im speziellen Prof. Dr. Libuda und Marek Sobota sehr hilfreich. Dr. Wolfgang Hieringer und Hannes Schulz von der Theoretischen Chemie möchte ich für aufschlussreiche Diskussionen rund um die Mechanis- men der WGS danken. Auch Prof. Dr. Zenneck sei für die Tipps in den Untiefen der Ruthenium-Komplexe gedankt. Danke auch den vielen Doktoranden und Diplomarbeitern am CRT - denn das angenehme Arbeitsklima und die produktive Atmosphäre hat mir stets Motivation gegeben! Auch das faire Teamplay in wissenschaftlichen Dingen hat Spass gemacht - auch wenn es zwischen Forschung, Lehre und Raumnot eben ab und an Reibungspunkte gab. Besonders herausheben will ich mei- ne Bürokollegen (Nike, Subi, Karola, Steffi und Rene) sowie PS Schulz, Michi Jakuttis und Grobi, die immer für Diskussionen zu haben waren. Auch das (meist weniger) erfolgreiche Kickern mit diversen Kickerpartnern hat in Moti- vationsminima dann für neue Energie gesorgt :) Als Studien- bzw. Diplomarbeiter waren Matthias „Spüli“ Schirmer, Martin Weschta, Martin „Maddin“ Schneider, Markus Wangler und Willi Peters direkt oder indirekt mit dem Projekt befasst. Zusammen mit den HiWis Simon Wal- ter, Moritz Husmann und vor allem Michael Beck wurden mir erst viele Dinge möglich - und ich habe in der Zusammenarbeit mit Euch auch viel dazu ge- lernt! Danke auch für Eure Geduld und Nachsichtigkeit! Auch die Verdienste meines Vorgängers Tobias will ich für die Vorarbeiten in Sachen WGS nicht verschweigen. Für die kleinen und größeren praktischen Hilfen möchte ich mich bei den Werk- stattmitarbeitern Michael Schmacks, Achim Mannke, Julian Karl und Gerhard Dommer bedanken - ohne Euch wäre das weit schwieriger geworden! Wenn mal wieder was nicht ging und was defekt war, dann habt ihr mit Rat und Tat geholfen, das zeitnah irgendwie wieder in den Griff zu bekommen... Dipl.-Ing. Florian Enzenberger, Bob Mamrak Ph.D. und Dr. Marco Haumann möchte ich besonders für das kritische Korrekturlesen danken. Dem Prüfungskomitee mit Prof. Dr. Hartmann, Prof. Dr. Libuda und Prof. Dr. Hinrichsen danke ich, dass sie sich die Zeit genommen haben, dieses Doku- ment zu lesen und auch das Rigorosum abzunehmen. Der allergrösste und auch tiefste Dank gilt meinen Eltern - Für die moralische Unterstützung, aber vor allem für das Ermöglichen des Studiums! Sicherlich sind kistenweise Lego und die Kosmos Chemiebaukästen auch daran „Schuld“, dass aus mir ein Chemieingenieur wurde. Auch meinem engeren Freundeskreis, also Basti, Alex, Julian, Martin, Uli und den anderen Verrückten, die bei Klettern, Berg- und Skitouren sowie auf Reisen für den nötigen Realitätsabgleich gesorgt haben, bin ich sehr dankbar... Danke auch allen anderen, die direkt oder indirekt zum Gelingen beigetragen haben und deren Namen hier nicht explizit genannt ist! Mir haben die gut 4 Jahre am CRT echt einen Riesenspass gemacht! Publications i Parts of this work have been previously published in the following publications or presented at the conferences listed. Patents Werner, S., Szesni, N., Kaiser, M., Haumann, M., Fischer, R.W., Wasserscheid, P.: Katalysatorzusammensetzung für die Umsetzung von Kohlenmonoxid in Gasströmen. DE102009038690.4 (Priority 24.08.2009), WTO status pending. Peer reviewed articles • Werner, S., Szesni, N., Kaiser, M., Fischer, R.W., Haumann M., Wasser- scheid, P.: Water-Gas-Shift Reaction at ambient pressure and very low tem- peratures using homogenous Ruthenium based Supported Ionic Liquid Phase (SILP) Catalysts. Chem.Cat.Chem. (2010), 2(11), 1399-1402. • Werner, S., Szesni, N., Bittermann, A., Schneider, M.J., Härter, P., Hau- mann, M. Wasserscheid, P.: Very Low Temperature Water-Gas-Shift Reaction - Screening of homogenous Supported Ionic Liquid Phase (SILP) catalysts. Ap- plied Catalysis A (2010), 277, 70-75. • Werner, S., Schneider, M., Szesni, M., Haumann, M., Wasserscheid, P.: Homogeneous Ruthenium-based Water-Gas Shift Catalysts via Supported Ionic Liquid Phase (SILP) Technology at Low Temperature and Ambient Pressure. Physical Chemistry Chemical Physics (2009), 11, 10817-10819. • Werner, S., Weiss, T., Haumann, M., Szesni, N., Wasserscheid, P.: Sup- ported Ionic Liquid Phase (SILP) catalyzed Water-Gas-Shift Reaction. Chemie Ingenieur Technik (2008), 9, 1259 - 1260. Peer reviewed publications on related topics • Kim, T., Celik, F.E., Hanna, D.G., Shylesh, S., Werner, S., Bell, A.T.: Gas-Phase Hydroformylation of Propene over Silica-Supported-PPh3-Modified Rhodium Catalysts. Topics in Catalysis. (In press). ii Publications • Werner, S., Haumann, M., Wasserscheid, P.: Ionic Liquids in Chemical Engineering. Annual Reviews of Chemical and Biomolecular Engineering (2010), 1, 203-230. • Haumann, M., Jakuttis, M., Werner, S., Wasserscheid, P.: Supported Ionic Liquid Phase (SILP) Catalysed Hydroformylation of 1-Butene in a Gradient-free Loop-Reactor. Journal of Catalysis (2009), 263, 321 - 327. Conference contributions • Werner, S., Szesni, M., Haumann, R.W. Fischer, M., Wasserscheid, P.: Supported Ionic Liquid Phase (SILP) Catalysts for the Water-Gas-Shift Reaction at Ambient Pressure and Very Low Temperature. Presentation at AIChE Annual Meeting, Salt Lake City (2010). • Werner, S., Szesni,
Recommended publications
  • Steam Reforming of Lower Alkanes and the Water-Gas Shift Reaction
    INVESTIGATION OF ACTIVE SITES AND REACTION NETWORKS IN CATALYTIC HYDROGEN PRODUCTION: STEAM REFORMING OF LOWER ALKANES AND THE WATER-GAS SHIFT REACTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sittichai Natesakhawat, M.S. * * * * * The Ohio State University 2005 Dissertation Committee: Approved by Professor Umit S. Ozkan, Adviser Professor Jeffrey J. Chalmers Professor David L. Tomasko _________________________ Professor Heather Davis Adviser Graduate Program in Chemical Engineering ABSTRACT Steam reforming (SR) of hydrocarbons and water-gas shift (WGS) are of importance in hydrogen generation technologies due to recent attention focusing on fuel cells. Current research efforts have focused on catalyst development to improve activity, selectivity, and stability under a realistic range of operating conditions. Although coke formation is a major concern for Ni-based catalysts when used for hydrocarbon steam reforming, their low cost and long-proven performance warrants further investigation. Moreover, hydrogen and fuel cell technologies will greatly benefit from innovative high- temperature shift (HTS) catalyst formulations that can overcome some serious drawbacks (i.e., low activity at low temperatures, sintering of magnetite (Fe3O4), a pyrophoric nature, and the harmful effects of Cr6+ on human health). In this Ph.D. study, lanthanide-promoted Ni/Al2O3 catalysts and Fe-based catalysts promoted with first row transition metals were synthesized by a modified sol-gel technique and a coprecipitation method, respectively. The effect of synthesis variables on the catalyst properties (i.e., BET surface area, reducibility, crystallite size, crystal structure, oxidation states, adsorption/desorption behavior, and surface intermediates during the reaction) and, in turn, on the catalytic performance in SR of lower alkanes and ii the WGS reaction has been investigated.
    [Show full text]
  • Redox Catalysis for Environmental Applications
    REDOX CATALYSIS FOR ENVIRONMENTAL APPLICATIONS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Preshit Vilas Gawade, M.S. Chemical Engineering Graduate Program ***** The Ohio State University 2012 Dissertation Committee: Umit S. Ozkan, Advisor Jeffrey J. Chalmers Kurt W. Koelling James Coe Copyright by Preshit Vilas Gawade 2012 ABSTRACT The presented work comprehends a broad spectrum of redox catalysis for various environmental applications, such as i) hydrogen production via water-gas shift reaction, ii) hydrogen purification for fuel cell applications and iii) catalytic after-treatment of lean-burn engines. This dissertation involves, but is not limited to catalyst development, reaction studies and catalyst characterization for the above-mentioned environmental applications, which can be summarized as follows. (i) Water-gas shift (WGS) remains an essential step in integrated gasification combined cycle (IGCC) for hydrogen production, as it forms a link between the gasification process and fuel cell operations. The current catalysts for WGS application are based on Fe-Cr and Cu/ZnO/Al2O3, as a high temperature (HT-WGS) and low temperature (LT-WGS) catalysts, respectively. This two-stage WGS process is a consequence of several operational drawbacks of the current catalyst formulations including Cr+6 being carcinogenic. Hence the presented WGS project has a two-fold purpose. First, Cr-free Fe-based catalyst development and second, Cu supported catalyst development for WGS that can be operated over a wide temperature range. In this dissertation, Cr- free Fe-Al-Cu catalyst prepared through “one-step” sol- gel method using propylene oxide as a gelation agent has been reported.
    [Show full text]
  • A. Catalysis of CO-PROX by Water-Soluble Rhodium Fluorinated Porphyrins B
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Theses - Chemistry Department Chemistry, Department of 7-2013 A. Catalysis of CO-PROX by Water-Soluble Rhodium Fluorinated Porphyrins B. Studies toward Fluorination of Electron Rich Aromatics by Nucleophilic Fluoride Shri Harsha Uppaluri University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemistrydiss Part of the Inorganic Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, Organic Chemistry Commons, and the Radiochemistry Commons Uppaluri, Shri Harsha, "A. Catalysis of CO-PROX by Water-Soluble Rhodium Fluorinated Porphyrins B. Studies toward Fluorination of Electron Rich Aromatics by Nucleophilic Fluoride" (2013). Student Research Projects, Dissertations, and Theses - Chemistry Department. 42. https://digitalcommons.unl.edu/chemistrydiss/42 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A. CATALYSIS OF CO-PROX BY WATER-SOLUBLE RHODIUM FLUORINATED PORPHYRINS B. STUDIES TOWARD FLUORINATION OF ELECTRON RICH AROMATICS BY NUCLEOPHILIC FLUORIDE by Shri Harsha Uppaluri A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Chemistry Under the Supervision of Professor Stephen G. DiMagno Lincoln, Nebraska July, 2013 A. CATALYSIS OF CO-PROX BY WATER-SOLUBLE RHODIUM FLUORINATED PORPHYRINS B. STUDIES TOWARD FLUORINATION OF ELECTRON RICH AROMATICS BY NUCLEOPHILIC FLUORIDE Shri Harsha Uppaluri, Ph.D.
    [Show full text]
  • Catalysts for Hydrogen Generation Via Oxy–Steam Reforming of Methanol Process
    materials Review Catalysts for Hydrogen Generation via Oxy–Steam Reforming of Methanol Process Magdalena Mosi ´nska,Małgorzata I. Szynkowska-Jó´zwik and Paweł Mierczy ´nski* Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland; [email protected] (M.M.); [email protected] (M.I.S.-J.) * Correspondence: [email protected]; Tel.: +48-426313125 Received: 23 October 2020; Accepted: 1 December 2020; Published: 8 December 2020 Abstract: The production of pure hydrogen is one of the most important problems of the modern chemical industry. While high volume production of hydrogen is well under control, finding a cheap method of hydrogen production for small, mobile, or his receivers, such as fuel cells or hybrid cars, is still a problem. Potentially, a promising method for the generation of hydrogen can be oxy–steam-reforming of methanol process. It is a process that takes place at relatively low temperature and atmospheric pressure, which makes it possible to generate hydrogen directly where it is needed. It is a process that takes place at relatively low temperature and atmospheric pressure, which makes it possible to generate hydrogen directly where it is needed. This paper summarizes the current state of knowledge on the catalysts used for the production of hydrogen in the process of the oxy–steam-reforming of methanol (OSRM). The development of innovative energy generation technologies has intensified research related to the design of new catalysts that can be used in methanol-reforming reactions. This review shows the different pathways of the methanol-reforming reaction.
    [Show full text]
  • Au/Ceo2 Catalysts: Structure and CO Oxidation Activity
    catalysts Review Au/CeO2 Catalysts: Structure and CO Oxidation Activity Miguel Angel Centeno 1,*, Tomás Ramírez Reina 2, Svetlana Ivanova 1, Oscar Hernando Laguna 1 and José Antonio Odriozola 1 1 Departamento de Química Inorgánica, Universidad de Sevilla e Instituto de Ciencias de Materiales de Sevilla Centro mixto US-CSIC Avda. Américo Vespucio 49, Seville 41092, Spain; [email protected] (S.I.); [email protected] (O.H.L.); [email protected] (J.A.O.) 2 Department of Chemical and Process Engineering, University of Surrey Guildford, Guildford GU2 7XH, UK; [email protected] * Correspondence: [email protected]; Tel.: +34-95-4489543 Academic Editors: Leonarda F. Liotta and Salvatore Scirè Received: 6 September 2016; Accepted: 11 October 2016; Published: 18 October 2016 Abstract: In this comprehensive review, the main aspects of using Au/CeO2 catalysts in oxidation reactions are considered. The influence of the preparation methods and synthetic parameters, as well as the characteristics of the ceria support (presence of doping cations, oxygen vacancies concentration, surface area, redox properties, etc.) in the dispersion and chemical state of gold are revised. The proposed review provides a detailed analysis of the literature data concerning the state of the art and the applications of gold–ceria systems in oxidation reactions. Keywords: gold–ceria catalysts; oxidation reactions; preferential oxidation reactions (PROX); water gas shift (WGS) 1. Introduction Carbon monoxide (CO) is one of the extended pollutants of our environment, thus requiring prevention and control to insure the adequate protection of public health [1]. Carbon monoxide is hardly detectable, colorless, tasteless, odorless, non-irritating very toxic gas for humans and animals because of its high affinity to hemoglobin and the cell’s oxygen transport blocking.
    [Show full text]
  • Kinetics and Catalysis of the Water-Gas-Shift Reaction: a Microkinetic and Graph Theoretic Approach
    Kinetics and Catalysis of the Water-Gas-Shift Reaction: A Microkinetic and Graph Theoretic Approach A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE Department of Chemical Engineering In partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Chemical Engineering by ______________________________________ Caitlin A. Callaghan March 31, 2006 ________________________________________ ________________________________________ Professor Ravindra Datta, Advisor Professor Ilie Fishtik, Co-Advisor WPI Chemical Engineering Department WPI Chemical Engineering Department ________________________________________ ________________________________________ Professor Nikolaos K. Kazantzis Professor Joseph D. Fehribach WPI Chemical Engineering Department WPI Mathematical Sciences & Chemical Engineering Department ________________________________________ ________________________________________ Professor Jennifer L. Wilcox Dr. A. Alan Burke WPI Chemical Engineering Department Naval Undersea Warfare Center, Newport, RI ________________________________________ Professor David DiBiasio, Dept. Head WPI Chemical Engineering Department ABSTRACT The search for environmentally benign energy sources is becoming increasingly urgent. One such technology is fuel cells, e.g., the polymer electrolyte membrane (PEM) fuel cell which uses hydrogen as a fuel and emits only H2O. However, reforming hydrocarbon fuels to produce the needed hydrogen yields reformate streams containing CO2 as well as CO, which is toxic to the PEM fuel cell at concentrations above 100ppm. As the amount of CO permitted to reach the fuel cell increases, the performance of the PEM fuel cell decreases until it ultimately stops functioning. The water-gas-shift (WGS) reaction, CO + H2O ' H2 + CO2, provides a method for extracting the energy from the toxic CO by converting it into usable H2 along with CO2 which can be tolerated by the fuel cell. Although a well established industrial process, alternate catalysts are sought for fuel cell application.
    [Show full text]
  • Investigations of the Kinetics and Mechanism of the Selective
    Investigations of the kinetics and mechanism of the selective methanation of CO in CO 2 and H 2-rich reformates over Ru supported catalysts Universität Ulm Institut für Oberflächenchemie und Katalyse Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm Stephan Eckle (München) 2012 Amtierender Dekan: Prof. Axel Groß 1. Gutachter: Prof. R.J. Behm 2. Gutachter: Prof. N. Hüsing 3. Gutachter: Prof. M. Muhler Tag der Promotion: 07.02. 2012 - II - Für Iris und Jonah - III - Preface The Ru/zeolite catalysts investigated in this work were supplied by Sued Chemie AG. Due to a non disclosure agreement it is not possible to provide any details on the synthesis or type of the zeolite. General information such as metal loading, BET area, metal particle sizes, however, will be given in section 3.1. - IV - Table of contents Table of contents 1 Introduction ................................................................................................... 7 2 Experimental............................................................................................... 15 2.1 Kinetic and conversion experiments ........................................................... 15 2.1.1 The ‚plug flow’ model .................................................................................. 16 2.1.2 Theory of the ‚plug-flow’ reactor.................................................................. 17 2.1.3 Gas mixing unit ..........................................................................................
    [Show full text]
  • Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice
    catalysts Review Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice Yanbo Pan , Xiaochen Shen , Libo Yao, Abdulaziz Bentalib and Zhenmeng Peng * Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA; [email protected] (Y.P.); [email protected] (X.S.); [email protected] (L.Y.); [email protected] (A.B.) * Correspondence: [email protected]; Tel.: +1-330-972-5810 Received: 29 August 2018; Accepted: 16 October 2018; Published: 20 October 2018 Abstract: Active sites play an essential role in heterogeneous catalysis and largely determine the reaction properties. Yet identification and study of the active sites remain challenging owing to their dynamic behaviors during catalysis process and issues with current characterization techniques. This article provides a short review of research progresses in active sites of metal and metal oxide catalysts, which covers the past achievements, current research status, and perspectives in this research field. In particular, the concepts and theories of active sites are introduced. Major experimental and computational approaches that are used in active site study are summarized, with their applications and limitations being discussed. An outlook of future research direction in both experimental and computational catalysis research is provided. Keywords: heterogeneous catalysis; active sites; characterization techniques; computational approach; DFT 1. Introduction A catalyst by definition is a material that mediates the reaction pathway of a chemical process without itself being expended [1]. Distinguished by whether catalyst material and reacting species are in a same or different phase, a catalytic process can be classified as homogeneous catalysis or heterogeneous catalysis.
    [Show full text]
  • Theoretical Investigation of the Water-Gas Shift Reaction at The
    University of South Carolina Scholar Commons Theses and Dissertations 1-1-2013 Theoretical Investigation of the Water-Gas Shift Reaction At the Three Phase Boundary of Ceria Supported Platinum Metal Clusters Sara Aranifard University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemical Engineering Commons Recommended Citation Aranifard, S.(2013). Theoretical Investigation of the Water-Gas Shift Reaction At the Three Phase Boundary of Ceria Supported Platinum Metal Clusters. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/564 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Theoretical Investigation of the Water-Gas Shift Reaction at the Three Phase Boundary of Ceria Supported Platinum Metal Clusters by Sara Aranifard Bachelor of Science Sharif University of Technology, 2005 Master of Science Sharif University of Technology, 2008 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemical Engineering College of Engineering and Computing University of South Carolina 2013 Accepted by: Andreas Heyden, Major Professor Donna A. Chen, Committee Member Jochen Lauterbach, Committee Member Christopher T. Williams, Committee Member Lacy Ford, Vice Provost and Dean of Graduate Studies © Copyright by Sara Aranifard, 2013 All Rights Reserved. ii Acknowledgements I would like to thank my advisor, Professor Andreas Heyden for guiding, teaching, and inspiring the research in this dissertation. I appreciate all his contributions of time and ideas to make my Ph.D.
    [Show full text]
  • New Catalyst for the H2 Production by Water-Gas Shift Reaction Processes
    ALMA MATER STUDIORUM – Università di Bologna FACOLTÀ DI CHIMICA INDUSTRIALE Dipartimento di Chimica Industriale e dei Materiali NEW CATALYST FOR THE H2 PRODUCTION BY WATER-GAS SHIFT REACTION PROCESSES Tesi di dottorato di ricerca in CHIMICA INDUSTRIALE (Settore CHIM/04) Presentata da Dr. Giuseppe BRENNA Relatore Coordinatore Prof. Angelo VACCARI Prof. Fabrizio CAVANI Correlatori Prof. Giuseppe FORNASARI Dr. Francesco BASILE ciclo XXIII Anno 2010 A me stesso Key words Copper and Iron as active phase Hydrogen Hydrotalcite Perovskite Water-gas shift reaction Abbreviations WGS – Water-Gas shift HDS – Hydrodesulphuration FT – Fischer-tropsch ATR – Auto-thermal reforming POX – Partial oxidation CPO – Catalytic partial oxidation SR – Steam reforming CO-PROX – CO preferential oxidation LTS – Low temperature shift MTS – Medium temperature shift HTS – High temperature shift GHSV - gas hourly space velocity DG – Dry gas PVK – Perovskite HT – Hydrotalcite SUMMARY 1 INTRODUCTION _______________________________________________________________ 1 1.1 HYDROGEN ___________________________________________________________________ 2 1.1.1 Industrial Applications ____________________________________________________ 4 1.1.1.1 Hydrotreating _________________________________________________________________ 5 1.1.1.2 Hydrocracking _________________________________________________________________ 6 1.1.1.3 Ammonia synthesis _____________________________________________________________ 6 1.1.1.4 Direct Reduction of Iron OreS (DRI) ________________________________________________
    [Show full text]
  • Ru–Pd Bimetallic Catalysts Supported on Ceo2-Mnox Oxides As Efficient
    catalysts Article Ru–Pd Bimetallic Catalysts Supported on CeO2-MnOX Oxides as Efficient Systems for H2 Purification through CO Preferential Oxidation Roberto Fiorenza 1 ID , Luca Spitaleri 1, Antonino Gulino 1,2 ID and Salvatore Scirè 1,* ID 1 Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy; rfi[email protected] (R.F.); [email protected] (L.S.); [email protected] (A.G.) 2 I.N.S.T.M. UdR of Catania, Viale A. Doria 6, 95125 Catania, Italy * Correspondence: [email protected]; Tel.: +39-095-738-5112 Received: 9 April 2018; Accepted: 9 May 2018; Published: 12 May 2018 Abstract: The catalytic performances of Ru/ceria-based catalysts in the CO preferential oxidation (CO-PROX) reaction are discussed here. Specifically, the effect of the addition of different oxides to Ru/CeO2 has been assessed. The Ru/CeO2-MnOx system showed the best performance in the 80–120 ◦C temperature range, advantageous for polymer-electrolyte membrane fuel cell (PEMFC) applications. Furthermore, the influence of the addition of different metals to this mixed oxide system has been evaluated. The bimetallic Ru–Pd/CeO2-MnOx catalyst exhibited the highest yield ◦ to CO2 (75%) at 120 C whereas the monometallic Ru/CeO2-MnOx sample was that one with the ◦ highest CO2 yield (60%) at 100 C. The characterization data (H2-temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2 adsorption-desorption, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), X-ray photoelectron spectroscopy (XPS)) pointed out that the co-presence of manganese oxide and ruthenium enhances the mobility/reactivity of surface ceria oxygens accounting for the good CO-PROX performance of this system.
    [Show full text]