American Avocet Breeding Habitat, Behaviour and Use of Nesting Platforms at Kelowna, British Columbia

Total Page:16

File Type:pdf, Size:1020Kb

American Avocet Breeding Habitat, Behaviour and Use of Nesting Platforms at Kelowna, British Columbia Avocet breeding habitat, behaviour, and nesting platform use ­ Gyug and Weir 13 American Avocet breeding habitat, behaviour and use of nesting platforms at Kelowna, British Columbia Les W. Gyug1 and Jason T. Weir2 1 Okanagan Wildlife Consulting, 3130 Ensign Way, West Kelowna, BC V4T 1T9 [email protected] 2 Dept. of Biological Sciences and Dept. of Ecology and Evolution, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 [email protected] Abstract: The largest and most consistently used American Avocet (Recurvirostra americana) colony in British Columbia is located in the southern half of the former Alki Lake, Kelowna. This lake was a landfill active from the 1960’s to 1980’s, and is now slated to be filled in completely as the landfill re­expands into the remnants of the lake. Here, we report avocet behaviour, nest conditions and foraging habitat characteristics in 1999 at Alki Lake and five other wetlands in the Kelowna area to inform future mitigation strategies for this colony. Thirteen breeding pairs initiated 21 nests (including renesting after failed attempts) at Alki Lake in 1999, with no nests in other Kelowna area localities. Fifteen nests were on islands, five on 1.2­ m square floating nest platforms, and one on a shoreline mudflat. Nesting on floating nest platforms had not been previously reported for American Avocets. Foraging areas regularly used by individual pairs were not necessarily adjacent to the nest, and increased from 0.32 ha during the incubation period to 0.53 ha after hatching. Avocets foraged primarily in soft silt substrates along non­vegetated shorelines and in shallow mudflats at a mean depth of 10 cm. Foraging accounted for 50.2% of all behaviours observed during repeated sweep scans of adults. Gulls, corvids, and various raptors were common potential predators. Of these, Golden Eagle was the most aggressively attacked by avocets. Alkalinity (pH) of Alki Lake was 9.2 and along with Robert Lake at 9.4 was higher than the wetlands not used by avocets in the Kelowna area. Potential invertebrate prey densities of chironomid (midge) larvae, ephydrid (brine fly) larvae and of corixids (water boatmen) were higher at Alki Lake than any other wetland examined in the Kelowna area. Cladocerans (water fleas) were also found at Alki and Robert lakes but not at other wetlands in the Kelowna area. Construction of a mitigation wetland should include low­ relief nesting islands in a highly alkaline and saline shallow wetland dominated by unvegetated fine substrates. It should be greater than 10 ha in size to maintain sufficient space for 20 avocet breeding territories. Key words: American Avocet, Recurvirostra americana, British Columbia, Alki Lake, Kelowna, nesting platform, foraging, habitat, behaviour, alkaline lake, invertebrate prey, mitigation wetland Gyug, L.W. and J.T. Weir. 2017. American Avocet breeding habitat, behaviour and use of nesting platforms at Kelowna, British Columbia. British Columbia Birds 27:13–29. First published on­line May 2016. American Avocets are a habitat specialist of the eph­ Introduction emeral wetlands of the arid regions of western North America, typically breeding in “salt ponds, potholes, and The American Avocet (Recurvirostra americana) is con­ shallow alkaline wetlands, as well as mudflats of inland sidered a rare summer visitor and localized breeder in British lakes, impoundments, and evaporation ponds” (Ackerman Columbia (Burger 2015). It was first recorded as a breeding et al. 2013). In the 1960’s, Alki Lake became the City of bird in B. C. in 1968 at Duck Lake, Creston (Campbell et al. Kelowna’s sanitary landfill. The lake was partially drained, 1990). Further breeding was not reported again until 1987 trenches were dug in the lake bottom, filled with garbage when three pairs nested in the province; two at Alki Lake, and then covered, forming a series of ridges. In the mid­ Kelowna, and one at Beresford Lake, southeast of Kamloops 1980’s, control of the southern half of Alki Lake reverted (Cannings et al. 1987; Campbell et al. 1990). In 1997, 19 to its original owners and was allowed to revert to a shal­ nests were found at Alki Lake (Weir 1997) representing the low alkaline lake. Conditions after the mid­1980’s ap­ largest known concentration of avocets in the province. As of peared to be suitable for avocets, i.e. a shallow alkaline 1998, Alki Lake was the only site with documented nesting in lake with nesting islands created by raised ridges of B.C. for more than two years (Gebauer 2000). covered refuse, resulting in the colony found by Weir Volume 27, 2017 British Columbia Birds 14 Avocet breeding habitat, behaviour, and nesting platform use ­ Gyug and Weir from 1997 to 2015 are described in a companion paper (Gyug and Weir 2017). Methods Study area Southern British Columbia is at the northern end of the breeding range of the American Avocet west of the Great Plains (Ackerman et al. 2013). The main breeding site in B.C. was previously identified as Alki Lake, Kelowna (Weir 1997; Gebauer 2000), which was the main study site for this project (Figure 1). As of 1999, no water remained in the north half of what was previously Alki Lake but the south half had reverted from landfill to alkaline wetland as described in the Introduction. Additional lakes and wet­ lands were visited in the Kelowna area to check for avocet occurrence, for possible breeding, and to record habitat parameters at wetlands where there were some areas of rel­ atively barren shallow water that might potentially be suit­ able for avocet foraging. These included those four other sites where avocets had been previously recorded: Robert Lake, Chichester Pond, Okanagan Lake and Simpson’s Figure 1. Locations of wetlands examined for avocet (Acland Rd.) Pond. Two other wetlands on Glenmore Rd. habitat characteristics in Kelowna area, 1999. (an unnamed wetland referred to as Slough No.2, 4.4 km north of Alki Lake, and Bubna Slough, 2.5 km north of Al­ (1997). In 1998, high water levels flooded all the raised ki Lake) were also included. ridges, reducing avocet nesting opportunities on islands so that only three avocet nests were found (Gyug and Weir Nest locations and characteristics 2017) compared to the 19 in 1997. In 1999, we discovered most nesting sites through ob­ Re­expansion of the landfill into the southern half of servation (using binoculars and a spotting scope) of avocets Alki Lake was proposed in the mid­1990’s, threatening this sitting regularly in the same spot. At Alki Lake the main ob­ avocet colony with extirpation. As avocets have been servation site was located atop a 70­m tall cliff which known to use constructed wetlands (e.g. Burgess and Hiron provided visual access to the entire lake. A number of nest­ 1992, Davis et al. 2008) the goal of this study was to de­ ing sites were discovered by observing nest building activit­ termine the local ecological requirements of breeding avo­ ies, and a few nests were discovered only after thorough cets so that effective mitigation habitat could be designed. searches from a canoe. All suspected nesting sites were con­ The Pied Avocet (R. avocetta) of Eurasia has successfully firmed while searching from a canoe. Evidence of nest de­ nested on floating nest platforms (Burgess and Hirons predation, i.e. broken eggs or spilled yolk, was recorded 1992). Such platforms could help mitigate the effect of wa­ while conducting nest searches. Factors resulting in nest dis­ ter level changes on the availability of suitable nesting is­ turbances, including possible research impacts caused by us, lands, either in a mitigation wetland, or in Alki Lake, but were recorded during all observational time periods. their use by American Avocets had not been tested. On initial discovery of a nest, measurements included Using local data, we describe structure, material and nest height above water (the vertical distance in cm micro­location of avocet nests; describe habitat charac­ between the water level at nest completion and the base of teristics of nest locations; identify foraging and rearing the nest), nest distance to water (the horizontal distance in habitat locations and characteristics including substrate, m between the rim of the nest and water), and nesting ma­ vegetation, water depths, and water chemistry; quantify terial composition. To avoid further disturbance to nests, potential avocet invertebrate prey density; describe nearest­neighbour conspecific nest distance (the horizontal predator risks to breeding and foraging avocets; and de­ distances in m to the next nearest avocet nest that was oc­ termine if floating platforms would be used by avocets cupied at the time of nest building) was measured only to nest to compensate for flooding of nesting islands. after nesting was completed. Avocet reproductive chronology and success, population Nest composition was recorded for each nest. Nests numbers and shifts in local nest locations at Kelowna were defined as either: a) unlined nest scrape (i.e. a shal­ British Columbia Birds Volume 27, 2017 Avocet breeding habitat, behaviour, and nesting platform use ­ Gyug and Weir 15 low, unlined depression in the ground); b) lined nest scrape (i.e. a shallow, sparsely lined depression in the ground); c) rimmed nest (i.e. a mere rim of nesting material with no bottom); d) sparse nest (i.e. nest with minimal amount of nesting material and poorly formed cup); or e) complete nest (nest with well­formed cup and considerable amounts of nesting material). We noted the substrates on which nests were established and the amount of vegetation cover immediately surrounding each nest in a 1­m radius. Floating nest platforms We designed and built eight square floating nesting platforms, 1.2­m on each side (Figure 2).
Recommended publications
  • Brief Description of Project
    Detailed Background on Existing Resource Conditions in Project/Study Area Giacomini Wetland Restoration Project Golden Gate National Recreation Area/ Point Reyes National Seashore Land Use: The Giacomini Ranch has been used for dairy farming since 1917. The Giacominis established their operation in the 1940s with diking of what is now referred to as the East and West Pastures and are still farming the ranch currently. The National Park Service’s reservation of use agreement with the Giacominis ends in 2007 at which the dairy operation will cease, and the entire 563 acres will be under the National Park Service (Park Service) ownership and management. Olema Marsh, which is directly south of the Giacomini Ranch in the Olema Valley, has been owned by the non-profit organization, Audubon Canyon Ranch. The marsh is primarily used by the public for walking, birding, and sightseeing opportunities. The West Marin area, including Point Reyes National Seashore (Seashore) and north district of Golden Gate National Recreation Area (GGNRA), is largely rural and comprised of agricultural operations and small residential communities. The dominant type of agriculture within the region is dairy and beef cattle operations. South of Olema Marsh lies pasturelands that are owned by the Park Service and grazed under lease by beef cattle. Leased beef cattle grazing also occurs near Park Service land at Railroad Point northeast of the Giacomini Ranch. Otherwise, most of the Giacomini Ranch and Olema Marsh is surrounded by the towns of Point Reyes Station and Inverness Park, which consist largely of residential homes and small businesses. To the north of Giacomini Ranch lies undiked marshlands that are owned by the State Lands Commission.
    [Show full text]
  • Iucn Red Data List Information on Species Listed On, and Covered by Cms Appendices
    UNEP/CMS/ScC-SC4/Doc.8/Rev.1/Annex 1 ANNEX 1 IUCN RED DATA LIST INFORMATION ON SPECIES LISTED ON, AND COVERED BY CMS APPENDICES Content General Information ................................................................................................................................................................................................................................ 2 Species in Appendix I ............................................................................................................................................................................................................................... 3 Mammalia ............................................................................................................................................................................................................................................ 4 Aves ...................................................................................................................................................................................................................................................... 7 Reptilia ............................................................................................................................................................................................................................................... 12 Pisces .................................................................................................................................................................................................................................................
    [Show full text]
  • Flight Initiation Distances in Relation to Pedestrian and Boat Disturbance in Five Species of Waders Breeding in a Mediterranean Lagoon
    Revue d’Ecologie (Terre et Vie), Vol. 73 (3), 2018: 375-384 FLIGHT INITIATION DISTANCES IN RELATION TO PEDESTRIAN AND BOAT DISTURBANCE IN FIVE SPECIES OF WADERS BREEDING IN A MEDITERRANEAN LAGOON Francesco SCARTON1 1 SELC soc. coop., Via dell’Elettricità 3/d, 30175 Marghera (Ve), Italy. E-mail: [email protected] RÉSUMÉ.— Distances d’envol de cinq espèces de limicoles nichant dans un lagon méditerranéen perturbées par des piétons ou des bateaux.— Les distances d’envol (FID) en réponse à une perturbation pédestre (N = 137) ou en bateau (N = 111) ont été mesurées chez cinq espèces d limicoles nichant dans le lagon de Venise (Italie), l’un des plus importants sites méditerranéens pour les oiseaux d’eau. Des réponses différentes au même stimulus ont été observées selon les espèces. Les différences entre les deux causes de perturbation ont été significatives chez l’Avocette qui a montré une FID plus grande à l’approche d’un bateau (T de Student = 2,18 ; ddl = 28 ; p < 0,05) alors que l’Huîtrier pie affichait une plus FID plus élevée à l’approche d’un piéton (log10 données transformées : T = -5,82 ; df = 123 ; p < 0,001). Chez l’Avocette et l’Échasse, en réponse à un piéton, la FID augmentait de manière significative avec le nombre d’oiseaux concernés par le test. Chez l’Huîtrier pie, une tendance négative significative de la FID (r = -0,47 ; p < 0,05) a été observée au cours de la saison en réponse aux perturbations par des piétons. Les distances de dissuasion, i. e. les distances aux oiseaux devant être respectées par les humains et leurs activités, ont été calculées comme FID moyenne + 2 SD, s’étalant entre 55 m (pour les bateaux vis-à-vis du Chevalier gambette) et 102 m (pour les bateaux vis-à-vis de l’Avocette).
    [Show full text]
  • Wildlife Ecology Provincial Resources
    MANITOBA ENVIROTHON WILDLIFE ECOLOGY PROVINCIAL RESOURCES !1 ACKNOWLEDGEMENTS We would like to thank: Olwyn Friesen (PhD Ecology) for compiling, writing, and editing this document. Subject Experts and Editors: Barbara Fuller (Project Editor, Chair of Test Writing and Education Committee) Lindsey Andronak (Soils, Research Technician, Agriculture and Agri-Food Canada) Jennifer Corvino (Wildlife Ecology, Senior Park Interpreter, Spruce Woods Provincial Park) Cary Hamel (Plant Ecology, Director of Conservation, Nature Conservancy Canada) Lee Hrenchuk (Aquatic Ecology, Biologist, IISD Experimental Lakes Area) Justin Reid (Integrated Watershed Management, Manager, La Salle Redboine Conservation District) Jacqueline Monteith (Climate Change in the North, Science Consultant, Frontier School Division) SPONSORS !2 Introduction to wildlife ...................................................................................7 Ecology ....................................................................................................................7 Habitat ...................................................................................................................................8 Carrying capacity.................................................................................................................... 9 Population dynamics ..............................................................................................................10 Basic groups of wildlife ................................................................................11
    [Show full text]
  • Bird-A-Thon San Diego County Team: Date
    Stilts & Avocets Forster's Tern Red-tailed Hawk Bird-a-Thon Pheasants & Turkeys Black-necked Stilt Royal Tern Barn Owls Ring-necked Pheasant American Avocet Elegant Tern Barn Owl San Diego County Wild Turkey Plovers Black Skimmer Typical Owls Grebes Black-bellied Plover Loons Western Screech-Owl Pied-billed Grebe Snowy Plover Common Loon Great Horned Owl Team: Eared Grebe Semipalmated Plover Cormorants Burrowing Owl Western Grebe Killdeer Brandt's Cormorant Kingfishers Date: Clark's Grebe Sandpipers & Phalaropes Double-crested Cormorant Belted Kingfisher Ducks, Geese & Swans Pigeons & Doves Whimbrel Pelicans Rock Pigeon Brant Long-billed Curlew American White Pelican Woodpeckers Canada Goose Band-tailed Pigeon Marbled Godwit Brown Pelican Acorn Woodpecker Eurasian Collared-Dove Wood Duck Black Turnstone Bitterns, Herons & Egrets Downy Woodpecker Common Ground-Dove Blue-winged Teal Sanderling Great Blue Heron Nuttall's Woodpecker White-winged Dove Cinnamon Teal Least Sandpiper Great Egret Northern Flicker Mourning Dove Northern Shoveler Western Sandpiper Snowy Egret Caracaras & Falcons Cuckoos, Roadrunners & Anis Short-billed Dowitcher Little Blue Heron Gadwall American Kestrel Greater Roadrunner Eurasian Wigeon Long-billed Dowitcher Green Heron Peregrine Falcon Swifts American Wigeon Spotted Sandpiper Black-crowned Night-Heron New World Parrots Vaux's Swift Wandering Tattler Yellow-crowned Night-Heron Mallard Red-crowned Parrot White-throated Swift Northern Pintail Willet Ibises & Spoonbills Red-maked Parakeet Hummingbirds Green-winged
    [Show full text]
  • Pacific Ocean
    124° 123° 122° 121° 42° 42° 39 38 37 36 35 34 33 ° 32 41° 41 31 29 30 27 28 26 25 24 23 22 21 ° ° 40 20 40 19 18 17 16 15 PACIFIC OCEAN 14 13 ° ° 39 12 39 11 10 9 8 6 7 4 5 20 0 20 3 MILES 1 2 38° 38° 124° 123° 122° 121° Prepared for: Office of HAZARDOUS MATERIALS RESPONSE OIL SPILL PREVENTION and RESPONSE and ASSESSMENT DIVISION California Department Of Fish and Game National Oceanic and Atmospheric Administration Sacramento, California Seattle, Washington Prepared by: RESEARCH PLANNING, INC. Columbia, SC 29202 ENVIRONMENTAL SENSITIVITY INDEX MAP 123°00’00" 122°52’30" 38°07’30" 38°07’30" TOMALES BAY STATE PARK P O I N T R E Y E S N A T I O N A L S E A S H O R E ESTERO DE LIMANTOUR RESERVE POINT REYES NATIONAL SEASHORE 38°00’00" 38°00’00" POINT REYES HEADLAND RESERVE GULF OF THE FARALLONES NATIONAL MARINE SANCTUARY 123°00’00" 122°52’30" ATMOSPH ND ER A IC IC A N D A M E I Prepared for C N O I S L T R A A N T O I I O T N A N U . E S. RC DE E PA MM RTMENT OF CO Office of HAZARDOUS MATERIALS RESPONSE OIL SPILL PREVENTION and RESPONSE and ASSESSMENT DIVISION California Department of Fish and Game National Oceanic and Atmospheric Administration 1.50 1KILOMETER 1.50 1MILE PUBLISHED: SEPTEMBER 1994 DRAKES BAY, CALIF.
    [Show full text]
  • Status, Threats and Conservation of Birds in the German Wadden Sea
    Status, threats and conservation of birds in the German Wadden Sea Technical Report Impressum – Legal notice © 2010, NABU-Bundesverband Naturschutzbund Deutschland (NABU) e.V. www.NABU.de Charitéstraße 3 D-10117 Berlin Tel. +49 (0)30.28 49 84-0 Fax +49 (0)30.28 49 84-20 00 [email protected] Text: Hermann Hötker, Stefan Schrader, Phillip Schwemmer, Nadine Oberdiek, Jan Blew Language editing: Richard Evans, Solveigh Lass-Evans Edited by: Stefan Schrader, Melanie Ossenkop Design: Christine Kuchem (www.ck-grafik-design.de) Printed by: Druckhaus Berlin-Mitte, Berlin, Germany EMAS certified, printed on 100 % recycled paper, certified environmentally friendly under the German „Blue Angel“ scheme. First edition 03/2010 Available from: NABU Natur Shop, Am Eisenwerk 13, 30519 Hannover, Germany, Tel. +49 (0)5 11.2 15 71 11, Fax +49 (0)5 11.1 23 83 14, [email protected] or at www.NABU.de/Shop Cost: 2.50 Euro per copy plus postage and packing payable by invoice. Item number 5215 Picture credits: Cover picture: M. Stock; small pictures from left to right: F. Derer, S. Schrader, M. Schäf. Status, threats and conservation of birds in the German Wadden Sea 1 Introduction .................................................................................................................................. 4 Technical Report 2 The German Wadden Sea as habitat for birds .......................................................................... 5 2.1 General description of the German Wadden Sea area .....................................................................................5
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]
  • CMS/CAF/Inf.4.12
    CMS/CAF/Inf.4.12 Unofficial translation NATIONAL SURVEY OF TODAY SITUATION IN RUSSIAN FEDERATION WITHIN CENTRAL ASIAN FLYWAY REGION A. Brief Introduction Central-Asian Flyway covers about half a territory of Russian Federation. The main concentrations of wintering birds nesting in Russia distribute over China, India and adjusted countries. This region is considered as rather poor studied and treated as unfavourable in regards to conditions on wintering habitats, that corresponds with the growth of human activity and countries’ economical developments around the CAF. Among 176 CAF species, 143 (85 %) are located (and mostly breed) in Russian territory. The most of the species are presented by Anatidae and Wader groups. 37 species that inhabit CAF area are included in Russian Red Data Book; more then 40 species are hunting objects. B. National administrative structures for migratory waterbirds and wetlands The environment management and protection are providing by three level of power structures: federal, Subjects of Federation and municipal. Tasks for realization and regulation for maintaining of ecological laws, ecological standards and methods, environment protection, natural resources sustainable exploitation, among these, conservation and sustainable management of waterbirds’ resources are divided through different Ministries and Authorities. One of the two key Ministries is the Ministry of Natural Resources RF (MNR of Russia) which provides governmental policy at the field of sustainable exploitation, development and protection of
    [Show full text]
  • EUROPEAN BIRDS of CONSERVATION CONCERN Populations, Trends and National Responsibilities
    EUROPEAN BIRDS OF CONSERVATION CONCERN Populations, trends and national responsibilities COMPILED BY ANNA STANEVA AND IAN BURFIELD WITH SPONSORSHIP FROM CONTENTS Introduction 4 86 ITALY References 9 89 KOSOVO ALBANIA 10 92 LATVIA ANDORRA 14 95 LIECHTENSTEIN ARMENIA 16 97 LITHUANIA AUSTRIA 19 100 LUXEMBOURG AZERBAIJAN 22 102 MACEDONIA BELARUS 26 105 MALTA BELGIUM 29 107 MOLDOVA BOSNIA AND HERZEGOVINA 32 110 MONTENEGRO BULGARIA 35 113 NETHERLANDS CROATIA 39 116 NORWAY CYPRUS 42 119 POLAND CZECH REPUBLIC 45 122 PORTUGAL DENMARK 48 125 ROMANIA ESTONIA 51 128 RUSSIA BirdLife Europe and Central Asia is a partnership of 48 national conservation organisations and a leader in bird conservation. Our unique local to global FAROE ISLANDS DENMARK 54 132 SERBIA approach enables us to deliver high impact and long term conservation for the beneit of nature and people. BirdLife Europe and Central Asia is one of FINLAND 56 135 SLOVAKIA the six regional secretariats that compose BirdLife International. Based in Brus- sels, it supports the European and Central Asian Partnership and is present FRANCE 60 138 SLOVENIA in 47 countries including all EU Member States. With more than 4,100 staf in Europe, two million members and tens of thousands of skilled volunteers, GEORGIA 64 141 SPAIN BirdLife Europe and Central Asia, together with its national partners, owns or manages more than 6,000 nature sites totaling 320,000 hectares. GERMANY 67 145 SWEDEN GIBRALTAR UNITED KINGDOM 71 148 SWITZERLAND GREECE 72 151 TURKEY GREENLAND DENMARK 76 155 UKRAINE HUNGARY 78 159 UNITED KINGDOM ICELAND 81 162 European population sizes and trends STICHTING BIRDLIFE EUROPE GRATEFULLY ACKNOWLEDGES FINANCIAL SUPPORT FROM THE EUROPEAN COMMISSION.
    [Show full text]
  • Status and Size of Pied Avocet Recurvirostra Avosetta Populations in East Africa, with a First Coastal Breeding Record
    Scopus 41(2): 1–10, July 2021 Status and size of Pied Avocet Recurvirostra avosetta populations in East Africa, with a first coastal breeding record Raphaël Nussbaumer, Améline Nussbaumer, Don Turner and Colin Jackson Summary Several populations of Pied Avocet are understood to overlap in East Africa, yet the specific movements and size of each of them remains largely unclear. A review of current literature, combined with waterbird counts and recent citizen science data, suggests that potentially three populations occur in the region (Palaearctic, southern origin, and resident), and that the resident population is substantially smaller than previous estimates suggested. A new breeding record at the Kenyan coast, which only constitutes the fourth confirmed breeding location of Pied Avocet in Kenya and the first for the East African coast, demonstrates a potential overlap of Palaearctic migrants and East African residents, which may breed opportunistically along the coast. More resources are needed to carry out standardized and regular national monitoring counts in order to further elucidate the origin, movement, and numbers of Pied Avocets in East Africa. Keywords: Avocet, migration, breeding, East Africa, bird populations Introduction The Pied Avocet Recurvirostra avosetta is a monotypic wader with a global conserva- tion status of Least Concern (BirdLife International 2016), and an extensive breeding range from western Europe to Central Asia, and from the middle East to southern Africa (Pierce et al. 2020). While the origin of wintering birds in Western Africa has been researched extensively (Chambon et al. 2018, Hötker 2002) and has been con- firmed from ringing recoveries as being western Europe (Blomert et al.
    [Show full text]
  • Hatching Success in Avocet Recurvirostra Avosetta and Black-Winged Stilt Himantopus Himantopus
    Bird Study (2005) 52, 166–172 Hatching success in Avocet Recurvirostra avosetta and Black-winged Stilt Himantopus himantopus JOSÉ JAVIER CUERVO Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Calle General Segura 1, E-04001 Almería, Spain Capsule Daily survival rate of nests was influenced by laying date and nesting period (laying versus incubation) in both species and by colony size in Black-winged Stilts. Aims To investigate the effect of clutch size, colony size, reproductive phenology and nesting period on hatching success of Avocets and Black-winged Stilts. Methods The study was undertaken at two localities in southwestern Spain (Doñana and Odiel Natural Parks) during 1990 and 1991 breeding seasons. The Mayfield method was used to estimate hatching success. Results Both species bred colonially and some colonies included nests of both species. Neither year, locality, species or clutch size had a significant effect on hatching success. Daily survival rate was lower for late nests than for early and intermediate, and lower during egg-laying than during incubation in both species. Hatching success of Black-winged Stilt nests was lower in large colonies (>50 nests) than in medium-sized ones (11–50 nests). Conclusion Late clutches within a colony (clutches with the least hatching success) might be replacements or belong to late breeders, but adults were not individually marked, precluding clarification. The results suggest a high probability of clutch predation and/or desertion in early stages of the nesting period, especially shortly after laying the first egg. The fact that hatching success in large colonies was lower than in medium-sized ones, but only for Black-winged Stilts (not for Avocets), might help to explain the difference in coloniality of the two species.
    [Show full text]