Lubricating Properties of Pentaerythritol Partial-Esters*

Total Page:16

File Type:pdf, Size:1020Kb

Lubricating Properties of Pentaerythritol Partial-Esters* 1 SCIENTIFIC PAPER Lubricating Properties of Pentaerythritol Partial-Esters* by Toshio Sakurai**, Seiichiro Hironaka**, Mineo Furuta***, and Yasuo Watanabe** Summary: Pentaerythritol partial-esters were synthesized and their physical properties, thermal stabilities, heat of adsorption, and lubricity were investigated. It was found that the hydroxylgroups involvedin the partial-esters exerted some important effectson their properties. The partial-esters showed higher viscositiesthan their respectivefull-esters due to the association of their molecules. They adsorbedstrongly onto metal surfaces to control corrosionof the metals, and to give better boundarylubricity. tetra-ester which contained some uncomplete 1 Introduction esters was reacted with caprylate acid chloride. The use of Type II esters such as neopentyl The remaining polar compounds as contaminants polyol esters as aircraft turbine engine lubricants were removed from these esters by percolation has rapidly increased, and these esters have through alumina and Florisil columns. These replaced Type I esters, the conventional dibasic esters were classified into mono-, di-, tri-, and acid esters, because of their better thermal stability tetra-esters by the experimental saponification properties. Requirements for lubrication under values which agreed with those calculated. severe condition of the present aircraft have led Pentaerythritol 2-ethylhexanoates were also to the development of polyphenyl ethers or C- prepared and purified by the same procedures. ethers, Type III lubricants. There are many Trimethylolethane and neopentylglycol capry- studies made on such properties as thermal and lates were prepared by the same procedures, and oxidative stabilities of neopentyl polyol esters1)~4). purified by distillation under reduced nitrogen However, most of them have been made for atmosphere at 231℃/0.2mmHg and 17-173℃/ full-esters. It is assumed that partial-esters are 0.2mmHg, respectively, and then percolated good boundary lubricants because of their higher through an alumina-silica gel column. adsorption characteristies due to the hydroxyl Di-2-ethylhexyl sebacate (DOS), a commercial groups involved in the molecules. product, was percolated through an alumina- In the present study, the physical properties, silica gel column for purification. thermal stabilities, heat of adsorption, and lubri- 2.2 Infrared Spectroscopy city of pentaerythritol partial-esters were investi- The association of the ester molecules which is gated in comparison with their full-esters and due probably to hydrogen bonding was investiga- di-2-ethylhexyl sebacate. ted by infrared spectroscopy of ester-carbon tetra- 2 Experimental chloride solutions. The effect of temperature on association was also studied with a high tem- 2.1 Materials perature cell. Pentaerythritol caprylates were prepared by 2.3 Heat of Adsorption esterification procedures. Amberlyst-15 was used The heat of adsorption of ester molecules from as the catalyst and toluene as azeotropic solvent. their solutions onto solid surfaces were measured The reaction products were fractionated into with a flow-microcalorimeter, Microscal Ltd., mono-, di-, tri-, and tetra-esters with a falling London. The apparatus and method used for film molecular still. However, it was difficult determinations of heat of adsorption were describ- to obtain high purity tetra-ester by molecular ed previously5). distillation, and to accomplish it the fraction of 2.4 Thermal Stability * Received December 26, 1975. The thermal stability of esters was pursued with ** Tokyo Institute of Technology (O-okayama, Meguro-ku, Tokyo 152) the apparatus as shown in Fig. 1. The test *** Nippon Oil Co., Ltd. fluid, under an atmosphere of inert nitrogen, was Volume 18, No. 1, May 1976 2 Sakurai, Hironaka, Furuta and Watanabe: Table 1 Properties of the Pentaerythritol Caprylates Table 2 Properties of Esters for Thermal Stability Tests diameter SUJ-2). The ball and ring were thoroughly cleaned with benzene reflux in a soxlet apparatus and later dried in vacuum for Fig. 1 Apparatus for Thermal Stability Tests 2hrs. Experiments were carried out at 30℃ under the load conditions of 200, 1,000 and 2,000g at confined by liquid seal in the glass apparatus and sliding speeds of 15 and 60cm/sec. The wear tested at given conditions of heating time and scar diameters of the balls were measured after temperature. Volatile decomposition products a sliding distance of 450m. The seizure load were leaked from this test system kept at a con- was measured at 30℃, using 10 second-runs stant pressure through the liquid seal. at a sliding speed of 60cm/sec. at constant in- Details of esters used for thermal stability tests cremental loadings of 0.5kg. are given in Table 1 and 2. The tests were carried out under the following conditions: test 3 Results and Discussion times=6 and 8hrs, test temperatures=320℃ 3.1 Properties of Pentaerythritol Caprylates and 280℃, respectively. Iron (JIS H 3141) and The physical properties of pentaerythritol capry- copper (JIS G 3141) specimens were as catalysts. lates prepared are shown in Table 1. The The changes in physical properties of esters after saponification values of these esters corresponded test were examined under Japanese Industrial to those calculated except for monoester. Visco- Standards. The changes in the compositions of sity, density, and refractive index decreased with esters tested were determined by the use of Model increase in the degree of esterification, whereas JGC-20K temperature-programmed gas chro- viscosity index increased. matography, JEOL Co., Ltd. Pour point was independent of the degree of 2.5 Lubricity esterification, i. e. the molecular weight of the Tribological behaviors of lubricants were ester. The pour point of monoester was meas- examined by using a ball-on-ring friction machine ured as viscous flow point, and the pour point of which consisted of a ball (0.45mm diameter , the other esters as solidifying point. (These esters SUJ-2) sliding against a rotating ring (52mm contain some of the others, but they have rich Bulletin of The Japan Petroleum Institute Lubricating Properties of Pentaerythritol Partial-Esters 3 Fig. 2 Viscosity and Structure of Neopentyl Polyol Ester components respectively.) Their pour points might be discussed as follows. Pour points of mono- and triesters having unsymmetrical molecular structures might be lower than those of di- and tetra-esters having symmetric structures, and tetra- ester have a higher pour point than the diester. Therefore, it may be that pour points of these esters are more strongly affected by the sym- metric nature of the molecules rather than the molecular weights. Viscosity, in general, increases with increase in the molecular weight. However, viscosities of pentaerythritol caprylates decreased with increas- ing molecular weight. Viscosities of these esters may be strongly affected by the hydroxyl groups involvedjin the molecules, that is, the degree of association of their molecules. The relation between the molecular structure and viscosity of neopentyl polyol esters is shown in Fig. 2. The viscosity of neopentylglycol caprylate was 8.57cSt at 37.8℃, while trimethylol- ethane caprylate, introducing another ester group into neopentylglycol caprylate resulted in 18.43cSt due to the increase in the molecular weight. Fig. 3 IR Spectra of Pentaerythritol Caprylates in Furthermore, pentaerythritol tricaprylate with a Various Concentrations hydroxyl group instead of methyl group of tri- methylolethane caprylate gave 42.19cSt. On centrations were prepared for IR spectra meas- the other hand, the order of viscosity of penta- urements. IR spectra of the hydroxyl groups of erythritol caprylates with the number of hydroxyl these esters are shown in Fig. 3. Absorption of groups is: mono->di->tri->tetraester. This fact hydroxyl groups of mono- and di-esters was at suggests that viscosity is independent of molecular comparatively low wave numbers, 3,423 and weight. The effect of the hydroxyl group on the 3,440cm-1, respectively, that is, polymeric ab- viscosity of these esters was discussed from the sorptions, but the absorption of tri-ester was at results of infrared spectroscopy and molecular a higher wave number, 3,509cm-1. Each ester weight measurements. diluted with carbon tetrachloride gave a sharp 3.2 Infrared Spectroscopy absorption of free hydroxyl groups at 3,630cm-1. Carbon tetrachloride solutions of pentaery- Absorptions of hydroxyl groups of mono- and thritol mono-, di-, and tri-esters in various con- di-esters shifted gradually to a higher wave number, Volume 18, No. 1, May 1976 4 Sakurai, Hironaka, Furuta and Watanabe: Fig. 5 IR Spectra of Carbonyl Group of Pentaery- thritol Caprylates Table 3 Molecular Weights of Pentaerythritol Caprylates by Cryoscopic Method Fig. 4 IR Spectra of Pentaerythritol Caprylates at tetra-ester resulted in a sharp absorption at 1,740 Various Temperatures cm-1, the others showed another absorption at 1,720cm-1, which became stronger with increas- 3,510cm-1, with decreasing concentration of the ing number of hydroxyl groups. It is assumed solution, while the absorption of tri-ester 3,509cm-1 that absorption at 1,720cm-1 may be that of hardly changed. Therefore, it is considered that the polymeric hydrogen bond. It may be con- 3,510cm-1 by dilution is the absorption of the cluded that the unreacted hydroxyl groups of intramolecular hydrogen bond, and that at these partial-esters greatly affect their viscosity 3,509cm-1 of neat tri-ester is the doublet of the characteristics due to intermolecular association. absorptions of dimeric association and intra- 3.3 Molecular Weight molecular hydrogen bond. Thus mono- and Molecular weights of pentaerythritol carylates di-esters associated strongly with the hydrogen measured by cryoscopic method using benzene as bond of hydroxyl groups to give high viscosities, the solvent are shown in Table 3. The molecu- while the association of tri-ester was weak and lar weight of tetra-ester was obtained by extra- its viscosity was very low. poration, but the molecular weights of the other The effect of temperature on the association esters were determined as their values at 8.0% of the ester molecules is shown in Fig.
Recommended publications
  • United States Patent Office Patiented Jan
    3,165,556 United States Patent Office Patiented Jan. 12, 1965, 2 ence of excessive amounts of water. In fact, the presence 3,165,556 of water has always been considered to be deleterious in PREPARATION OF DEVNY AND TETRAWNYL the vinylation of aliphatic alcohols. ETHERS OF PENTAERYTHERSTOL The two-step process of the present invention is ad Normata Shachat, Levittown, and James J. Bagiel, Sr., mirably suited to being practiced in a continuous opera Phiadelphia, Pa., assigaors to Rohia & Haas Cort 5 tion. Illustratively, a solution of pentaerythritol and a pany, Philadelphia, Pa., a corporation of Delaware catalytic amount of base in water is saturated with acety No Drawing. Filed Apr. 21, 1961, Ser. No. 104,551 lene under pressure at 0°-25°C. in a suitable reactor. The 2 Claims. (C.260-6E5) base may suitably be selected from sodium and potassium This invention deals with the divinyl and tetravinyl O hydroxides and alkoxides (preferably methoxides). The ethers of pentaerythritol, as new compositions of matter, mixture is then pumped continuously under a pressure Suf and as the products of a new process for preparing them. ficient to prevent the formation of a gas phase through a Vinylation processes are well known in which the gen reaction zone which is held at the reaction temperature eral modus operandi is to mix a substance to be vinylated (130°-200° C.) with acetylene, an acetylene solvent, a suitable catalyst, and 5 After a holding time of from 1 to 20 minutes, the reac reacting the mixture under appropriate conditions of ten tion mixture is passed from the reaction Zone through a .
    [Show full text]
  • Pentaerytritol Cas N°: 115-77-5
    OECD SIDS PENTAERYTRITOL FOREWORD INTRODUCTION PENTAERYTRITOL CAS N°: 115-77-5 UNEP PUBLICATIONS OECD SIDS PENTAERYTHRITOL SIDS INITIAL ASSESSMENT PROFILE CAS No. 115-77-5 Chemical Name Pentaerythritol Structural formula CONCLUSIONS AND RECOMMENDATIONS Environment Although the chemical is not readily biodegradable, toxicity to aquatic organisms is very low. PEC/PNEC ratio is less than 1 based on the local exposure scenario in the Sponsor country. Therefore, it is currently considered of low potential risk and low priority for further work. Human health The chemical caused only soft faeces and diarrhoea in a repeated dose study. The chemical is not considered as an irritant to skin and eyes. Within the Sponsor country exposure is well controlled in a closed system. Estimated daily intake via indirect exposures is considered to be low. As margin of safety for indirect exposure is more than 500,000, it is currently considered of low potential risk and low priority for further work. SHORT SUMMARY WHICH SUPPORTS THE REASONS FOR THE CONCLUSIONS AND RECOMMENDATIONS Pentaerythritol is a stable solid and the production volume was ca. 25,000 tonnes/year in 1996 and 1997 in Japan. The chemical is used as intermediate for Alkyd resin, Rosin ester, Explosive and Lubricants. No consumer use is reported. The chemical is classified as ‘Biodegradable’. The bioconcentration factor ranged from 0.3 – 2.1. The potential environmental distribution of pentaerythritol obtained from a generic fugacity model (Mackey level III) showed the chemical will be distributed mainly to water and soil. Predicted -3 environmental concentration (PEClocal) of the chemical was estimated as 4.3 x 10 mg/l and 5.1 x 10-5 mg/l from Japanese local exposure scenario.
    [Show full text]
  • 2019 Minnesota Chemicals of High Concern List
    Minnesota Department of Health, Chemicals of High Concern List, 2019 Persistent, Bioaccumulative, Toxic (PBT) or very Persistent, very High Production CAS Bioaccumulative Use Example(s) and/or Volume (HPV) Number Chemical Name Health Endpoint(s) (vPvB) Source(s) Chemical Class Chemical1 Maine (CA Prop 65; IARC; IRIS; NTP Wood and textiles finishes, Cancer, Respiratory 11th ROC); WA Appen1; WA CHCC; disinfection, tissue 50-00-0 Formaldehyde x system, Eye irritant Minnesota HRV; Minnesota RAA preservative Gastrointestinal Minnesota HRL Contaminant 50-00-0 Formaldehyde (in water) system EU Category 1 Endocrine disruptor pesticide 50-29-3 DDT, technical, p,p'DDT Endocrine system Maine (CA Prop 65; IARC; IRIS; NTP PAH (chem-class) 11th ROC; OSPAR Chemicals of Concern; EuC Endocrine Disruptor Cancer, Endocrine Priority List; EPA Final PBT Rule for 50-32-8 Benzo(a)pyrene x x system TRI; EPA Priority PBT); Oregon P3 List; WA Appen1; Minnesota HRV WA Appen1; Minnesota HRL Dyes and diaminophenol mfg, wood preservation, 51-28-5 2,4-Dinitrophenol Eyes pesticide, pharmaceutical Maine (CA Prop 65; IARC; NTP 11th Preparation of amino resins, 51-79-6 Urethane (Ethyl carbamate) Cancer, Development ROC); WA Appen1 solubilizer, chemical intermediate Maine (CA Prop 65; IARC; IRIS; NTP Research; PAH (chem-class) 11th ROC; EPA Final PBT Rule for 53-70-3 Dibenzo(a,h)anthracene Cancer x TRI; WA PBT List; OSPAR Chemicals of Concern); WA Appen1; Oregon P3 List Maine (CA Prop 65; NTP 11th ROC); Research 53-96-3 2-Acetylaminofluorene Cancer WA Appen1 Maine (CA Prop 65; IARC; IRIS; NTP Lubricant, antioxidant, 55-18-5 N-Nitrosodiethylamine Cancer 11th ROC); WA Appen1 plastics stabilizer Maine (CA Prop 65; IRIS; NTP 11th Pesticide (EPA reg.
    [Show full text]
  • Fabric Softening Products Based on a Combination of Pentaerythritol
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 530 958 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) mtci.6: C11D3/20, C11D3/12, of the grant of the patent: C11D 17/04 14.10.1998 Bulletin 1998/42 (21) Application number: 92306450.5 (22) Date of filing: 14.07.1992 (54) Fabric softening products based on a combination of pentaerythritol compound and montmorillonite Weichspulerprodukte basierend auf einer Kombination aus Pentaerytritol und Montmorillonit Produits adoucissants pour le linge a base d'une combination d'un compose de pentaerythritol et montmorillonite (84) Designated Contracting States: • Doms, Jan R.P. AT BE CH DE DK ES FR GB IT LI LU NL SE B-3700 Tongeren (BE) • Lambert, Pierre M. (30) Priority: 06.09.1991 US 756030 B-5380 Cortil-Wodon (BE) • Gillis, Marcel Jeg (43) Date of publication of application: B-4601 Argenteau (BE) 10.03.1993 Bulletin 1993/10 • Heckles, Paul A. B-4190 Tiliff (BE) (73) Proprietor: Colgate-Palmolive Company New York, N.Y. 10022-7499 (US) (74) Representative: Kearney, Kevin David Nicholas et al (72) Inventors: KILBURN & STRODE • Puentes-Bravo, Eduardo E. 20 Red Lion Street B-4432 Alleur (BE) London, WC1R 4PJ (GB) • Grandmaire, Jean-Paul MHF B-4821 Andrimont (BE) (56) References cited: • Hermosilla, Anita M. EP-A- 494 769 EP-A- 530 959 B-4340 Othee (BE) DE-A-2 700 512 DE-A- 2 822 891 • Tack, Viviane E.A. B-4630 Ayeneux (BE) • DATABASE WPIL Derwent Publications Ltd., London, GB: AN 90-101877 DO 00 O) CO LO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted.
    [Show full text]
  • Thermal Decomposition Kinetics of Polyol Ester Lubricants†
    Thermal Decomposition Kinetics of Polyol Ester Lubricantsy Kimberly N. Urness,z Raina V. Gough,z,{ Jason A. Widegren,z and Thomas J. Bruno∗,z zApplied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305 {Department of Chemistry, University of Colorado, Boulder, CO 80309 E-mail: [email protected] Phone: +1(303) 497-5158. Fax: +1(303) 497-5927 Abstract Synthetic lubricants are widely used for applications that require high thermal and oxidative stability. In order to facilitate new designs and applications for these fluids we are measuring a suite of thermophysical and transport properties for lubricant base fluids and mixtures. As part of the property measurements, here we report the global thermal decomposition kinetics of four polyol ester lubricant base oils, in addition to a fully qualified (MIL-PRF-23699) formulation. The fluids were heated in stainless steel ampule reactors and the extent of decomposition was measured by gas chromatography (GC) with flame ionization detection, from which pseudo-first-order rate constants were derived. The rate constants for decomposition ranged from 1 x 10−8 s−1 at 500 K to 2 x 10−4 s−1 at 675 K. Arrhenius parameters across this temperature regime are also reported. Other techniques for chemical characterization applied in this work include GC with mass spectrometry, NMR spectroscopy, and Karl Fischer titration. yContribution of NIST; article not subject to U.S. Copyright 1 Introduction Polyol ester based lubricants have been used since the late 1930s and are now some of the most common synthetic lubricants available today.1 Their use extends over many industries and applications, including aircraft turbine engines, hydraulic fluids, refrigeration, and textiles.
    [Show full text]
  • Solubilizing Agent and External Preparation Containing the Same
    Europaisches Patentamt (19) J European Patent Office Office europeen des brevets (11) EP 0 698 393 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) IntCI.6: A61K 47/10 28.02.1996 Bulletin 1996/09 (86) International application number: PCT/JP94/00800 (21) Application number: 94915266.4 (87) International publication number: WO 94/26309 (22) Date of filing: 18.05.1994 (24.1 1 .1 994 Gazette 1 994/26) (84) Designated Contracting States: • HIRANO, Munehiko, AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE Hisamitsu Pharm. Co., Inc. Tosu-shi, Saga 841 (JP) (30) Priority: 19.05.1993 JP 139224/93 • SHOHO, Koki, Hisamitsu Pharm. Co., Inc. (71) Applicant: HISAMITSU PHARMACEUTICAL CO. Tosu-shi, Saga 841 (JP) INC. • ODA, Hideshi, Tosu-shi Saga 841 (JP) Hisamitsu Pharm. Co., Inc. Tosu-shi, Saga 841 (JP) Inventors: (72) • TATEISHI, Tetsuro, • NAKAGWA, Akira, Hisamitsu Pharm. Co., Inc. Hisamitsu Pharm. Inc. Co., Tosu-shi, Saga 841 (JP) Tosu-shi, Saga 841 (JP) (74) Representative: Modiano, Guido, Dr.-lng. et al D-80469 Munchen (DE) (54) SOLUBILIZING AGENT AND EXTERNAL PREPARATION CONTAINING THE SAME (57) A solubilizing agent for an active ingredient which comprises 3-/-menthoxypropane-1,2-diol and an absorption external preparation containing said solubilizing agent rate (%) and an active ingredient. 15 Example 9 10 Comparative Example 6 5 k CO <7> CO F i g, CO <7> CO o Q_ LU Printed by Rank Xerox (UK) Business Services 2.9.9/3.4 EP 0 698 393 A1 Description Technical Field 5 The present invention relates to a solubilizing agent or solubilizer for a pharmaceutical^ effective ingredient and an external preparation containing the solubilizer.
    [Show full text]
  • Terephthalaldehyde- and Isophthalaldehyde-Based Polyspiroacetals
    Polymer Journal (2012) 44, 217–223 & 2012 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/12 www.nature.com/pj ORIGINAL ARTICLE Terephthalaldehyde- and isophthalaldehyde-based polyspiroacetals Hayal Bulbul Sonmez1, Figen Gonul Kuloglu1, Koksal Karadag1 and Fred Wudl2 Condensations of polyhydroxyl monomers with terephthalaldehyde or isophthalaldehyde give the corresponding polyspiroacetals. The effects of various dialdehydes and multihydroxy monomers on the properties of the resulting polymer have been examined. Model compounds were synthesized by the condensation of multihydroxy monomers with benzaldehyde. The model compounds and polymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis and differential scanning calorimetry. The proposed polymer structure is supported by the solid-state CPMAS 13C NMR spectrum of the model compound. The synthesized polyspiroacetals are thermally stable, have a high degree of chemical stability and are soluble in hexafluoroisopropanol. Polymer Journal (2012) 44, 217–223; doi:10.1038/pj.2011.126; published online 14 December 2011 Keywords: isophthalaldehyde; polyspiroacetal; terephthalaldehyde INTRODUCTION solvents from the reaction of pentaerythritol with an alkyl-bearing Ladder polymers have been pursued by many researchers because their diketone. rigidity results in a lack of rotational freedom and good thermal and Previously, we synthesized a spiro polymer by the reaction of chemical stability.1 Spiro
    [Show full text]
  • Acetaldehyde
    ACETALDEHYDE Data were last reviewed in IARC (1985) and the compound was classified in IARC Monographs Supplement 7 (1987). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 75-07-0 Chem. Abstr. Name: Acetaldehyde IUPAC Systematic Name: Acetaldehyde Synonyms: Acetic aldehyde; ‘aldehyde’; ethanal; ethylaldehyde 1.1.2 Structural and molecular formulae and relative molecular mass O H3 CCH C2H4O Relative molecular mass: 44.05 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid or gas with a characteristic pungent odour (Budavari, 1996; Verschueren, 1996) (b) Boiling-point: 20.1°C (Lide, 1997) (c) Melting-point: –123°C (Lide, 1997) (d) Solubility: Miscible with water, benzene, diethyl ether and ethanol (Budavari, 1996; Lide, 1997) (e) Vapour pressure: 98 kPa at 20°C; relative vapour density (air = 1), 1.52 (Verschueren, 1996) (f) Reactivity: Flammable; polymerizes violently in the presence of trace amounts of metals or acids; can react violently with acid anhydrides, alcohols, ketones, phenols, ammonia, hydrocyanic acid, hydrogen sulfide, halogens, phosphorus, isocyanates, strong alkalis and amines (American Conference of Governmental Industrial Hygienists, 1991) (g) Flash-point: –38°C, closed cup; –40°C, open cup (American Conference of Governmental Industrial Hygienists, 1991; Budavari, 1996) –319– 320 IARC MONOGRAPHS VOLUME 71 (h) Explosive limits: Upper, 57%; lower, 4% by volume in air (American Confe- rence of Governmental Industrial Hygienists, 1991) (i) Octanol/water partition coefficient (P): log P, 0.43 (Verschueren, 1996) (j) Conversion factor: mg/m3 = 1.80 × ppm 1.2 Production and use Production capacity for acetaldehyde in the United States in 1989 was 443 000 tonnes/ year (Hagemeyer, 1991).
    [Show full text]
  • United States Patent Office
    Patented Aug. 3, 1943 2,325,589 UNITED STATES2,325,589 PATENT OFFICE ACETALDEHYDE-FORMALDEHYDE con DENSATTION PRODUCT Edward A. Bried, Elsmere, Del, assignor to Her cules Powder Company, Wilmington, Del, a corporation of Delaware No Drawing. Application March 8, 1941, Serial No. 382,341 5 Claims. (C. 260-615) - This invention relates to a method of prepar ing pentaerythritol and dipentaerythritol and the concentration of dipentaerythritol is as more particularly to a method which yields a highway. as 35% to 46% is readily obtained in this higher proportion of dipentaerythritol than The process may be carried out by forming heretofore. an initial reaction mixture of acetaldehyde, It is known to prepare a mixture of penta formaldehyde, fixed alkali, and up to 15 mols erythritol and dipentaerythritol by the conden of free water per mol of acetaldehyde. This sation of acetaldehyde with formaldehyde in mixture is allowed to react by maintenance at the presence of a fixed alkali. See article of a temperature not above 25 C. for a substantial Friederich et, al., Ber. 63, 2681 (1930). HOW 0. period, say 24 hours, whereupon the reaction ever the proportion of dipentaerythritol in the mixture is treated to recover the pentaerythritol product has not been desirably high. Thus, in and dipentaerythritol therein. Where calcium Friederich et. al. the product contained as a hydroxide is used as the fixed alkali, this recov maximum 15% of dipentaerythritol and this fig ery may conveniently be effected by acidifying ure was for the product after purification with with less than the theoretical quantity of sul hot alcohol which increases the concentration 'furic acid and completing the neutralization of dipentaerythritol due to the preferential sol With Oxalic acid, filtering off the precipitated vent action of alcohol on pentaerythritol.
    [Show full text]
  • Drug Compounding Ingredients Comprising N-Substituted-O-Toluidine Derivative and Percutaneously Absorbable Preparation
    s\ — mi mi ii mi 1 1 ii i ii i ii ii i ii OJII Eur°Pean Patent Office <*S Office europeen des brevets (11) EP 0 782 861 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51 ) |nt. CI.6: A61 K 47/1 6 09.07.1997 Bulletin 1997/28 (86) International application number: (21) Application number: 95933615.7 PCT/JP95/02033 (22) Date of filing: 04.10.1995 (87) International publication number: WO 96/1 1 022 (1 8.04.1 996 Gazette 1 996/1 7) (84) Designated Contracting States: • KURIBAYASHI, Mitsuru, CH DE DK ES FR GB IE IT LI NL Tsukuba Lab. of Hisamitsu Tsukuba-shi, Ibaraki 305 (JP) (30) Priority: 05.10.1994 JP 268292/94 . KIDO, Mitsuhiko, 12.07.1995 JP 197938/95 Tsukuba Lab. of Hisamitsu Tsukuba-shi, Ibaraki 305 (JP) (71) Applicant: HISAMITSU PHARMACEUTICAL CO. INC. (74) Representative: Modiano, Guido, Dr.-lng. Tosu-shi Saga 841 (JP) Modiano, Josif, Pisanty & Staub, Baaderstrasse 3 (72) Inventors: 80469 Munchen (DE) • HIRANO, Munehiko, Tsukuba Lab. of Hisamitsu Tsukuba-shi, Ibaraki 305 (JP) (54) DRUG COMPOUNDING INGREDIENTS COMPRISING N-SUBSTITUTED-O-TOLUIDINE DERIVATIVE AND PERCUTANEOUSLY ABSORBABLE PREPARATION (57) A drug resolvent and a drug sorbefacient each comprising at least one N-substituted-o-toluidine deriv- ative represented by general formula (I), and a percuta- neously absorbable preparation containing a drug and the resolvent or the sorbefacient, wherein R-| represents C1-C4 alkyl; and R2 represents C-|-C8 alkyl. R, � NCORi (I) CH. < CO CO CM CO o Q_ LU Printed by Rank Xerox (UK) Business Services 2.14.9/3.4 EP 0 782 861 A1 Description Technical Field 5 This invention relates to a drug solubilizer and a drug-absorption accelerator which are for use in administration by percutaneous absorption of the drug in a preparation for external use, and also to a percutaneously absorbable prepa- ration.
    [Show full text]
  • NEW REACTIONS of PENTAERYTHRITOL Ii
    NEW REACTIONS OF PENTAERYTHRITOL ii NEW REACTIONS OF PEN11AERYTHRITOL By OTTO STURZENEGGER,, Bachelor of Science Federal Institute of Technology Zurich, Switzerland 1948 Submitted to the Department of Chemistry Oklahoma Agricultural and Mechanical College In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE 1950 iii. OKLAHOMA AGRICULTURAL & MECHANICAL COLLESI­ L I BR ARY APR 241950 APPROVED BY: / I 250954 iv ACKNOWLEDGMENT The author wishes to express his sincere gratitude to Dr. O. c. Dermer, under whose direction and guidance this work has been done. He also wishes to express his appreciation to J. Hawkins for running the carbon-hydrogen analyses • .At the same time he acknowledges the financial aid rendered by the Oklahoma A. and M. College in the form of an exchange scholarship in the Department of Chemistry. V TABLE OF CONTENTS Page Introduction. • • • • • • • • • • • • • • • • l Historical. • I·• • • • • • • • • • • • • • • • 2 Experimental. • • • • • • • • • • • • • • • • 6 Discussion of Results • • • • • • • • • • • • 24 Summary • • • • • • • • • • • • • • • • • • • 29 Biography • • • • • • • • • • • • • • • • • • )0 Bibliography. • • • • • • • • • • • • • • • • )1 l INTRODUCTION Pentaerythritol has been manufactured in large quantities during war-time for conversion to its explosive tetranitrate. It has also a considerable market as a component in resinous compo­ sitions for the paint and varnish industry, and is becoming im­ portant for manufacturing surtace-active agents. Owing to the polyhydroxylic nature of pentaerythritol the preparation of most of its derivatives described in the literature involves more steps than would be required for an ordinary alcohol. It has been the purpose of this work to enrich the · chemistry of pentaerythritol and to investigate especially whether its esterification, etherifieation, and conversion to amines could be accomplished in a simpler and thus cheaper way.
    [Show full text]
  • Reactions of Acetaldehyde in the Preparation of Pentaerythntol
    Reactions of acetaldehyde in the preparation of pentaerythntol L. KOUDELKA Research Institute of Petrochemistry, CS-972 71 Nováky Received 3 March 1982 Accepted for publication 15 September 1982 On the basis of experimental material and theoretical mechanism of aldol condensation two systems of rate equations describing the first step of the reaction of formaldehyde with acetaldehyde giving rise to pentaerythritol have been made up. The first model is based on the "classical" assumption of constant concentration of carbanion while the second one is based on the assumption that the carbanion behaves as a nonanalyzed intermediate. Both procedures are almost equally precise for expressing the experimental material, but the second one immediately supplies the values of rate constants and, for this reason, it is more convenient for the study of mechanism. The relative values of pseudoconstants and constants obtained by either procedure are in good agreement with theoretical ideas concerning the relative rates of elemen­ tary steps in aldol condensation. Experimental data, rate relations, and the values of rate constants of the reaction of acetaldehyde yielding acetaldol have been also obtained in the scope of this work. На основе экспериментальных данных и теоретического механизма альдольной конденсации были составлены две системы уравнений для скоростей, характеризующих первую стадию реакции формальдегида с ацетальдегидом, ведущей к образованию пентаэритрита. Первая модель исходила из »классического« предположения о постоянной концентрации карбаниона, вторая из предположения, что карбанион является проме­ жуточным соединением. Оба метода приблизительно одинаково точно интерпретируют экспериментальные данные, однако второй прямо дает величины констант скоростей и, поэтому, более удобен для изучения механизма. Относительные значения псевдоконстант и констант, вычис­ ленные этими двумя методами хорошо согласуются с теоретическими представлениями об относительных скоростях элементарных стадий аль­ дольной конденсации.
    [Show full text]