New Catalyst for the H2 Production by Water-Gas Shift Reaction Processes

New Catalyst for the H2 Production by Water-Gas Shift Reaction Processes

ALMA MATER STUDIORUM – Università di Bologna FACOLTÀ DI CHIMICA INDUSTRIALE Dipartimento di Chimica Industriale e dei Materiali NEW CATALYST FOR THE H2 PRODUCTION BY WATER-GAS SHIFT REACTION PROCESSES Tesi di dottorato di ricerca in CHIMICA INDUSTRIALE (Settore CHIM/04) Presentata da Dr. Giuseppe BRENNA Relatore Coordinatore Prof. Angelo VACCARI Prof. Fabrizio CAVANI Correlatori Prof. Giuseppe FORNASARI Dr. Francesco BASILE ciclo XXIII Anno 2010 A me stesso Key words Copper and Iron as active phase Hydrogen Hydrotalcite Perovskite Water-gas shift reaction Abbreviations WGS – Water-Gas shift HDS – Hydrodesulphuration FT – Fischer-tropsch ATR – Auto-thermal reforming POX – Partial oxidation CPO – Catalytic partial oxidation SR – Steam reforming CO-PROX – CO preferential oxidation LTS – Low temperature shift MTS – Medium temperature shift HTS – High temperature shift GHSV - gas hourly space velocity DG – Dry gas PVK – Perovskite HT – Hydrotalcite SUMMARY 1 INTRODUCTION _______________________________________________________________ 1 1.1 HYDROGEN ___________________________________________________________________ 2 1.1.1 Industrial Applications ____________________________________________________ 4 1.1.1.1 Hydrotreating _________________________________________________________________ 5 1.1.1.2 Hydrocracking _________________________________________________________________ 6 1.1.1.3 Ammonia synthesis _____________________________________________________________ 6 1.1.1.4 Direct Reduction of Iron OreS (DRI) ________________________________________________ 8 1.1.1.5 Methanol Synthesis _____________________________________________________________ 8 1.1.1.6 Dimhetyl Ether Synthesis _______________________________________________________ 10 1.1.1.7 Fischer‐Tropsch synthesis (FTS) __________________________________________________ 12 1.1.2 Energy Carrier __________________________________________________________ 14 1.1.2.1 Fuel Cells ____________________________________________________________________ 14 1.1.3 Production Processes ____________________________________________________ 21 1.1.3.1 Catalytic Reforming ____________________________________________________________ 23 1.1.3.2 Dry Reforming ________________________________________________________________ 24 1.1.3.3 Steam Reforming (SR) and Water‐Gas Shift (WGS) ___________________________________ 24 1.1.3.4 Auto‐Thermal Reforming (ATR) ___________________________________________________ 27 1.1.3.5 Partial Oxidation (POX and CPO) __________________________________________________ 28 1.1.3.6 Biomass and Electrolysis ________________________________________________________ 31 2 THE WATER‐GAS SHIFT (WGS) REACTION ______________________________________________ 35 2.1 REACTION _____________________________________________________________________ 35 2.1.1 Thermodynamic __________________________________________________________ 35 2.1.2 Industrial Reactors ________________________________________________________ 37 2.1.3 Diffusional Effects and Pellet Size _____________________________________________ 39 2.1.4 Reaction Kinetics __________________________________________________________ 40 2.1.4.1 Mechanisms ____________________________________________________________________ 40 2.1.4.2 Rate Expressions ________________________________________________________________ 49 2.2 COMMERCIAL CATALYSTS __________________________________________________________ 53 2.2.1 High‐Temperature Shift (HTS) [Tin > 300°C] _____________________________________ 53 2.2.1.1 Preparation ____________________________________________________________________ 54 2.2.1.2 Formulation Improvement ________________________________________________________ 55 2.2.1.3 Reduction ______________________________________________________________________ 56 2.2.1.4 Deactivation and Poisoning ________________________________________________________ 58 2.2.2 Low‐Temperature Shift (LTS) [Tin ≈ 200 °C] ______________________________________ 59 2.2.2.1 Preparation ____________________________________________________________________ 63 2.2.2.2 Formulation Improvement ________________________________________________________ 65 2.2.2.3 Recent Development _____________________________________________________________ 66 2.2.2.4 Reduction ______________________________________________________________________ 67 2.2.2.5 Deactivation and Poisoning ________________________________________________________ 69 2.3 NEW GENERATION (MTS) CATALYSTS __________________________________________________ 70 2.3.1 Precious Metal‐Based Catalysts ______________________________________________ 70 2.3.2 Gold Catalysts ____________________________________________________________ 72 3 EXPERIMENTAL SESSION _______________________________________________________ 81 3.1. MATERIALS ________________________________________________________________ 81 3.1.1 Perovskite (PVK) ________________________________________________________ 81 3.1.2 Hydrotalcite (HT) ________________________________________________________ 82 3.2. CATALYST PREPARATION _____________________________________________________ 84 I 3.2. CATALYST PREPARATION _____________________________________________________ 84 3.2.1 Perovskite‐Type (PVK) Samples ____________________________________________ 84 3.2.2 Hydrotalcite‐Type (HT) Precursors __________________________________________ 85 3.3. CHARACTHERIZATION METHODS __________________________________________________ 86 3.3.1 X‐Ray Diffraction Analysis (XRD) ____________________________________________ 86 3.3.2 Temperature Programmed Analyses (TPR/O) _________________________________ 88 3.3.3 Surface Area and Porosimetry Analyses ______________________________________ 89 3.4. PLANT SPECIFICATIONS ________________________________________________________ 90 3.4.1 Catalyst Shape _________________________________________________________ 90 3.4.2 Reduction step _________________________________________________________ 91 3.4.2.1 Typical Reduction of HTS Catalysts ________________________________________________ 91 3.4.2.2 Typical Reduction of M/LTS Catalysts ______________________________________________ 92 3.4.3 Lab‐scale Pilot Plant _____________________________________________________ 93 3.4.4 Inert Material __________________________________________________________ 95 3.4.5 Activity Tests ___________________________________________________________ 96 3.5. QUALI‐QUANTITATIVE ANALYSIS __________________________________________________ 97 3.5.1 Gas Chromatography ____________________________________________________ 97 3.5.2 Data elaboration ________________________________________________________ 98 4 RESULTS AND DISCUSSION ____________________________________________________ 101 4.1. AIM OF THE WORK __________________________________________________________ 101 4.2. COMMERCIAL CATALYSTS _____________________________________________________ 101 4.2.1 Cu/Zn‐based Catalyst ___________________________________________________ 101 4.2.1.1 Activity _____________________________________________________________________ 104 4.2.1.2 Characterization after reaction __________________________________________________ 108 4.2.2 Pt/Re‐based Catalyst ___________________________________________________ 113 4.2.2.1 Activity _____________________________________________________________________ 115 4.2.2.2 Characterization after reaction __________________________________________________ 117 4.2.3 Comparison among the commercial catalysts ________________________________ 119 4.3. PEROVSKITE‐TYPE CATALYSTS ___________________________________________________ 121 4.3.1 PVK‐type samples ______________________________________________________ 121 4.3.1.1 Activity _____________________________________________________________________ 123 4.3.1.2 Characterization after reaction __________________________________________________ 125 4.3.2 Ce‐containing samples __________________________________________________ 131 4.3.2.1 Activity: effect of copper promoting ______________________________________________ 134 4.3.2.2 Characterization after reaction __________________________________________________ 135 4.3.3 Comparison among the perovskite samples _________________________________ 138 4.4. EX‐HT SAMPLES ___________________________________________________________ 140 4.4.1 Ex‐HT CATALYSTS ______________________________________________________ 140 4.4.1.1 effect of Cu‐Content on the activity ______________________________________________ 142 4.4.1.2 Characterization after reaction __________________________________________________ 146 4.4.2 Comparison among the ex‐HT catalysts _____________________________________ 150 4.5. STUDY OF THE DEACTIVATION PHENOMENA _________________________________________ 152 4.5.1 Model of the WGS Reactor _______________________________________________ 153 4.5.1.1 Procedure __________________________________________________________________ 154 4.5.1.2 Results _____________________________________________________________________ 155 5 CONCLUSIONS ______________________________________________________________ 159 ACKNOWLEDGMENTS ________________________________________________________________ 161 II 1 INTRODUCTION The total primary energy supply (TPES) is dominated by fossil fuels as energy sources and it amounted to about 87 % in 2008, with an oil contribution of 33 % (Fig. 1.1) (1). Moreover, oil is the most versatile of the fossil fuels, with high energy density and ease of transportation. However, in view of the limited reserves, a number of alternative fuels

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    170 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us