New Catalyst for the H2 Production by Water-Gas Shift Reaction Processes

Total Page:16

File Type:pdf, Size:1020Kb

New Catalyst for the H2 Production by Water-Gas Shift Reaction Processes ALMA MATER STUDIORUM – Università di Bologna FACOLTÀ DI CHIMICA INDUSTRIALE Dipartimento di Chimica Industriale e dei Materiali NEW CATALYST FOR THE H2 PRODUCTION BY WATER-GAS SHIFT REACTION PROCESSES Tesi di dottorato di ricerca in CHIMICA INDUSTRIALE (Settore CHIM/04) Presentata da Dr. Giuseppe BRENNA Relatore Coordinatore Prof. Angelo VACCARI Prof. Fabrizio CAVANI Correlatori Prof. Giuseppe FORNASARI Dr. Francesco BASILE ciclo XXIII Anno 2010 A me stesso Key words Copper and Iron as active phase Hydrogen Hydrotalcite Perovskite Water-gas shift reaction Abbreviations WGS – Water-Gas shift HDS – Hydrodesulphuration FT – Fischer-tropsch ATR – Auto-thermal reforming POX – Partial oxidation CPO – Catalytic partial oxidation SR – Steam reforming CO-PROX – CO preferential oxidation LTS – Low temperature shift MTS – Medium temperature shift HTS – High temperature shift GHSV - gas hourly space velocity DG – Dry gas PVK – Perovskite HT – Hydrotalcite SUMMARY 1 INTRODUCTION _______________________________________________________________ 1 1.1 HYDROGEN ___________________________________________________________________ 2 1.1.1 Industrial Applications ____________________________________________________ 4 1.1.1.1 Hydrotreating _________________________________________________________________ 5 1.1.1.2 Hydrocracking _________________________________________________________________ 6 1.1.1.3 Ammonia synthesis _____________________________________________________________ 6 1.1.1.4 Direct Reduction of Iron OreS (DRI) ________________________________________________ 8 1.1.1.5 Methanol Synthesis _____________________________________________________________ 8 1.1.1.6 Dimhetyl Ether Synthesis _______________________________________________________ 10 1.1.1.7 Fischer‐Tropsch synthesis (FTS) __________________________________________________ 12 1.1.2 Energy Carrier __________________________________________________________ 14 1.1.2.1 Fuel Cells ____________________________________________________________________ 14 1.1.3 Production Processes ____________________________________________________ 21 1.1.3.1 Catalytic Reforming ____________________________________________________________ 23 1.1.3.2 Dry Reforming ________________________________________________________________ 24 1.1.3.3 Steam Reforming (SR) and Water‐Gas Shift (WGS) ___________________________________ 24 1.1.3.4 Auto‐Thermal Reforming (ATR) ___________________________________________________ 27 1.1.3.5 Partial Oxidation (POX and CPO) __________________________________________________ 28 1.1.3.6 Biomass and Electrolysis ________________________________________________________ 31 2 THE WATER‐GAS SHIFT (WGS) REACTION ______________________________________________ 35 2.1 REACTION _____________________________________________________________________ 35 2.1.1 Thermodynamic __________________________________________________________ 35 2.1.2 Industrial Reactors ________________________________________________________ 37 2.1.3 Diffusional Effects and Pellet Size _____________________________________________ 39 2.1.4 Reaction Kinetics __________________________________________________________ 40 2.1.4.1 Mechanisms ____________________________________________________________________ 40 2.1.4.2 Rate Expressions ________________________________________________________________ 49 2.2 COMMERCIAL CATALYSTS __________________________________________________________ 53 2.2.1 High‐Temperature Shift (HTS) [Tin > 300°C] _____________________________________ 53 2.2.1.1 Preparation ____________________________________________________________________ 54 2.2.1.2 Formulation Improvement ________________________________________________________ 55 2.2.1.3 Reduction ______________________________________________________________________ 56 2.2.1.4 Deactivation and Poisoning ________________________________________________________ 58 2.2.2 Low‐Temperature Shift (LTS) [Tin ≈ 200 °C] ______________________________________ 59 2.2.2.1 Preparation ____________________________________________________________________ 63 2.2.2.2 Formulation Improvement ________________________________________________________ 65 2.2.2.3 Recent Development _____________________________________________________________ 66 2.2.2.4 Reduction ______________________________________________________________________ 67 2.2.2.5 Deactivation and Poisoning ________________________________________________________ 69 2.3 NEW GENERATION (MTS) CATALYSTS __________________________________________________ 70 2.3.1 Precious Metal‐Based Catalysts ______________________________________________ 70 2.3.2 Gold Catalysts ____________________________________________________________ 72 3 EXPERIMENTAL SESSION _______________________________________________________ 81 3.1. MATERIALS ________________________________________________________________ 81 3.1.1 Perovskite (PVK) ________________________________________________________ 81 3.1.2 Hydrotalcite (HT) ________________________________________________________ 82 3.2. CATALYST PREPARATION _____________________________________________________ 84 I 3.2. CATALYST PREPARATION _____________________________________________________ 84 3.2.1 Perovskite‐Type (PVK) Samples ____________________________________________ 84 3.2.2 Hydrotalcite‐Type (HT) Precursors __________________________________________ 85 3.3. CHARACTHERIZATION METHODS __________________________________________________ 86 3.3.1 X‐Ray Diffraction Analysis (XRD) ____________________________________________ 86 3.3.2 Temperature Programmed Analyses (TPR/O) _________________________________ 88 3.3.3 Surface Area and Porosimetry Analyses ______________________________________ 89 3.4. PLANT SPECIFICATIONS ________________________________________________________ 90 3.4.1 Catalyst Shape _________________________________________________________ 90 3.4.2 Reduction step _________________________________________________________ 91 3.4.2.1 Typical Reduction of HTS Catalysts ________________________________________________ 91 3.4.2.2 Typical Reduction of M/LTS Catalysts ______________________________________________ 92 3.4.3 Lab‐scale Pilot Plant _____________________________________________________ 93 3.4.4 Inert Material __________________________________________________________ 95 3.4.5 Activity Tests ___________________________________________________________ 96 3.5. QUALI‐QUANTITATIVE ANALYSIS __________________________________________________ 97 3.5.1 Gas Chromatography ____________________________________________________ 97 3.5.2 Data elaboration ________________________________________________________ 98 4 RESULTS AND DISCUSSION ____________________________________________________ 101 4.1. AIM OF THE WORK __________________________________________________________ 101 4.2. COMMERCIAL CATALYSTS _____________________________________________________ 101 4.2.1 Cu/Zn‐based Catalyst ___________________________________________________ 101 4.2.1.1 Activity _____________________________________________________________________ 104 4.2.1.2 Characterization after reaction __________________________________________________ 108 4.2.2 Pt/Re‐based Catalyst ___________________________________________________ 113 4.2.2.1 Activity _____________________________________________________________________ 115 4.2.2.2 Characterization after reaction __________________________________________________ 117 4.2.3 Comparison among the commercial catalysts ________________________________ 119 4.3. PEROVSKITE‐TYPE CATALYSTS ___________________________________________________ 121 4.3.1 PVK‐type samples ______________________________________________________ 121 4.3.1.1 Activity _____________________________________________________________________ 123 4.3.1.2 Characterization after reaction __________________________________________________ 125 4.3.2 Ce‐containing samples __________________________________________________ 131 4.3.2.1 Activity: effect of copper promoting ______________________________________________ 134 4.3.2.2 Characterization after reaction __________________________________________________ 135 4.3.3 Comparison among the perovskite samples _________________________________ 138 4.4. EX‐HT SAMPLES ___________________________________________________________ 140 4.4.1 Ex‐HT CATALYSTS ______________________________________________________ 140 4.4.1.1 effect of Cu‐Content on the activity ______________________________________________ 142 4.4.1.2 Characterization after reaction __________________________________________________ 146 4.4.2 Comparison among the ex‐HT catalysts _____________________________________ 150 4.5. STUDY OF THE DEACTIVATION PHENOMENA _________________________________________ 152 4.5.1 Model of the WGS Reactor _______________________________________________ 153 4.5.1.1 Procedure __________________________________________________________________ 154 4.5.1.2 Results _____________________________________________________________________ 155 5 CONCLUSIONS ______________________________________________________________ 159 ACKNOWLEDGMENTS ________________________________________________________________ 161 II 1 INTRODUCTION The total primary energy supply (TPES) is dominated by fossil fuels as energy sources and it amounted to about 87 % in 2008, with an oil contribution of 33 % (Fig. 1.1) (1). Moreover, oil is the most versatile of the fossil fuels, with high energy density and ease of transportation. However, in view of the limited reserves, a number of alternative fuels
Recommended publications
  • Zn-Al Mixed Oxides Decorated with Potassium As Catalysts for HT-WGS: Preparation and Properties
    catalysts Article Zn-Al Mixed Oxides Decorated with Potassium as Catalysts for HT-WGS: Preparation and Properties Katarzyna Antoniak-Jurak * , Paweł Kowalik, Kamila Michalska, Wiesław Próchniak and Robert Bicki Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysi ˛acleciaPa´nstwa Polskiego 13A, 24-110 Puławy, Poland; [email protected] (P.K.); [email protected] (K.M.); [email protected] (W.P.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +48-8-1473-1754 Received: 8 September 2020; Accepted: 18 September 2020; Published: 21 September 2020 Abstract: A set of ex-ZnAl-LDHs catalysts with a molar ratio of Zn/Al in the range of 0.3–1.0 was prepared using co-precipitation and thermal treatment. The samples were characterized using various methods, including X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy FT-IR, N2 adsorption, Temperature-programmed desorption of CO2 (TPD-CO2) as well as Scanning electron microscopy (SEM-EDS). Catalyst activity and long-term stability measurements were carried out in a high-temperature water–gas shift (HT-WGS) reaction. Mixed oxide catalysts with various Zn/Al molar ratios decorated with potassium showed high activity in the HT-WGS reaction within the temperature range of 330–400 ◦C. The highest activity was found for the Zn/Al molar ratio of 0.5 corresponding to spinel stoichiometry. However, the catalyst with a stoichiometric spinel molar ratio of Zn/Al (ZnAl_0.5_K) revealed a higher tendency for surface migration and/or vaporization of potassium during overheating at 450 ◦C.
    [Show full text]
  • Steam Reforming of Lower Alkanes and the Water-Gas Shift Reaction
    INVESTIGATION OF ACTIVE SITES AND REACTION NETWORKS IN CATALYTIC HYDROGEN PRODUCTION: STEAM REFORMING OF LOWER ALKANES AND THE WATER-GAS SHIFT REACTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sittichai Natesakhawat, M.S. * * * * * The Ohio State University 2005 Dissertation Committee: Approved by Professor Umit S. Ozkan, Adviser Professor Jeffrey J. Chalmers Professor David L. Tomasko _________________________ Professor Heather Davis Adviser Graduate Program in Chemical Engineering ABSTRACT Steam reforming (SR) of hydrocarbons and water-gas shift (WGS) are of importance in hydrogen generation technologies due to recent attention focusing on fuel cells. Current research efforts have focused on catalyst development to improve activity, selectivity, and stability under a realistic range of operating conditions. Although coke formation is a major concern for Ni-based catalysts when used for hydrocarbon steam reforming, their low cost and long-proven performance warrants further investigation. Moreover, hydrogen and fuel cell technologies will greatly benefit from innovative high- temperature shift (HTS) catalyst formulations that can overcome some serious drawbacks (i.e., low activity at low temperatures, sintering of magnetite (Fe3O4), a pyrophoric nature, and the harmful effects of Cr6+ on human health). In this Ph.D. study, lanthanide-promoted Ni/Al2O3 catalysts and Fe-based catalysts promoted with first row transition metals were synthesized by a modified sol-gel technique and a coprecipitation method, respectively. The effect of synthesis variables on the catalyst properties (i.e., BET surface area, reducibility, crystallite size, crystal structure, oxidation states, adsorption/desorption behavior, and surface intermediates during the reaction) and, in turn, on the catalytic performance in SR of lower alkanes and ii the WGS reaction has been investigated.
    [Show full text]
  • Opportunities for Catalysis in the 21St Century
    Opportunities for Catalysis in The 21st Century A Report from the Basic Energy Sciences Advisory Committee BASIC ENERGY SCIENCES ADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT Opportunities for Catalysis in the 21st Century May 14-16, 2002 Workshop Chair Professor J. M. White University of Texas Writing Group Chair Professor John Bercaw California Institute of Technology This page is intentionally left blank. Contents Executive Summary........................................................................................... v A Grand Challenge....................................................................................................... v The Present Opportunity .............................................................................................. v The Importance of Catalysis Science to DOE.............................................................. vi A Recommendation for Increased Federal Investment in Catalysis Research............. vi I. Introduction................................................................................................ 1 A. Background, Structure, and Organization of the Workshop .................................. 1 B. Recent Advances in Experimental and Theoretical Methods ................................ 1 C. The Grand Challenge ............................................................................................. 2 D. Enabling Approaches for Progress in Catalysis ..................................................... 3 E. Consensus Observations and Recommendations..................................................
    [Show full text]
  • Impact of Rising Natural Gas Prices on U.S. Ammonia Supply
    A Report from the Economic Research Service United States Department www.ers.usda.gov of Agriculture WRS-0702 August 2007 Impact of Rising Natural Gas Prices on U.S. Ammonia Supply Wen-yuan Huang Abstract The volatile and upward trend in U.S. natural gas prices from 2000-06 has led to a 17- percent decline in the Nation’s annual aggregate supply of ammonia. During the period, U.S. ammonia production declined 44 percent, while U.S. ammonia imports increased Contents 115 percent. Also, the share of U.S.-produced ammonia in the U.S. aggregate supply of ammonia dropped from 80 to 55 percent, while the share from imports increased from Introduction ........................1 15 percent to 42 percent. Meanwhile, ammonia prices paid by farmers increased from $227 per ton in 2000 to $521 per ton in 2006, an increase of 130 percent. Natural gas is Background ........................3 the main input used to produce ammonia. Additional increases in U.S. natural gas prices could lead to a further decline in domestic ammonia production and an even greater rise Impact of Natural Gas Prices on Ammonia in ammonia imports. Prices ................................5 Keywords: Natural gas and ammonia prices, ammonia supply, nitrogen fertilizers Effects of Natural Gas Prices on Ammonia Producers .........................6 Acknowledgments Effects of Rising Natural Gas Prices on Farmers .....................10 The author thanks the Fertilizer Institute, the International Center for Soil Fertility and Future Sources of Agricultural Development, and the National Gas Company of Trinidad and Tobago Ammonia Supply in Limited for providing data used in this study. The author also thanks the following indi- the United States ............12 viduals for their helpful suggestions: Stan Daberkow and Greg Pompelli of USDA’s Economic Research Service and James Duffield of USDA’s Office of Energy Policy Summary and Implications ......................15 and New Uses, and Harry Vroomen, the Fertilizer Institute.
    [Show full text]
  • 2020 Stainless Steels in Ammonia Production
    STAINLESS STEELS IN AMMONIA PRODUCTION A DESIGNERS’ HANDBOOK SERIES NO 9013 Produced by Distributed by AMERICAN IRON NICKEL AND STEEL INSTITUTE INSTITUTE STAINLESS STEELS IN AMMONIA PRODUCTION A DESIGNERS’ HANDBOOK SERIES NO 9013 Originally, this handbook was published in 1978 by the Committee of Stainless Steel Producers, American Iron and Steel Institute. The Nickel Institute republished the handbook in 2020. Despite the age of this publication the information herein is considered to be generally valid. Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice. The Nickel Institute, the American Iron and Steel Institute, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein. Nickel Institute [email protected] www.nickelinstitute.org CONTENTS INTRODUCTION ............................ 4 PROCESS DESCRIPTION ............ 5 CORROSIVES IN AMMONIA PROCESSES ............... 5 CONSIDERATIONS FOR SELECTING STAINLESS STEELS .......................................... 6 Desulfurization of Natural Gas ....................... 6 Catalytic Steam Reforming of Natural Gas ....................... 6 Carbon Monoxide Shift .............. 8 Removal of Carbon Dioxide . 10 Methanation ............................. 11 Synthesis of Ammonia ............. 11
    [Show full text]
  • 'New Insights on the Selective Oxidation of Methanol to Formaldehyde on Femo Based Catalysts'
    ‘New Insights on the Selective Oxidation of Methanol to Formaldehyde on FeMo Based Catalysts' Catherine Brookes School of Chemistry Cardiff University Thesis for the degree of Doctor of Philosophy i This thesis was submitted for examination in August 2015. ii Abstract The selective oxidation of methanol has been studied in detail, with particular focus on gaining insights into the surface active sights responsible for directing the selectivity to formaldehyde. Various Fe and Mo containing oxides have been investigated for their reactivity with methanol, to gain an understanding of the different roles of these components in the industrial catalyst employed, which is a mixed phase comprised of MoO 3 and Fe 2(MoO 4)3. Catalysts have primarily been tested through using TPD (temperature programmed desorption) and TPPFR (temperature programmed pulsed flow reaction). The reactivity of Fe 2O3 is dominated by combustion products, with CO 2 and H 2 produced via a formate intermediate adsorbing at the catalyst surface. For MoO 3 however, the surface is populated by methoxy intermediates, so that the selectivity is almost 100 % directed to formaldehyde. When a mixture of isolated Fe and Mo sites co-exist, the surface methoxy becomes stabilised, resulting in a dehydrogenation reaction to CO and H 2. CO and CO 2 can also be observed on Mo rich surfaces, however here a consequence of the further oxidation of formaldehyde, through a linear pathway. TPD and DRIFTS identify these intermediates and products forming. Since the structure of the industrial catalyst is relatively complex, in that it contains both MoO 3 and Fe 2(MoO 4)3, it is difficult to identify the active site for the reaction with methanol.
    [Show full text]
  • Direct Synthesis of Dimethyl Ether from Syngas on Bifunctional Hybrid
    catalysts Article Direct Synthesis of Dimethyl Ether from Syngas on Bifunctional Hybrid Catalysts Based on Supported H3PW12O40 and Cu-ZnO(Al): Effect of Heteropolyacid Loading on Hybrid Structure and Catalytic Activity Elena Millán , Noelia Mota, Rut Guil-López, Bárbara Pawelec , José L. García Fierro and Rufino M. Navarro * Instituto de Catálisis y Petroleoquímica (CSIC), C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; [email protected] (E.M.); [email protected] (N.M.); [email protected] (R.G.-L.); [email protected] (B.P.); jlgfi[email protected] (J.L.G.F.) * Correspondence: [email protected] Received: 27 August 2020; Accepted: 15 September 2020; Published: 17 September 2020 Abstract: The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. We studied the effect of the HPW loading on TiO2 (from 1.4 to 2.7 monolayers) on the dispersion and acid characteristics of the HPW clusters. When the concentration of the heteropoliacid is slightly higher than the monolayer (1.4 monolayers) the acidity of the clusters is perturbed by the surface of titania, while for concentration higher than 1.7 monolayers results in the formation of three-dimensional HPW nanocrystals with acidity similar to the bulk heteropolyacid. Physical hybridization of supported heteropolyacids with the Cu-ZnO(Al) catalyst modifies both the acid characteristics of the supported heteropolyacids and the copper surface area of the Cu-ZnO(Al) catalyst.
    [Show full text]
  • Platinum Metals Industrial Catalysts Catalysis of Organic Reactions EDITED by M
    Platinum Metals Industrial Catalysts Catalysis of Organic Reactions EDITED BY M. G. SCAROS AND M. L. PRUNIER, Marcel Dekker, New York, 1995, 599 pages, ISBN 0-8247-9364-1, U.S. $195.00 This book comprises a set of papers presented reactant purity, agitation and poisons are at the 15th Conference on Catalysis of Organic considered. This is followed by a paper detail- Reactions, held in Phoenix, Arizona, in May ing noble metal recovery operations and the var- 1994. It covers a variety of topics, such as het- ious steps involved in the noble metal “loop”. erogeneous catalysis, asymmetric hydrogena- Heterogeneous catalysis in organic synthesis tion, hydrogenation, oxidation, hydroformyla- is discussed by R. L. Augustine and colleagues tion, catalyst design and catalyst characterisation. from Seton Hall University, New Jersey. This One topic which is emphasised is hydrogena- is illustrated by the platinum catalysed oxida- tion (alpha to omega), and this is intended to tion of alcohols, carbon-carbon bond forming allow a better understanding of the entire reactions of supported palladium catalysts for process, from choosing a catalyst to the noble the Heck type arylation of allylic groups, and metal “loop”. There are over 60 papers and 186 by enantioselective heterogeneous catalysis, contributors, with a healthy number of these which includes the hydrogenation of a-ketoesters being from industry. A large proportion of the to chiral a-hydroxyesters using chinchona alka- papers deal with reactions involving platinum loid modified platinum catalysts. group metal catalysts, reflecting their impor- A detailed study of the homogeneously pal- tance to both academia and industry.
    [Show full text]
  • Wind to Hydrogen to Ammonia Pilot Project
    Renewable Energy Storage and Utilization Using Hydrogen and Anhydrous Ammonia MN House Energy and Climate Committee August 27, 2020 Michael Reese, Director - Renewable Energy Dr. Prodromos Daoutidis, Professor UMN West Central Research and Outreach Center UMN Dept. of Chemical Engineering and Morris, MN Material Science Minneapolis, MN Renewable Ammonia for Energy Storage University of Minnesota is a global research leader in this field. NH3 UMM 1.65 MW 131 kW solar PV Wind Turbine and two 10 kW small wind turbines 1.65 MW Vestas V82 Wind Turbine H2 & NH3 Pilot Plant Existing Wind-to-Ammonia Pilot Plant at the UMN WCROC, Morris, MN G. Soloveichik, US Dept. of Energy, 2016 Slide 2 Benefits for using ammonia as regional-scale energy storage •Provides both distribution and transmission-scale energy storage, •Wide range of fuel uses (ICE genset, turbine, fuel cell, and thermal energy) •Seasonal storage capability, •Grid stabilization, •Readily dispatchable generation capacity (Peak load and peak fertilizer months are complementary. High N fertilizer demand is during utility shoulder seasons.), •Enables utilization of excess generation of wind, solar, and nuclear (low and negatively priced power within the Regional Transmission Organization / Independent System Operator), •Provides emergency backup outside of traditional energy sources •Flexibility between renewable and non-renewable generation (allows choice of carbon intensity of fuel between green and brown ammonia) •Significant levels of ammonia storage already in the Midwest (and usually
    [Show full text]
  • Process Intensification with Integrated Water-Gas-Shift Membrane Reactor Reactor Concept (Left)
    INDUSTRIAL TECHNOLOGIES PROGRAM Process Intensification with Integrated Water-Gas-Shift Membrane Reactor Reactor concept (left). Flow diagram (middle): Hydrogen (H2) permeates the membrane where nitrogen (N2) sweeps the gas to Hydrogen-Selective Membranes for High- produce a high-pressure H2/N2 gas stream. Membrane diagram Pressure Hydrogen Separation (right): The H2-selective membrane allows the continuous removal of the H2 produced in the water-gas-shift (WGS) reaction. This allows for the near-complete conversion of carbon monoxide (CO) This project will develop hydrogen-selective membranes for an innovative water-gas-shift reactor that improves gas separation to carbon dioxide (CO2) and for the separation of H2 from CO2. efficiency, enabling reduced energy use and greenhouse gas Image Courtesy of General Electric Company, Western Research Institute, emissions. and Idaho National Laboratory. Benefits for Our Industry and Our Nation Introduction The development of an integrated WGS-MR for hydrogen The goal of process intensification is to reduce the equipment purification and carbon capture will result in fuel flexibility footprint, energy consumption, and environmental impact of as well as environmental, energy, and economic benefits. manufacturing processes. Commercialization of this technology has the potential to achieve the following: One candidate for process intensification is gasification, a common method by which hydrocarbon feedstocks such as coal, • A reduction in energy use during the separation process by biomass, and organic waste are reacted with a controlled amount replacing a conventional WGS reactor and CO2 removal system of oxygen and steam to produce synthesis gas (syngas), which with a WGS-MR and downsized CO2 removal unit is composed primarily of hydrogen (H2) and carbon monoxide (CO).
    [Show full text]
  • Reducing CO2 Slip from the Syngas Unit of an Ammonia Plant
    Reducing CO2 Slip from the Syngas Unit of an Ammonia Plant Eddy Cooper Agrium Carseland Nitrogen Operations, PO Box 5370, Station A, Calgary, Alberta, Canada T2H 2P4 Ralph Weiland Optimized Gas Treating, Inc., 12337 Jones Rd., Suite 432, Houston, TX 77070 The Agrium Carseland Nitrogen plant near Carseland, Alberta uses a promoted MDEA solvent to remove CO2 from ammonia synthesis gas. The amine absorber in this unit was found to be operating unexpectedly close to its treating capacity limit, and treating performance was overly sensitive to production rate. A study was undertaken to determine the cause. Pushing plant throughput had an exponentially deleterious effect on absorber performance. The relationship between CO2 slip and production rate predicted by the ProTreat mass transfer rate-based simulator was vastly different from plant measurements, indicating that performance was not what it should be. ProTreat also predicted a temperature bulge close to the base of the column. However, a thermal scan of the absorber showed the temperature bulge was actually much further up the column on the same side of the tower as the vapour inlet, and that it was relatively flat. The asymmetry of temperature is a good indication of flow maldistribution. The thermal scan indicated poor absorption performance across the bottom 5 metres of packing; whereas, absorption rates (and therefore temperatures) should have been highest there. Channeling in the bottom of the absorber was identified to be the cause of the problem. One possible cause of channeling was the lack of liquid redistribution anywhere in the 13-m deep packed bed (a liquid redistributor at least every 6 metres is recommended at a minimum).
    [Show full text]
  • Isoboost® System Save Energy with Isoboost Isoboost Overview
    IsoBoost® System Save Energy with IsoBoost IsoBoost Overview Energy Recovery’s IsoBoost is a hydraulic system that recovers pressure energy and increases the reliability of pumping systems. In ammonia production, IsoBoost is used in CO2 removal, while in gas processing, the system is used in acid gas removal. It helps plants save energy, reduce maintenance, and run more profitably. The core of IsoBoost is a proprietary liquid-to-liquid turbocharger. With three times the reliability of a traditional pump, the turbocharger recovers energy from the letdown of a high-pressure fluid and transfers it to a low-pressure fluid to reduce the energy required for pumping. By replacing a complex pump and motor system with the simple and efficient IsoBoost, plants can expect millions of dollars in energy savings and a big drop in maintenance over the life of a plant. With IsoBoost, plants save up to 50% of electric power costs. Plants can save up to 50% of total electric power consumption for the acid gas removal circuit. 2 Energy Recovery IsoBoost System ISOBOOST BENEFITS IsoBoost Delivers Multiple Benefits to Plants Estimated Savings with IsoBoost Save Energy Amine System Economics IsoBoost will save millions of dollars in energy over Electric Power 50% 80% the life of a plant. Plants can save up to 50% of Maintenance Savings 50% 20% total electric power consumption for the acid gas in CO2 Removal Unit removal circuit, and the system will perform at up to 80% efficiency. Improve Reliability, Availability, Maintainability IsoBoost is up to three times as reliable as a pump. Compare its mean time to failure (MTTF) of 10 years to the 2.9 years MTTF of a traditional multistage, centrifugal motor driven pump.
    [Show full text]