The GNAQ T96S Mutation Affects Cell Signaling and Enhances the Oncogenic Properties of Hepatocellular Carcinoma

Total Page:16

File Type:pdf, Size:1020Kb

The GNAQ T96S Mutation Affects Cell Signaling and Enhances the Oncogenic Properties of Hepatocellular Carcinoma International Journal of Molecular Sciences Article The GNAQ T96S Mutation Affects Cell Signaling and Enhances the Oncogenic Properties of Hepatocellular Carcinoma Eugene Choi 1, Sung Jean Park 2, Gunhee Lee 3, Seung Kew Yoon 4 , Minho Lee 5 and Suk Kyeong Lee 1,* 1 Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; [email protected] 2 College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; [email protected] 3 Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; [email protected] 4 Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; [email protected] 5 Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-2258-7480 Abstract: Hepatocellular carcinoma (HCC), the most common malignant tumor in the liver, grows and metastasizes rapidly. Despite advances in treatment modalities, the five-year survival rate of HCC remains less than 30%. We sought genetic mutations that may affect the oncogenic properties of HCC, using The Cancer Genome Atlas (TCGA) data analysis. We found that the GNAQ T96S mutation (threonine 96 to serine alteration of the Gαq protein) was present in 12 out of 373 HCC patients (3.2%). To examine the effect of the GNAQ T96S mutation on HCC, we transfected the Citation: Choi, E.; Park, S.J.; Lee, G.; SK-Hep-1 cell line with the wild-type or the mutant GNAQ T96S expression vector. Transfection Yoon, S.K.; Lee, M.; Lee, S.K. The with the wild-type GNAQ expression vector enhanced anchorage-independent growth, migration, GNAQ T96S Mutation Affects Cell and the MAPK pathways in the SK-Hep-1 cells compared to control vector transfection. Moreover, Signaling and Enhances the Oncogenic Properties of cell proliferation, anchorage-independent growth, migration, and the MAPK pathways were further Hepatocellular Carcinoma. Int. J. Mol. enhanced in the SK-Hep-1 cells transfected with the GNAQ T96S expression vector compared to the Sci. 2021, 22, 3284. https://doi.org/ wild-type GNAQ-transfected cells. In silico structural analysis shows that the substitution of the 10.3390/ijms22063284 GNAQ amino acid threonine 96 with a serine may destabilize the interaction between the regulator of G protein signaling (RGS) protein and GNAQ. This may reduce the inhibitory effect of RGS on Academic Editor: Paola Ghiorzo GNAQ signaling, enhancing the GNAQ signaling pathway. Single nucleotide polymorphism (SNP) genotyping analysis for Korean HCC patients shows that the GNAQ T96S mutation was found in Received: 5 March 2021 only one of the 456 patients (0.22%). Our data suggest that the GNAQ T96S hotspot mutation may Accepted: 20 March 2021 play an oncogenic role in HCC by potentiating the GNAQ signal transduction pathway. Published: 23 March 2021 Keywords: hepatocellular carcinoma; guanine nucleotide-binding protein G(q) subunit alpha; helical Publisher’s Note: MDPI stays neutral domain; somatic mutation; mitogen-activated protein kinase (MAPK) signaling with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction Liver cancer is globally the sixth-most-common type of cancer and the fourth-most- common cause of cancer mortality [1]. Single nucleotide polymorphisms (SNPs) in liver Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. cancer have been studied as a cancer risk factor contributing to poor prognosis in pa- This article is an open access article tients [2–4]. The somatic mutation S1113R of the phosphatidylinositol-3,4,5-trisphosphate distributed under the terms and dependent Rac exchange factor 2 (PREX2) gene has been shown to promote migration conditions of the Creative Commons and proliferation and activate the AKT pathway in hepatocellular carcinoma (HCC) [5]. Attribution (CC BY) license (https:// Meanwhile, the polymorphisms of UDP-glucuronosyltransferase 1A enzymes contribute to creativecommons.org/licenses/by/ HCC development in vivo [6], suggesting the potential of single amino acid substitutions 4.0/). as a biomarker for liver cancer. Int. J. Mol. Sci. 2021, 22, 3284. https://doi.org/10.3390/ijms22063284 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, 3284 2 of 14 The G protein plays an essential role in cellular signal transduction. The somatic mutation R201H in gnas (encoding Gαs) promotes pancreatic tumorigenesis in murine models that recapitulates human intraductal papillary mucinous neoplasm [7]. Moreover, the Arg-200 mutation in GNA13 (encoding Gα13) has been proposed as a putative driver of bladder cancer [8]. Guanine nucleotide-binding protein G(q) subunit alpha (GNAQ, encoding Gαq), GNAS, and GNA14 (encoding Gα14) mutations were also found in hepatic small vessel neoplasm and intrahepatic cholangiocarcinoma in the liver, although their roles have not been elucidated [9,10]. Thus, functional studies on the effects of G protein mutations in liver cancer are needed. Gαq is a component of a heterotrimeric protein that binds with guanosine triphosphate (GTP) and cycles between active and inactive states by hydrolyzing GTP to guanosine diphosphate (GDP). The Gαq protein consists of 359 amino acids and contains two primary domains: the GTPase domain and the helical domain. Within the GTPase domain are three switch regions [11], which are the primary contact sites for the Gβγ subunit (Switch II), the regulator of G protein signaling (RGS), and the effector. The helical domain consists entirely of α helices and is characterized by a unique sequence for each Gα protein [12]. Gαq is one of the most critical modulators and transducers of various transmembrane signaling systems. It mediates many signaling pathways, including the mitogen-activated protein kinase (MAPK) signaling pathway [13–15]. When the whole genome sequence data for 11,119 cancer tissues of 41 cancer types were analyzed, common recurrent hotspot mutations of several genes were identified in various cancers [16]. Among the recurrent mutations in GNAQ, new hotspot mutations were identified at codons 96 and 48, in addition to the already-known mutations at codons 183 and 209. The codon 96 mutation is expressed in the helical domain of Gαq and is a missense mutation in which nucleotide 286 adenine is changed to thymine, resulting in amino acid 96 changing from threonine to serine (hereafter referred to as “T96S”) [16]. The GNAQ T96S mutation has been reported in various diseases. In gastric cancer (GC), the GNAQ T96S mutation was predicted to bind with the highly frequent HLA allele as a tumor-specific neoantigen, and suggested as a potential target for T cell immunother- apy [17]. GNAQ T96S was observed as a rare and frequent mutation in prostate cancer and non-small-cell lung cancer (NSCLC), respectively [13,18]. The GNAQ T96S mutation was also detected in a three-year-old boy with diffuse bone and soft tissue angiomatosis [19]. Besides, In natural killer/T cell lymphoma (NKTCL), the GNAQ T96S mutation shows strong dominant-negative effects in both in vitro and in vivo experiments [14]. However, few studies report the role of GNAQ T96S in HCC. We investigated the role of the GNAQ T96S mutation in HCC by analyzing the effect of GNAQ T96S overexpression on various phenotypes and intracellular signaling pathways in HCC cells. 2. Results 2.1. The Cancer Genome Atlas (TCGA) Genotype Data in Liver Cancer Patients with HCC We investigated the liver hepatocellular carcinoma (LIHC) category in the Broad Institute’s Genome Data Analysis Center (GDAC; https://gdac.broadinstitute.org, accessed date: 4 September 2018). We found the GNAQ T96S somatic mutation in samples of 12 patients out of 373 HCC patients (3.2%). All patients with the mutation were male and had a heterozygous genotype on the locus. Four of the 12 patients were White; eight were Asian. The age range was quite wide (18–80, average 54.83, Supplementary Data S1). We also investigated whether GNAQ T96S was associated with other liver cancer risk factors, including sex, alcohol consumption, alpha-1 antitrypsin deficiency, hemochromato- sis, hepatitis B, hepatitis C, and nonalcoholic fatty liver disease. We found no association with other liver cancer risk factors except sex (Table1, Supplementary data S2). Int. J. Mol. Sci. 2021, 22, 3284 3 of 14 Table 1. Information on samples and patients having the guanine nucleotide-binding protein G(q) subunit alpha (GNAQ) T96S mutation in TCGA. Tumor Sample Matched Normal Race Age Sex CC-A8HS-01A-11D-A35Z-10 CC-A8HS-10A-01D-A35Z-10 Asian 18 M DD-A4NF-01A-11D-A27I-10 DD-A4NF-10A-01D-A27I-10 White 72 M DD-AACW-01A-11D-A40R-10 DD-AACW-10A-01D-A40U-10 Asian 43 M DD-AADG-01A-11D-A40R-10 DD-AADG-10A-01D-A40U-10 Asian 70 M DD-AADV-01A-11D-A38X-10 DD-AADV-10A-01D-A38X-10 Asian 50 M DD-AADW-01A-11D-A38X-10 DD-AADW-10A-01D-A38X-10 Asian 48 M DD-AAE8-01A-11D-A40R-10 DD-AAE8-10A-01D-A40U-10 Asian 45 M DD-AAEK-01A-11D-A40R-10 DD-AAEK-10A-01D-A40U-10 Asian 51 M ED-A97K-01A-21D-A382-10 ED-A97K-10A-01D-A385-10 Asian 54 M G3-A3CG-01A-11D-A20W-10 G3-A3CG-10A-01D-A20W-10 White 80 M K7-A5RF-01A-11D-A28X-10 K7-A5RF-10B-01D-A28X-10 White 64 M MI-A75G-01A-11D-A32G-10 MI-A75G-10A-01D-A32G-10 White 63 M 2.2. Sequencing and Overexpression of the GNAQ T96S Hotspot Mutation in SK-Hep-1 Cells Hotspot mutations located in GNAQ are marked in a schematic diagram of GNAQ (Figure1A).
Recommended publications
  • Downregulation of GNA14 in Hepatocellular Carcinoma Indicates an Unfavorable Prognosis
    ONCOLOGY LETTERS 20: 165-172, 2020 Downregulation of GNA14 in hepatocellular carcinoma indicates an unfavorable prognosis TAO YU1*, SIYU LU2* and WENJING XIE2 Departments of 1Medical Oncology and 2Anesthesiology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China Received August 2, 2019; Accepted March 5, 2020 DOI: 10.3892/ol.2020.11538 Abstract. Guanine nucleotide-binding protein subunit α14 In conclusion, low GNA14 expression may be a novel biomarker (GNA14) knockdown was demonstrated to inhibit the prolifera- for diagnosis and prognosis prediction for patients with HCC. tion of endometrial carcinoma cells in a recent study; however, its role in hepatocellular carcinoma (HCC) is unknown. In Introduction the present study, the clinical significance of GNA14 in HCC was assessed using a dataset of patients with HCC from The Liver cancer was the second leading cause of cancer-asso- Cancer Genome Atlas database. The Integrative Molecular ciated mortality worldwide in 2015 (1). Patients with HCC Database of Hepatocellular Carcinoma and Oncomine data- have no noticeable symptoms, making an accurate diagnosis bases were also used to identify the expression levels of GNA14 challenging; therefore, effective and efficient treatment of in HCC tissues. The association between GNA14 expression HCC should be available at a much earlier stage, and novel levels and clinicopathological features was assessed using the biomarkers are required to improve earlier diagnosis of HCC Wilcoxon signed-rank test and logistic regression analysis. and guide clinical management (2,3). Kaplan-Meier curves and Cox regression analysis were applied HCC is associated with increased expression levels of to evaluate the independent risk factors for clinical outcomes.
    [Show full text]
  • Glioma Cell Secretion: a Driver of Tumor Progression and a Potential Therapeutic Target Damian A
    Published OnlineFirst October 17, 2018; DOI: 10.1158/0008-5472.CAN-18-0345 Cancer Review Research Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target Damian A. Almiron Bonnin1,2, Matthew C. Havrda1,2, and Mark A. Israel1,2,3 Abstract Cellular secretion is an important mediator of cancer progres- ple oncogenic pathologies. In this review, we describe tumor cell sion. Secreted molecules in glioma are key components of secretion in high-grade glioma and highlight potential novel complex autocrine and paracrine pathways that mediate multi- therapeutic opportunities. Cancer Res; 78(21); 6031–9. Ó2018 AACR. Introduction Glioma-Secreted Molecules Impact Disease Glial cells in the central nervous system (CNS) provide trophic Progression support for neurons (1). In glial tumors, this trophic support is Glioma cells modify their microenvironment by introducing dysregulated creating a pro-oncogenic microenvironment medi- diverse molecules into the extracellular space (Table 1). To exem- ated by a heterogeneous array of molecules secreted into the plify the pro-oncogenic role that secreted molecules can have on – extracellular space (2 15). The glioma secretome includes pro- glioma pathology, we review the functional impact of specific teins, nucleic acids, and metabolites that are often overexpressed cytokines, metabolites, and nucleic acids on glioma biology. By in malignant tissue and contribute to virtually every aspect of describing some of the potent antitumorigenic effects observed in – cancer pathology (Table 1; Fig. 1; refs. 2 15), providing a strong preclinical therapeutic studies targeting tumor cell secretion, we – rationale to target the cancer cell secretory mechanisms. also highlight how blocking secreted molecules might be of fi Although the speci c mechanisms regulating secretion in therapeutic impact in gliomas, as well as other tumors.
    [Show full text]
  • Predicting Coupling Probabilities of G-Protein Coupled Receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J
    Published online 30 May 2019 Nucleic Acids Research, 2019, Vol. 47, Web Server issue W395–W401 doi: 10.1093/nar/gkz392 PRECOG: PREdicting COupling probabilities of G-protein coupled receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J. Silvio Gutkind4, Robert B. Russell1,2,* and Francesco Raimondi1,2,* 1CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany, 2Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany, 3Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan and 4Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA Received February 10, 2019; Revised April 13, 2019; Editorial Decision April 24, 2019; Accepted May 01, 2019 ABSTRACT great use in tinkering with signalling pathways in living sys- tems (5). G-protein coupled receptors (GPCRs) control multi- Ligand binding to GPCRs induces conformational ple physiological states by transducing a multitude changes that lead to binding and activation of G-proteins of extracellular stimuli into the cell via coupling to situated on the inner cell membrane. Most of mammalian intra-cellular heterotrimeric G-proteins. Deciphering GPCRs couple with more than one G-protein giving each which G-proteins couple to each of the hundreds receptor a distinct coupling profile (6) and thus specific of GPCRs present in a typical eukaryotic organism downstream cellular responses. Determining these coupling is therefore critical to understand signalling. Here, profiles is critical to understand GPCR biology and phar- we present PRECOG (precog.russelllab.org): a web- macology. Despite decades of research and hundreds of ob- server for predicting GPCR coupling, which allows served interactions, coupling information is still missing for users to: (i) predict coupling probabilities for GPCRs many receptors and sequence determinants of coupling- specificity are still largely unknown.
    [Show full text]
  • Recurrent GNAQ Mutation Encoding T96S in Natural Killer/T Cell Lymphoma
    ARTICLE https://doi.org/10.1038/s41467-019-12032-9 OPEN Recurrent GNAQ mutation encoding T96S in natural killer/T cell lymphoma Zhaoming Li 1,2,9, Xudong Zhang1,2,9, Weili Xue1,3,9, Yanjie Zhang1,3,9, Chaoping Li1,3, Yue Song1,3, Mei Mei1,3, Lisha Lu1,3, Yingjun Wang1,3, Zhiyuan Zhou1,3, Mengyuan Jin1,3, Yangyang Bian4, Lei Zhang1,2, Xinhua Wang1,2, Ling Li1,2, Xin Li1,2, Xiaorui Fu1,2, Zhenchang Sun1,2, Jingjing Wu1,2, Feifei Nan1,2, Yu Chang1,2, Jiaqin Yan1,2, Hui Yu1,2, Xiaoyan Feng1,2, Guannan Wang5, Dandan Zhang5, Xuefei Fu6, Yuan Zhang7, Ken H. Young8, Wencai Li5 & Mingzhi Zhang1,2 1234567890():,; Natural killer/T cell lymphoma (NKTCL) is a rare and aggressive malignancy with a higher prevalence in Asia and South America. However, the molecular genetic mechanisms underlying NKTCL remain unclear. Here, we identify somatic mutations of GNAQ (encoding the T96S alteration of Gαq protein) in 8.7% (11/127) of NKTCL patients, through whole- exome/targeted deep sequencing. Using conditional knockout mice (Ncr1-Cre-Gnaqfl/fl), we demonstrate that Gαqdeficiency leads to enhanced NK cell survival. We also find that Gαq suppresses tumor growth of NKTCL via inhibition of the AKT and MAPK signaling pathways. Moreover, the Gαq T96S mutant may act in a dominant negative manner to promote tumor growth in NKTCL. Clinically, patients with GNAQ T96S mutations have inferior survival. Taken together, we identify recurrent somatic GNAQ T96S mutations that may contribute to the pathogenesis of NKTCL. Our work thus has implications for refining our understanding of the genetic mechanisms of NKTCL and for the development of therapies.
    [Show full text]
  • Novel Driver Strength Index Highlights Important Cancer Genes in TCGA Pancanatlas Patients
    medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Novel Driver Strength Index highlights important cancer genes in TCGA PanCanAtlas patients Aleksey V. Belikov*, Danila V. Otnyukov, Alexey D. Vyatkin and Sergey V. Leonov Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia *Corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract Elucidating crucial driver genes is paramount for understanding the cancer origins and mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are usually ranked by the frequency of mutation, which, however, does not necessarily reflect their driver strength. Here we hypothesize that driver strength is higher for genes that are preferentially mutated in patients with few driver mutations overall, because these few mutations should be strong enough to initiate cancer.
    [Show full text]
  • 4 Understanding the Role of GNA13 Deregulation in Lymphomagenesis
    Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis by Adrienne Greenough University Program in Genetics and Genomics Duke University Approved: ___________________________ Sandeep Dave, Supervisor ___________________________ Fred Dietrich ___________________________ Jack Keene ___________________________ Yuan Zhuang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2014 i v ABSTRACT Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis by Adrienne Greenough University Program in Genetics and Genomics Duke University Approved: ___________________________ Sandeep Dave, Supervisor ___________________________ Fred Dietrich ___________________________ Jack Keene ___________________________ Yuan Zhuang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2014 Copyright by Adrienne Greenough 2014 Abstract Lymphomas comprise a diverse group of malignancies derived from immune cells. High throughput sequencing has recently emerged as a powerful and versatile method for analysis of the cancer genome and transcriptome. As these data continue to emerge, the crucial work lies in sorting through the wealth of information to hone in on the critical aspects that will give us a better understanding of biology and new insight for how to treat disease. Finding the important signals within these large data sets is one of the major challenges of next generation sequencing. In this dissertation, I have developed several complementary strategies to describe the genetic underpinnings of lymphomas. I begin with developing a better method for RNA sequencing that enables strand-specific total RNA sequencing and alternative splicing profiling in the same analysis.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Inhibition of Mutant GNAQ Signaling in Uveal Melanoma Induces AMPK-Dependent Autophagic Cell Death
    Published OnlineFirst February 26, 2013; DOI: 10.1158/1535-7163.MCT-12-1020 Molecular Cancer Cancer Therapeutics Insights Therapeutics Inhibition of Mutant GNAQ Signaling in Uveal Melanoma Induces AMPK-Dependent Autophagic Cell Death Grazia Ambrosini1, Elgilda Musi1, Alan L. Ho1, Elisa de Stanchina2, and Gary K. Schwartz1 Abstract Oncogenic mutations in GNAQ and GNA11 genes are found in 80% of uveal melanoma. These mutations result in the activation of the RAF/MEK signaling pathway culminating in the stimulation of ERK1/2 mitogen- activated protein kinases. In this study, using a siRNA strategy, we show that mutant GNAQ signals to both MEK and AKT, and that combined inhibition of these pathways with the MEK inhibitor selumetinib (AZD6244) and the AKT inhibitor MK2206 induced a synergistic decrease in cell viability. This effect was genotype dependent as autophagic markers like beclin1 and LC3 were induced in GNAQ-mutant cells, whereas apoptosis was the mechanism of cell death of BRAF-mutant cells, and cells without either mutation underwent cell-cycle arrest. The inhibition of MEK/ATK pathways induced activation of AMP-activated protein kinase (AMPK) in the GNAQ-mutant cells. The downregulation of AMPK by siRNA or its inhibition with compound C did not rescue the cells from autophagy, rather they died by apoptosis, defining AMPK as a key regulator of mutant GNAQ signaling and a switch between autophagy and apoptosis. Furthermore, this combination treatment was effective in inhibiting tumor growth in xenograft mouse models. These findings suggest that inhibition of MEK and AKT may represent a promising approach for targeted therapy of patients with uveal melanoma.
    [Show full text]
  • Supplemental Digital Content (Sdc) Sdc, Materials
    SUPPLEMENTAL DIGITAL CONTENT (SDC) SDC, MATERIALS AND METHODS Animals This study used 9-12 week old male C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME). This study conformed to the National Institutes of Health guidelines and was conducted under animal protocols approved by the University of Virginia’s Institutional Animal Care and Use Committee. Murine DCD Lung Procedure Mice were anesthetized by isoflurane inhalation and euthanized by cervical dislocation followed by a 60-minute period of “no-touch” warm ischemia. Mice then underwent extended median sternotomy and midline cervical exposure followed by intubation for the initiation of mechanical ventilation at 120 strokes/minute with room air. The left atrium was vented via an atriotomy followed by infusion of the lungs with 3 mL 4°C Perfadex® solution (Vitrolife Inc., Denver, CO) supplemented with THAM Solution (Vitrolife, Kungsbacka, Sweden), estimating weight-based volume recommendations for pulmonary artery perfusion (140mL/kg) (1). The chest was then packed with ice and the trachea occluded by silk-suture tie at tidal volume (7µL/g body weight) prior to cold static preservation (CSP) for 60 minutes at 4°C. Mice were then randomized into three experimental groups: 1) CSP alone with no EVLP, 2) EVLP with Steen solution and 3) EVLP with Steen solution supplemented with the highly selective A2AR agonist, ATL1223 (30nM, Lewis and Clark Pharmaceuticals, Charlottesville, VA). Mice treated with ATL1223 during EVLP also received ATL1223 treatment (30nM) during the Perfadex flush prior to CSP whereas the EVLP group received vehicle (DMSO) during the flush. CSP lungs, which did not undergo EVLP, underwent immediate functional assessment after re-intubation as described below.
    [Show full text]
  • Gα15 in Early Onset of Pancreatic Ductal Adenocarcinoma Giulio Innamorati1,7*, Thomas M
    www.nature.com/scientificreports OPEN Gα15 in early onset of pancreatic ductal adenocarcinoma Giulio Innamorati1,7*, Thomas M. Wilkie2,7, Giorgio Malpeli1, Salvatore Paiella1, Silvia Grasso1, Borislav Rusev3, Biagio Eugenio Leone4, Maria Teresa Valenti5, Luca dalle Carbonare5, Samuele Cheri6, Alice Giacomazzi1, Marco Zanotto1, Vanessa Guardini1, Michela Deiana6, Donato Zipeto6, Michela Serena6, Marco Parenti4, Francesca Guzzi4, Rita Teresa Lawlor3, Giovanni Malerba6, Antonio Mori6, Giuseppe Malleo1, Luca Giacomello1, Roberto Salvia1,8 & Claudio Bassi1,8 The GNA15 gene is ectopically expressed in human pancreatic ductal adenocarcinoma cancer cells. The encoded Gα15 protein can promiscuously redirect GPCR signaling toward pathways with oncogenic potential. We sought to describe the distribution of GNA15 in adenocarcinoma from human pancreatic specimens and to analyze the mechanism driving abnormal expression and the consequences on signaling and clinical follow-up. We detected GNA15 expression in pre-neoplastic pancreatic lesions and throughout progression. The analysis of biological data sets, primary and xenografted human tumor samples, and clinical follow-up shows that elevated expression is associated with poor prognosis for GNA15, but not any other GNA gene. Demethylation of the 5′ GNA15 promoter region was associated with ectopic expression of Gα15 in pancreatic neoplastic cells, but not in adjacent dysplastic or non-transformed tissue. Down-modulation of Gα15 by shRNA or CRISPR/Cas9 afected oncogenic signaling, and reduced adenocarcimoma cell motility and invasiveness. We conclude that de novo expression of wild-type GNA15 characterizes transformed pancreatic cells. The methylation pattern of GNA15 changes in preneoplastic lesions coincident with the release a transcriptional blockade that allows ectopic expression to persist throughout PDAC progression.
    [Show full text]
  • 1 Gα13 Loss Promotes Tumor Progression in the KPC Transgenic
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435488; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Gα13 loss promotes tumor progression in the KPC transgenic mouse model of advanced pancreatic cancer Mario A. Shields1,2,*, Christina Spaulding1,3, Mahmoud G. Khalafalla1, Thao N.D. Pham1, and Hidayatullah G. Munshi1,2,3,* 1 Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 2 The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA 3 Jesse Brown VA Medical Center, Chicago, IL, USA Running title: Effects of epithelial Gα13 loss in vivo Keywords: Gα13, KC mouse model, KPC mouse model, human PDAC tumors, E-cadherin, mTOR The authors have declared that no conflict of interest exists. *Address correspondence to Mario A. Shields, Ph.D. or Hidayatullah G. Munshi, M.D. Department of Medicine Northwestern University Feinberg School of Medicine 303 E. Superior Ave., Lurie 3-220 (M.A. Shields) or Lurie 3-117 (H.G. Munshi) Chicago, IL 60611, USA. Phone: (312) 503-0312; [email protected] (M.A. Shields) Phone: (312) 503-2301; [email protected] (H.G. Munshi) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435488; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY Gα13 transduces signals from G protein-coupled receptors.
    [Show full text]
  • Supporting Information
    Supporting Information Jin et al. 10.1073/pnas.1418629112 SI Materials and Methods Santa Cruz Biotechnology, 1:100), anti–neural-specific β-tubulin − − − − Animals. Mice carrying the Gas1 (1), Shh (2), Cdo , Boc (3), (Tuj1, mouse, Millipore, 1:800), anti-Neurotrophin receptor P75 f − Smo (4), Gnaz (5), and transgenic Wnt1:Cre (6) alleles were (Rabbit, Millipore, 1:200), anti-GFP (rabbit, Invitrogen, 1:100), − − − previously described. For simplicity, Gas1 , Cdo ,andBoc were anti-mouse Gas1 (goat, R&D Systems, 1:200), and anti-HuC/D used for the Lac-Z knock-in allele of Gas1 and β-geo–internal (mouse, Molecular Probes, 1:100). Alexa Fluor 488- and Alexa ribosomal entry site (IRES) human placental alkaline phosphatase Fluor 568-conjugated secondary antibodies (Invitrogen) against (hPLAP) gene-trapped alleles of Cdo and Boc, respectively. Ap- specific species (goat, mouse, and rabbit) were used for detection propriate mating schemes were designed to generate embryos of (Molecular Probes, all at 1:1,000). DAPI (Sigma) was used at desired genotypes, including controls. Embryo stages are specified 1 μg/mL for staining of DNA. in the text. The vaginal plug date is designated as embryonic day 0.5 (E0.5), following convention. For genotyping, tail or embryo Neurosphere Culture. Neurosphere-like bodies were generated −/− sac DNAs were used. Oligonucleotide primers and conditions using whole guts dissected from E11.5 wild-type or Gas1 for PCR are described in corresponding publications and on the embryos as previously described (7–9). They were dissociated in f Jackson Laboratory (JAX) website. The Gas1 allele was gener- basal media by mechanical pipetting, then plated into culture ated for this work, and its characterization is detailed in Fig.
    [Show full text]