nutrients Article Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis Ana Cecilia Ho-Palma 1,2 , Pau Toro 1, Floriana Rotondo 1, María del Mar Romero 1,3,4, Marià Alemany 1,3,4, Xavier Remesar 1,3,4 and José Antonio Fernández-López 1,3,4,* 1 Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
[email protected] (A.C.H.-P.);
[email protected] (P.T.); fl
[email protected] (F.R.);
[email protected] (M.d.M.R.);
[email protected] (M.A.);
[email protected] (X.R.) 2 Faculty of Medicine, Universidad Nacional del Centro del Perú, 12006 Huancayo, Perú 3 Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain 4 Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), 08028 Barcelona, Spain * Correspondence:
[email protected]; Tel: +34-93-4021546 Received: 7 February 2019; Accepted: 22 February 2019; Published: 28 February 2019 Abstract: Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This “wasting” of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained 14C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism.