Specifications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aerospace Engine Data
AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16 -
Aviation Wheel Well and Platform Stands Df071556
AVIATION WHEEL WELL AND PLATFORM STANDS DF071556 SA LIFT FE AVIATION WHEEL WELL AND PLATFORM STANDS F . A C L L IN PR N OTECTIO DESCRIPTION The Aviation Wheel Well and Platform Stand has been designed for maintenance access points for multiple aircraft. The lowered position is designed to clear wheel well entry points and has been tested and is operational on both Airbus and Boeing wide body aircraft. Optional telescopic side rails ensure safety compliant access to the forward and AFT lower cargo holds. The Aviation Wheel Well and Platform Stand is hydraulically actuated via a foot pump and has collapsible guardrails. The platform stand can also be used to service engines, pylons, radome and AFT fuselage points. Our Professional Engineers can design custom models based on your specific requirements. PRODUCT FEATURES • Anti-slip, anti-fatigue ladder steps WHAT OUR CUSTOMERS ARE SAYING • Hydraulically actuated “We use them in both the line and hangar maintenance to • Collapsible guardrails accomplish work on the engine and pylons for our wide • Corrosion and Skydrol®-resistant powder coat finish body aircraft. These stands are an excellent solution to a • Fail-safe hydraulic cylinder locks long-standing problem — providing fall safety protection • Optional front and rear guardrails and gates in difficult to access areas.” • Split wheel castors for easy movement • Designed and tested in accordance with ANSI-ASC A14.7 and BS EN 131.7, DIN EN 12312-8, EN 1915-1, and includes CE Certification BENEFITS • Fall restraint tie points • Optional extension -
(12) Patent Application Publication (10) Pub. No.: US 2013/0099053 A1 Barmichev Et Al
US 2013 0099053A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0099053 A1 Barmichev et al. (43) Pub. Date: Apr. 25, 2013 (54) MID-WING MULTI-DECK AIRPLANE B64C 9/00 (2006.01) B64C I/I) (2006.01) (75) Inventors: Sergey D. Barmichev, Kirkland, WA B64C25/10 (2006.01) (US); Mithra M.K.V. Sankrithi, Lake B64C II/00 (2006.01) Forest Park, WA (US); Kevin M. Retz, (52) U.S. Cl. Bothell, WA (US) USPC ........... 244/102 R; 24.4/73 R: 244/65: 244/91 (73) Assignee: THE BOEING COMPANY, Irvine, CA (57) ABSTRACT (US) An airplane comprises a twin-deck fuselage in which an (21) Appl. No.: 13/276,357 upper deck Support structure is utilized for carry-through of a mid-mount main wing box. The main landing gear of the (22) Filed: Oct. 19, 2011 airplane is mounted to the fuselage and is stowed in a non pressurized area below the main wing box (enabled due to an Publication Classification optimized wing box geometry). A pressurized passageway/ cargo/galley complex separates the main landing gear box (51) Int. Cl. and the main wing box. The upper deck is continuous, while B64D II/00 (2006.01) the lower deck is separated by the wheel wells into two B64C I/20 (2006.01) distinct fore and aft areas (for either cargo or passengers). The B64D I3/02 (2006.01) airplane further comprises an integrated vertical fin and an B64D 27/2 (2006.01) aft-extended pressurized deck area for reduced double-deck B64C I/06 (2006.01) wetted area. -
Specification and Description
CITATION CJ3+ SPECIFICATION AND DESCRIPTION REVISION C JANUARY 2021 SERIAL NUMBER 525B0610 TO TBD SPECIFICATION AND DESCRIPTION CITATION CJ3+ SERIAL NUMBER 525B0610 TO TBD JANUARY 2021 REVISION C TABLE OF CONTENTS LIST OF FIGURES ..............................................................................................................................iv INTRODUCTION ..................................................................................................................................1 THE AIRCRAFT................................................................................................................................... 2 1. GENERAL DESCRIPTION ....................................................................................................2 1.1 Certifi cation...................................................................................................................... 2 1.2 Purchaser’s Responsibility......................................................................................... 2 1.3 Approximate Dimensions .......................................................................................... 5 1.4 Design Weights and Capacities .............................................................................. 5 2. PERFORMANCE .................................................................................................................... 5 3. DESIGN LIMITS ...................................................................................................................... 6 4. FUSELAGE ...............................................................................................................................7 -
Throttles Only Control.P65
INTERpilot – 2004 THROTTLES ONLY CONTROL (TOC) 10 Steps to a Survivable Landing Following Loss of Normal Flight Control Captains Terry Lutz, Air Line Pilots Association, International and Brian Greeves, Hong Kong Air Line Pilots' Association Captain Terry Lutz Captain Brian Greeves Few emergencies in commercial aviation are more terrifying to the flight crew than loss of normal flight control. The July 1989 United Airlines DC-10 accident in Sioux City, Iowa and the November 2003 missile attack on the DHL A-300 departing Baghdad are examples where the crew lost all hydraulically powered flight controls. In both cases, the flight crew regained flight path control using throttles only, and were able to bring the airplane to a less than precise touchdown at an airport. Modern aircraft are exceptionally well designed, numerous systems failures, including rapid particularly from the standpoint of reliability and decompression, the crew had to deal with large pitch redundancy in the flight control system. Using failure oscillations and loss of directional control with throttles analysis techniques that consider all known failure alone. They were able to extend the landing gear, but modes and their subsequent effects on the flight as the crew explored what flight control remained, control system, modern flight control systems are they were unable to avoid hitting a mountain and 520 designed for a failure probability of 10-9 or less. Loss lives were lost. of flight control accidents that have happened over the The Boeing Company conducted their own tests after last 30 years have occurred because of an unpredicted this accident, and were able to successfully slow a event such as fan disk failure, aft pressure bulkhead Boeing B-747-200 from cruise configuration and speed failure, or loss of a cargo door. -
2. Afterburners
2. AFTERBURNERS 2.1 Introduction The simple gas turbine cycle can be designed to have good performance characteristics at a particular operating or design point. However, a particu lar engine does not have the capability of producing a good performance for large ranges of thrust, an inflexibility that can lead to problems when the flight program for a particular vehicle is considered. For example, many airplanes require a larger thrust during takeoff and acceleration than they do at a cruise condition. Thus, if the engine is sized for takeoff and has its design point at this condition, the engine will be too large at cruise. The vehicle performance will be penalized at cruise for the poor off-design point operation of the engine components and for the larger weight of the engine. Similar problems arise when supersonic cruise vehicles are considered. The afterburning gas turbine cycle was an early attempt to avoid some of these problems. Afterburners or augmentation devices were first added to aircraft gas turbine engines to increase their thrust during takeoff or brief periods of acceleration and supersonic flight. The devices make use of the fact that, in a gas turbine engine, the maximum gas temperature at the turbine inlet is limited by structural considerations to values less than half the adiabatic flame temperature at the stoichiometric fuel-air ratio. As a result, the gas leaving the turbine contains most of its original concentration of oxygen. This oxygen can be burned with additional fuel in a secondary combustion chamber located downstream of the turbine where temperature constraints are relaxed. -
Technical Addendum to the Guidance for Noise Screening of Air Traffic Actions
MP130001 MITRE PRODUCT Technical Addendum to the Guidance for Noise Screening of Air Traffic Actions Koffi A. Amefia February 2013 The contents of this material reflect the views of the author and/or the Director of the Center for Advanced Aviation System Development (CAASD), and do not necessarily reflect the views of the Federal Aviation Administration (FAA) or the Department of Transportation (DOT). Neither the FAA nor the DOT makes any warranty or guarantee, or promise, expressed or implied, concerning the content or accuracy of the views expressed herein. This is the copyright work of The MITRE Corporation and was produced for the U.S. Government under Contract Number DTFAWA-10-C-00080 and is subject to Federal Aviation Administration Acquisition Management System Clause 3.5-13, Rights in Data-General, Alt. III and Alt. IV (Oct. 1996). No other use other than that granted to the U.S. Government, or to those acting on behalf of the U.S. Government, under that Clause is authorized without the express written permission of The MITRE Corporation. For further information, please contact The MITRE Corporation, Contract Office, 7515 Colshire Drive, McLean, VA 22102 (703) 983-6000. 2013 The MITRE Corporation. The Government retains a nonexclusive, royalty-free right to publish or reproduce this document, or to allow others to do so, for “Government Purposes Only.” MP130001 MITRE PRODUCT Technical Addendum to the Guidance for Noise Screening of Air Traffic Actions Sponsor: The Federal Aviation Administration Koffi A. Amefia Dept. No.: F072 Project No.: 0213BB03-2B Outcome No.: 3 PBWP Reference: 3-2.1-2 February 2013 “Wind Farm and Environmental Assessment Processes” For Release to all FAA This document was prepared for authorized distribution only. -
Clean Sky 2 JU Work Plan 2014/2015
Clean Sky 2 Joint Undertaking Amendment nr. 2 to Work Plan 2014-2015 Version 7 – March 2015 – Important Notice on the Clean Sky 2 Joint Undertaking (JU) Work Plan 2014-2015 This Work Plan covers the years 2014 and 2015. Due to the starting phase of the Clean Sky 2 Joint Undertaking under Regulation (EU) No 558/204 of 6 May 2014 the information contained in this Work Plan (topics list, description, budget, planning of calls) may be subject to updates. Any amended Work Plan will be announced and published on the JU’s website. © CSJU 2015 Please note that the copyright of this document and its content is the strict property of the JU. Any information related to this document disclosed by any other party shall not be construed as having been endorsed by to the JU. The JU expressly disclaims liability for any future changes of the content of this document. ~ Page intentionally left blank ~ Page 2 of 256 Clean Sky 2 Joint Undertaking Amendment nr. 2 to Work Plan 2014-2015 Document Version: V7 Date: 25/03/2015 Revision History Table Version n° Issue Date Reason for change V1 0First9/07/2014 Release V2 30/07/2014 The ANNEX I: 1st Call for Core-Partners: List and Full Description of Topics has been updated and regards the AIR-01-01 topic description: Part 2.1.2 - Open Rotor (CROR) and Ultra High by-pass ratio turbofan engine configurations (link to WP A-1.2), having a specific scope, was removed for consistency reasons. The intent is to publish this subject in the first Call for Partners. -
An Investigation Into the Feasibility of Using a Dual-Combustion Mode Ramjet in a High Mach Number Tactical Missile
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1987 An investigation into the feasibility of using a dual-combustion mode ramjet in a high Mach number tactical missile. Vaught, Clifford B. http://hdl.handle.net/10945/22315 RT OHOOL .13-5002 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS AN INVESTIGATION INTO THE FEASIBILITY OF USING A DUAL-COMBUSTION MODE RAMJET IN A HIGH MACH NUMBER TACTICAL MISSILE by Clifford B. Vaught September 1987 Thesis Advisor: David W. Netzer Approved for public release; distribution unlimited T 234420 T LJNCIASSIFIED iCut'Tv c\ ASS F<CaTiOn OF Tm.S PaCf REPORT DOCUMENTATION PAGE »(PO«T SKuSiTr Classification lb HfcSTR'O'Vfc MARKINGS UNCLASSIFIED SECURITY ClASSi^CaTiON AuTmORiTy ) distribution/ availability or report Approved for public release; OEClASSiFiCATiON 'OOvVNGRAOiNG SCHEDULE distribution unlimited. PERFORMING ORGANISATION REPORT NUMBER(S) S MON1TOR1NG ORGANISATION REPORT NuMBER(S) NAME Of PERFORMING ORGANISATION 60 OFFICE SYMBOL ?4 NAME OF MON1TOR1NG ORGANISATION (it tppimb'e) aval Postgraduate School 67 Naval Postgraduate School ADORE SS iC/ry Sure tndfiPCode) 'b AOORESSfC.ey Sure »nd ///» Code) Dnterey, California 93943-5000 Monterey, California 93943-5000 I I NAME OF FuNOlNG' SPONSORING Bb OFUCE SYMBOL 9 PROCUREMENT INSTRUMENT lOEN .FiCA t l(JN NUMBER I ORGANISATION (It tpplxjbJ*) aval Weapons Center AODRESS(C-fy Stite *od Zip Cod*) 10 SOURCE OF FuNOiNG NUMBERS PROGRAM PRO;£CT TAS«C WORK UNIT ELEMENT NO NO NO ACCESSION NO lina Lake, California 93555-6001 T; l £ (include le<unty CI*U't<(*tiQn} M INVESTIGATION INTO TILE FEASIBILITY OF USING A DUAL-COMBUSTION I^DDE RAMJET IN A HIGH \G\ NUMBER TACTTCAL MISSILE PERSONA. -
Aircraft Energy Efficiency Laminar Flow Control Glove Flight Conceptual Design Study
IIIIII~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1III1 3 1176 00133 9846 NASA Technical Memorandum 80054 1 I , NASA-TM-8005419790011929 ! AIRCRAFT ENERGY EFFICIENCY LAMINAR FLOW CONTROL GLOVE FLIGHT CONCEPTUAL DESIGN STUDY Andrew S. Wright JANUARY 1979 NI\S/\ National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665 \\\\\\\\\ \\\\ \\\\ \\\\\ \\\\\ \\\\\ \\\\\ \\\\ \\\\ NF00545 1 Report No I 2 Government Accession No 3 Recipient's Catalog No NASA TM 80054 4 Title and Subtitle 5 Report Date Aircraft Energy Efficiency Laminar Flow Control 6 Performing Organization Code Glove Flight Conceptual Design Study 7 Author(s) 8 Performing Organization Report No Andrew S. Wright I---------------------------~ 10 Work Unit No 9 Performing Organization Name and Address 514 .. 55 .. 03-21 NASA, Langley Research Center Hampton, Virginia 23665 11 Contract or Grant No I-__________________________~ 13 Type of Report and Period Covered 12 Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration Washington, DC 20546 14 Sponsoring Agency Code 15 Supplementary Notes 16 Abstract A conceptual design study of a laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines has been completed. Two suction surfaces were studied--aslotted aluminum glove concept and a woven stainless steel mesh porous glove concept. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results of the study show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed. -
2017 SUN Baseline Noise Modeling Memo
To: CHRIS POMEROY, FRIEDMAN MEMORIAL AIRPORT From: Chris Sandfoss Cc: Rob Adams Date: 3/1/2017 Re: SUN Noise Modeling Methodology and Preliminary Results This memo summarizes the basic input data for, and the preliminary results of, the noise modeling of existing (2017) baseline conditions at Friedman Memorial Airport (SUN). Noise contours have been be prepared using the AEDT at levels of DNL 65, 70, and 75. The following sections describe the input data and results of the noise contour modeling. NOISE MODELING METHODOLOGY Number of Operations and Fleet Mix: The number of annual operations that were modeled for the existing (2017) conditions at SUN is based on a variety of sources, including ATCT operations counts, Airport landing fee reports, and FAA Aviation System Performance Metrics (ASPM) databases. There were 25,316 total operations at SUN from January 2016 through December 2016, which corresponds to 69.4 average-annual day operations. Table 1 provides a summary of the average daily operations and fleet mix at SUN, organized by aircraft type, operation type, and time of day. Several aircraft types use the same FAA-approved substitute in the noise database of the AEDT as indicated by the noise model ID in Table 1. Daytime/Nighttime Operations: Data on the ratio of daytime to nighttime operations is based on data from the Draft Environmental Impact Statement (DEIS) and data from FMAA staff. Approximately 98 percent of all operations occur during the daytime (7:00 am to 9:59 pm) and 2 percent of all operations occur during the nighttime (10:00 pm to 6:59 am). -
Hondajet Model HA-420
Honda Aircraft Company PILOT’S OPERATING MANUAL HondaJet Model HA-420 Original Issue: December 10, 2015 Revision B2: March 3, 2017 This Pilot’s Operating Manual is supplemental to the current FAA Approved Airplane Flight Manual, HJ1-29000-003-001. If any inconsistencies exist between this Pilot’s Operating Manual and the FAA Approved Airplane Flight Manual, the FAA Approved Airplane Flight Manual shall be the governing authority. These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited. P/N: HJ1-29000-005-001 Copyright © Honda Aircraft Company 2016 FOR TRAINING PURPOSES ONLY Honda Aircraft Company Copyright © Honda Aircraft Co., LLC 2016 All Rights Reserved. Published by Honda Aircraft Company 6430 Ballinger Road Greensboro, NC 27410 USA www.hondajet.com Copyright © Honda Aircraft Company 2016 FOR TRAINING PURPOSES ONLY Honda Aircraft Company LIST OF EFFECTIVE PAGES This list contains all current pages with effective revision date. Use this list to maintain the most current version of the manual: Insert the latest revised pages. Then destroy superseded or deleted pages. Note: A vertical revision bar in the left margin of the page indicates pages that have been added, revised or deleted. MODEL HA-420 PILOT’S OPERATING MANUAL Title Page ...................................................................... March 3, 2017 Copyright Page ............................................................. March 3, 2017 List of Effective Pages .................................................. March 3, 2017 Record of Revisions ..................................................... March 3, 2017 Record of Temporary Revisions ................................... March 3, 2017 List of Service Bulletins ............................................... March 3, 2017 Documentation Group .................................................. March 3, 2017 SECTION 1 – SYSTEMS DESCRIPTION Pages 1 – 232 ..........................................................