Hall Effect Gyrators and Circulators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram
Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is common for the resistor R and the capacitor C, which is here the source current I (because it passes through both R and C without being divided). Figure (1) Series RC circuit * Now we know that I and resistor voltage VR are in phase or have the same phase angle (there zero crossings are the same on the time axis) and VR is greater than I in magnitude. * Since I equal the capacitor current IC and we know that IC leads the capacitor voltage VC by 90 degrees, we will add VC on the phasor diagram as follows: * Now, the source voltage VS equals the vector summation of VR and VC: Figure (2) Series RC circuit Phasor Diagram Prepared by: Eng. Wiam Anabousi - Important notes on the phasor diagram of series RC circuit shown in figure (2): A- All the vectors are rotating in the same angular speed ω. B- This circuit acts as a capacitive circuit and I leads VS by a phase shift of Ө (which is the current angle if the source voltage is the reference signal). Ө ranges from 0o to 90o (0o < Ө <90o). If Ө=0o then this circuit becomes a resistive circuit and if Ө=90o then the circuit becomes a pure capacitive circuit. C- The phase shift between the source voltage and its current Ө is important and you have two ways to find its value: a- b- = - = - D- Using the phasor diagram, you can find all needed quantities in the circuit like all the voltages magnitude and phase and all the currents magnitude and phase. -
Few Electron Paramagnetic Resonances Detection On
FEW ELECTRON PARAMAGNETIC RESONANCES DETECTION TECHNIQUES ON THE RUBY SURFACE By Xiying Li Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Massood Tabib-Azar Co-Adviser: Dr. J. Adin Mann, Jr. Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY August, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents TABLE OF CONTENTS ................................................................................................................................. II LIST OF FIGURES ...................................................................................................................................... IV ABSTRACT............................................................................................................................................... VII CHAPTER 1 INTRODUCTION .................................................................................................................1 -
Chapter 6 Two-Port Network Model
Chapter 6 Two-Port Network Model 6.1 Introduction In this chapter a two-port network model of an actuator will be briefly described. In Chapter 5, it was shown that an automated test setup using an active system can re- create various load impedances over a limited range of frequencies. This test set-up can therefore be used to automatically reproduce any load impedance condition (related to a possible application) and apply it to a test or sample actuator. It is then possible to collect characteristic data from the test actuator such as force, velocity, current and voltage. Those characteristics can then be used to help to determine whether the tested actuator is appropriate or not for the case simulated. However versatile and easy to use this test set-up may be, because of its limitations, there is some characteristic data it will not be able to provide. For this reason and the fact that it can save a lot of measurements, having a good linear actuator model can be of great use. Developed for transduction theory [29], the linear model presented in this chapter is 77 called a Two-Port Network model. The automated test set-up remains an essential complement for this model, as it will allow the development and verification of accuracy. This chapter will focus on the two-port network model of the 1_3 tube array actuator provided by MSI (Cf: Figure 5.5). 6.2 Theory of the Two–Port Network Model As a transducer converts energy from electrical to mechanical forms, and vice- versa, it can be modelled as a Two-Port Network that relates the electrical properties at one port to the mechanical properties at the other port. -
Analysis of Microwave Networks
! a b L • ! t • h ! 9/ a 9 ! a b • í { # $ C& $'' • L C& $') # * • L 9/ a 9 + ! a b • C& $' D * $' ! # * Open ended microstrip line V + , I + S Transmission line or waveguide V − , I − Port 1 Port Substrate Ground (a) (b) 9/ a 9 - ! a b • L b • Ç • ! +* C& $' C& $' C& $ ' # +* & 9/ a 9 ! a b • C& $' ! +* $' ù* # $ ' ò* # 9/ a 9 1 ! a b • C ) • L # ) # 9/ a 9 2 ! a b • { # b 9/ a 9 3 ! a b a w • L # 4!./57 #) 8 + 8 9/ a 9 9 ! a b • C& $' ! * $' # 9/ a 9 : ! a b • b L+) . 8 5 # • Ç + V = A V + BI V 1 2 2 V 1 1 I 2 = 0 V 2 = 0 V 2 I 1 = CV 2 + DI 2 I 2 9/ a 9 ; ! a b • !./5 $' C& $' { $' { $ ' [ 9/ a 9 ! a b • { • { 9/ a 9 + ! a b • [ 9/ a 9 - ! a b • C ) • #{ • L ) 9/ a 9 ! a b • í !./5 # 9/ a 9 1 ! a b • C& { +* 9/ a 9 2 ! a b • I • L 9/ a 9 3 ! a b # $ • t # ? • 5 @ 9a ? • L • ! # ) 9/ a 9 9 ! a b • { # ) 8 -
Scattering Parameters
Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 1 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 2 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 1 General Network Formulation V + I + 1 1 Z Port Voltages and Currents 0,1 I − − + − + − 1 V I V = V +V I = I + I 1 1 k k k k k k V1 port 1 + + V2 I2 I2 V2 Z + N-port 0,2 – port 2 Network − − V2 I2 + VN – I Characteristic (Port) Impedances port N N + − + + VN I N Vk Vk Z0,k = = − + − Z0,N Ik Ik − − VN I N Note: all current components are defined positive with direction into the positive terminal at each port 3 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Impedance Matrix I1 ⎡V1 ⎤ ⎡ Z11 Z12 Z1N ⎤ ⎡ I1 ⎤ + V1 Port 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V2 Z21 Z22 Z2N I2 ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ I2 + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ V2 Port 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V Z Z Z I N-port ⎣ N ⎦ ⎣ N1 N 2 NN ⎦ ⎣ N ⎦ Network I N [V]= [Z][I] V + Port N N + - V Port i i,oc- Open-Circuit Impedance Parameters Port j Ij N-port Vi,oc Zij = Network I j Port N Ik =0 for k≠ j 4 Prof. -
Brief Study of Two Port Network and Its Parameters
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 Brief study of two port network and its parameters Rishabh Verma, Satya Prakash, Sneha Nivedita Abstract- this paper proposes the study of the various ports (of a two port network. in this case) types of parameters of two port network and different respectively. type of interconnections of two port networks. This The Z-parameter matrix for the two-port network is paper explains the parameters that are Z-, Y-, T-, T’-, probably the most common. In this case the h- and g-parameters and different types of relationship between the port currents, port voltages interconnections of two port networks. We will also discuss about their applications. and the Z-parameter matrix is given by: Index Terms- two port network, parameters, interconnections. where I. INTRODUCTION A two-port network (a kind of four-terminal network or quadripole) is an electrical network (circuit) or device with two pairs of terminals to connect to external circuits. Two For the general case of an N-port network, terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the electric current entering one terminal must equal the current emerging from the The input impedance of a two-port network is given other terminal on the same port. The ports constitute by: interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 where ZL is the impedance of the load connected to is considered the input port and port 2 is considered port two. -
Phasor Analysis of Circuits
Phasor Analysis of Circuits Concepts Frequency-domain analysis of a circuit is useful in understanding how a single-frequency wave undergoes an amplitude change and phase shift upon passage through the circuit. The concept of impedance or reactance is central to frequency-domain analysis. For a resistor, the impedance is Z ω = R , a real quantity independent of frequency. For capacitors and R ( ) inductors, the impedances are Z ω = − i ωC and Z ω = iω L. In the complex plane C ( ) L ( ) these impedances are represented as the phasors shown below. Im ivL R Re -i/vC These phasors are useful because the voltage across each circuit element is related to the current through the equation V = I Z . For a series circuit where the same current flows through each element, the voltages across each element are proportional to the impedance across that element. Phasor Analysis of the RC Circuit R V V in Z in Vout R C V ZC out The behavior of this RC circuit can be analyzed by treating it as the voltage divider shown at right. The output voltage is then V Z −i ωC out = C = . V Z Z i C R in C + R − ω + The amplitude is then V −i 1 1 out = = = , V −i +ω RC 1+ iω ω 2 in c 1+ ω ω ( c ) 1 where we have defined the corner, or 3dB, frequency as 1 ω = . c RC The phasor picture is useful to determine the phase shift and also to verify low and high frequency behavior. The input voltage is across both the resistor and the capacitor, so it is equal to the vector sum of the resistor and capacitor voltages, while the output voltage is only the voltage across capacitor. -
5 RC Circuits
Physics 212 Lab Lab 5 RC Circuits What You Need To Know: The Physics In the previous two labs you’ve dealt strictly with resistors. In today’s lab you’ll be using a new circuit element called a capacitor. A capacitor consists of two small metal plates that are separated by a small distance. This is evident in a capacitor’s circuit diagram symbol, see Figure 1. When a capacitor is hooked up to a circuit, charges will accumulate on the plates. Positive charge will accumulate on one plate and negative will accumulate on the other. The amount of charge that can accumulate is partially dependent upon the capacitor’s capacitance, C. With a charge distribution like this (i.e. plates of charge), a uniform electric field will be created between the plates. [You may remember this situation from the Equipotential Surfaces lab. In the lab, you had set-ups for two point-charges and two lines of charge. The latter set-up represents a capacitor.] A main function of a capacitor is to store energy. It stores its energy in the electric field between the plates. Battery Capacitor (with R charges shown) C FIGURE 1 - Battery/Capacitor FIGURE 2 - RC Circuit If you hook up a battery to a capacitor, like in Figure 1, positive charge will accumulate on the side that matches to the positive side of the battery and vice versa. When the capacitor is fully charged, the voltage across the capacitor will be equal to the voltage across the battery. You know this to be true because Kirchhoff’s Loop Law must always be true. -
Short Course on Isolators and FM Antennas
Shively Labs® Short Course on Isolators and FM Antennas Introduction Isolators have been around for more than 50 years, and during that time have been used in applications across a wide electromagnetic spectrum. Until recently, however, they have not been widely used in the FM band, and the uses that did exist did not require the development of units that could handle more than a few hundred watts. Now, as stations begin to go on the air with digital radio in ever increasing numbers, FM isolators are receiving a great deal of attention as a key component in a number of IBOC installations. Early deployment has been limited by the low power ratings of the available units, but power capacity is rising quickly as manufacturers devote time and resources to developing isolators specifically to address the needs of the new FM market. On the other side of the fence, RF engineers are rapidly familiarizing themselves with the principles of isolators and their advantages and limitations. As with any emerging technology, integrating vari- as advances in power rating sometimes came with ous components of the FM IBOC transmission chain conditions that limited the usefulness of the units. has had both successes and setbacks. Isolators have Size, weight, and cooling requirements that might be been involved in both. As with all test sites, some of suitable at some sites made the units impractical at the early deployments could be said to be more edu- others. For example, in at least one application, an cational than successful, but as often as not these isolator capable of handling the return power of the setbacks were not so much the fault of the isolators station was only efficient enough to do so when it themselves as of the inexperience of the engineers was warmed up. -
Scattering Parameters - Wikipedia, the Free Encyclopedia Page 1 of 13
Scattering parameters - Wikipedia, the free encyclopedia Page 1 of 13 Scattering parameters From Wikipedia, the free encyclopedia Scattering parameters or S-parameters (the elements of a scattering matrix or S-matrix ) describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals. The parameters are useful for electrical engineering, electronics engineering, and communication systems design, and especially for microwave engineering. The S-parameters are members of a family of similar parameters, other examples being: Y-parameters,[1] Z-parameters,[2] H- parameters, T-parameters or ABCD-parameters.[3][4] They differ from these, in the sense that S-parameters do not use open or short circuit conditions to characterize a linear electrical network; instead, matched loads are used. These terminations are much easier to use at high signal frequencies than open-circuit and short-circuit terminations. Moreover, the quantities are measured in terms of power. Many electrical properties of networks of components (inductors, capacitors, resistors) may be expressed using S-parameters, such as gain, return loss, voltage standing wave ratio (VSWR), reflection coefficient and amplifier stability. The term 'scattering' is more common to optical engineering than RF engineering, referring to the effect observed when a plane electromagnetic wave is incident on an obstruction or passes across dissimilar dielectric media. In the context of S-parameters, scattering refers to the way in which the traveling currents and voltages in a transmission line are affected when they meet a discontinuity caused by the insertion of a network into the transmission line. This is equivalent to the wave meeting an impedance differing from the line's characteristic impedance. -
Introduction to Transmission Lines
INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 http://www.empowermentresources.com/stop_cointelpro/electromagnetic_warfare.htm RF Design ¨ In RF circuits RF energy has to be transported ¤ Transmission lines ¤ Connectors ¨ As we transport energy energy gets lost ¤ Resistance of the wire à lossy cable ¤ Radiation (the energy radiates out of the wire à the wire is acting as an antenna We look at transmission lines and their characteristics Transmission Lines A transmission line connects a generator to a load – a two port network Transmission lines include (physical construction): • Two parallel wires • Coaxial cable • Microstrip line • Optical fiber • Waveguide (very high frequencies, very low loss, expensive) • etc. Types of Transmission Modes TEM (Transverse Electromagnetic): Electric and magnetic fields are orthogonal to one another, and both are orthogonal to direction of propagation Example of TEM Mode Electric Field E is radial Magnetic Field H is azimuthal Propagation is into the page Examples of Connectors Connectors include (physical construction): BNC UHF Type N Etc. Connectors and TLs must match! Transmission Line Effects Delayed by l/c At t = 0, and for f = 1 kHz , if: (1) l = 5 cm: (2) But if l = 20 km: Properties of Materials (constructive parameters) Remember: Homogenous medium is medium with constant properties ¨ Electric Permittivity ε (F/m) ¤ The higher it is, less E is induced, lower polarization ¤ For air: 8.85xE-12 F/m; ε = εo * εr ¨ Magnetic Permeability µ (H/m) Relative permittivity and permeability -
Scattering Parameters
Chapter 1 Scattering Parameters Scattering parameters are a powerful analysis tool, providing much insight on the electrical behavior of circuits and devices at, and beyond microwave frequencies. Most vector network analyzers are designed with the built-in capability to display S parameters. To an experienced engineer, S parameter plots can be used to quickly identify problems with a measurement. A good understanding of their precise meaning is therefore essential. Talk about philosophy behind these derivations in order to place reader into context. Talk about how the derivations will valid for arbitrary complex reference impedances (once everything is hammered out). Talk about the view of pseudo-waves and the mocking of waveguide theory mentionned on p. 535 of [1]. Talk about alterantive point of view where S-parameters are a conceptual tool that can be used to look at real traveling waves, but don’t have to. Call pseudo-waves: traveling waves of a conceptual measurement setup. Is the problem of connecting a transmission line of different ZC than was used for the measurement that it may alter the circuit’s response (ex: might cause different modes to propagate), and thus change the network?? Question: forward/reverse scattering parameters: Is that when the input (port 1) is excited, or simly incident vs. reflected/transmitted??? The reader is referred to [2][1][3] for a more general treatment, including non-TEM modes. Verify this statement, and try to include this if possible. Traveling Waves And Pseudo-Waves Verify the following statements with the theory in [1]. Link to: Scattering and pseudo-scattering matrices.