New Data on the Late Cretaceous Lizard

Total Page:16

File Type:pdf, Size:1020Kb

New Data on the Late Cretaceous Lizard Anais da Academia Brasileira de Ciências (2018) (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170563 www.scielo.br/aabc | www.fb.com/aabcjournal New data on the Late Cretaceous lizard Dicothodon bajaensis (Squamata, Borioteiioidea) from Baja California, Mexico reveals an unusual tooth replacement pattern in squamates MARÍA LUISA CHAVARRÍA-ARELLANO1, TIAGO R. SIMÕES2 and MARISOL MONTELLANO-BALLESTEROS3 1Universidad Nacional Autónoma de México, Posgrado en Ciencias Biológicas, Instituto de Geología, Investigación Científica, Copilco Cd. Universidad, Coyoacán, 04510, Ciudad de México, CDMX, México 2University of Alberta, Department of Biological Sciences, 11645, Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada 3Universidad Nacional Autónoma de México, Instituto de Geología, Investigación Científica, Copilco Cd. Universidad, Coyoacán, 04510, Ciudad de México, CDMX, México Manuscript received on July 21, 2017; accepted for publication on December 18, 2017 ABSTRACT Borioteiioids comprise an extinct family of squamates that inhabited the Northern Hemisphere during the Cretaceous and were characterized by varying patterns of tooth replacement and dental morphology. Understanding the evolution of these tooth replacement patterns has, however, been largely hampered by an extremely fragmentary fossil record. Here we present new information on Dicothodon bajaensis from the Campanian of Baja California (Mexico), so far known only from isolated teeth and jaw fragments. Among abundant new materials there are ten maxillae and five dentaries belonging to distinct ontogenetic stages. Whereas juveniles display active tooth replacement, older specimens show no evidence of replacement. Dicothodon bajaensis is therefore inferred to have had arrested tooth replacement later in ontogeny. This provides the first evidence of cessation of tooth replacement during late ontogeny in lizards (living or extinct). This replacement type is also an evolutionary intermediate between the typical lizard replacement pattern, observed in some borioteiioids (e.g., Bicuspidon) and the complete absence of tooth replacement since early ontogeny as observed in other borioteiioids (e.g., Polyglyphanodon). Key words: Campanian, dental morphology, Mexico, North America, Squamata, tooth replacement. INTRODUCTION and amphisbaenians), is placed lingually to the tooth row. Each replacement tooth eventually migrates Tooth replacement in most reptiles occurs throughout labially and enters the pulp cavity of the functional their whole life (Edmund 1960, 1969, Osborn tooth through a resorption pit located at the base of 1974, Berkovitz 2000). Older functional teeth are the latter, and continues to develop within it until periodically shed and substituted by replacement the functional tooth is shed (Edmund 1960, Cooper teeth that are continuously formed in a dental 1966). This process is observed in a vast number of lamina which, within squamates (lizards, snakes squamate lineages (e.g., most iguanians, geckoes, Correspondence to: María Luisa Chavarría-Arellano cordylids, lacertids, teiioids, and scincids), but some E-mail: [email protected] important deviations from this pattern may occur. An Acad Bras Cienc (2018) 2 MARÍA LUISA CHAVARRÍA-ARELLANO, TIAGO R. SIMÕES and MARISOL MONTELLANO-BALLESTEROS An unusual replacement pattern occurs within homoplastic to the acrodontan condition (Borsuk- acrodontan lizards (agamids and chameleons), in Bialynicka 1996, Simões et al. 2015). which tooth replacement occurs during embryonic The ontogenetic and evolutionary patterns developmental stages, but ceases in post-embryonic concerning tooth development and replacement in ontogeny in the posterior tooth series (although borioteiioids - a clade from the Late Cretaceous new teeth continue to be added posteriorly on the of North America, East Asia, and Europe (Gao tooth row until later in ontogeny). The anteriormost and Norell 2000, Folie and Codrea 2005, maxillary and dentary teeth in acrodontans are still Nydam et al. 2007) - is, on the other hand, more replaced during post-embryonic ontogeny, but enigmatic. Arrested tooth replacement has been even among those, tooth replacement ceases during identified in North American borioteiioids, such as early ontogeny (Cooper et al. 1970, Cooper and Polyglyphanodon sternbergi (Nydam and Cifelli Poole 1973). In some extreme cases, there is no 2005) and also suggested for Peneteius aquilonius tooth replacement at all during post-embryonic life, (Nydam et al. 2000). However, most Cretaceous such as in the agamids Calotes (Edmund 1960) and North American lizards, apart from Po. sternbergi, Uromastyx (Cooper and Poole 1973). Recently, it have a very limited record and specimen sample has been identified that in agamids and chameleons size (mostly being fragmentary jaws and isolated the cessation of replacement occurs due to a teeth), thus, preventing a thorough understanding of dramatic reduction in the size of the successional the patterns of tooth replacement during ontogeny lamina (which becomes vestigial), thus, not (Nydam et al. 2000, 2007, 2013). Additionally, producing any tooth germs for replacement tooth even for Pe. aquilonius and Po. sternbergi there generations (Richman and Handrigan 2011, are still important unanswered questions regarding Buchtová et al. 2013). their tooth replacement patterns. For instance, it is Among fossil squamates, important clues known that juvenile and adults of Po. sternbergi regarding patterns of tooth development and lacked tooth replacement (Nydam and Cifelli replacement have been discovered in the last 2005), but it is unknown at which ontogenetic stage decades. Some of these findings have elucidated that replacement ceased. important questions and given new insights into the evolutionary history of mosasaurs, snakes and Here we report on and describe numerous new acrodontans (Nydam et al. 2000, Caldwell et al. materials of the fossil lizard Dicothodon bajaensis 2003, Budney et al. 2006, Caldwell 2007, Luan et al. Nydam et al. 2007 from the Campanian of Baja 2009, Simões et al. 2015). Concerning the evolution California, Mexico (Chavarría-Arellano 2014, of acrodonty and arrested tooth development, García-Alcantara 2016, Montellano-Ballesteros et two particular fossil squamate lineages are of al. 2005, 2008, Romo de Vivar 2011). These new great relevance: priscagamids and borioteiioids. specimens offer a unique opportunity to re-examine Priscagamids lived during the Late Cretaceous in tooth replacement patterns in D. bajaensis, and Mongolia, China and Central Asia (Nessov 1988, therefore shed some light on the patterns of tooth Borsuk-Bialynicka 1996) and exhibited a similar development and replacement among borioteiioids pattern of arrested tooth replacement to that seen from the Cretaceous of North America. Importantly, in acrodontans. Priscagamids are considered to be an unusual pattern of replacement is observed that the sister clade to Acrodonta (Gauthier et al. 2012, might be unique to borioteiioids, as it is thus far Simões et al. 2017, Pyron 2017) and thus, their unknown from any other clade of squamates, either pattern of tooth replacement has been considered living or extinct. An Acad Bras Cienc (2018) BORIOTEIIOID REVEALS UNIQUE TOOTH REPLACEMENT 3 MATERIALS AND METHODS to the outcrops of the ‘El Gallo’ Formation, in the area of El Rosario, Baja California, Mexico. The Observations and measurements on dental specimens were collected on the surface, by screen- morphology, tooth replacement patterns, and washing in four different microsites (Figure 1): overall morphology of tooth bearing bones in D. Evelia, 0km, Scorpio, and CADAEL. The materials bajaensis were performed using a wide range of were subsequently transported to and prepared techniques. These include: personal observations at the Laboratorio de Paleontología, Instituto de of the referred specimens using dissecting Geología, Universidad Nacional Autónoma de stereomicroscopes (Olympus SZ61), radiographic México (UNAM), in Mexico City, using mechanical images (X Mind Satelec), three-dimensional micro preparation techniques (entomological needles and computer-tomography scans (CT scans) were taken air scribes). at Laboratorio Nacional de Manufactura Aditiva, Measurements: The length of the dentaries Digitalización 3D y Tomografía Computarizada, was measured from the first tooth position to UNAM (Nikon Metrology XT H 225 at 215 kV the last tooth position. Dentary height was taken and 32 uA with an exposure time of 500 ms). from the base of exposed tooth crown of last The software myVGL 3.0 was used to create the tooth position to the ventral edge of the jaw. The two-dimensional images, and high resolution length of the maxillae was performed from the last photographs (Nikon D3300 digital camera). posterior molariform tooth to the first molariform Drawings were created using Adobe Photoshop tooth, as most maxillae are too incomplete for a CC 14.0. Additionally, we obtained pictures of whole maxilla length measure. The relative sizes Adamisaurus magnidentatus (MgR- III/5, MgR- of replacement teeth were taken from the CT scan III/3, MgR-III/1 and MgR-II/50) donated by Dr. data, following the guidelines of Delgado et al. Adam Halanski. (2003). Functional and replacement tooth crown The fossil materials of Dicothodon bajaensis heights were taken from the tooth apex to a line were collected during multiple field trip seasons circumscribing
Recommended publications
  • A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon Sternbergi Gilmore, 1940
    A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon sternbergi Gilmore, 1940 by Meredith Austin Fontana B.S. in Biology, May 2011, The University of Texas at Austin A Thesis submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Master of Science August 31, 2014 Thesis directed by James M. Clark Ronald Weintraub Professor of Biology © Copyright 2014 by Meredith Austin Fontana All rights reserved ii This thesis is dedicated to the memory of my grandmother, Lee Landsman Zelikow – my single greatest inspiration, whose brilliant mind and unconditional love has profoundly shaped and continues to shape the person I am today. iii ACKNOWLEDGEMENTS I am deeply grateful to my graduate advisor Dr. James Clark for his support and guidance throughout the completion of this thesis. This work would not have been possible without his invaluable assistance and commitment to my success, and it has been a privilege to be his student. I would also like to express my appreciation to the additional members of my Master’s examination committee, Dr. Alexander Pyron and Dr. Hans-Dieter Sues, for generously contributing their knowledge and time toward this project and for providing useful comments on the manuscript of this thesis. I am especially grateful to Dr. Sues for allowing me access to the exquisite collection of Polyglyphanodon sternbergi specimens at the National Museum of Natural History. I am also extremely thankful to the many faculty members, colleagues and friends at the George Washington University who have shared their wisdom and given me persistent encouragement.
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • Universitatea “ Babeş – Bolyai “ Cluj
    “ BABEŞ - BOLYAI “ UNIVERSITY, CLUJ - NAPOCA FACULTY OF ENVIRONMENTAL SCIENCE AND ENGINEERING UPPER CRETACEOUS CONTINENTAL VERTEBRATE ASSEMBLAGES FROM METALIFERI SEDIMENTARY AREA: SYSTEMATICS, PALEOECOLOGY AND PALEOBIOGEOGRAPHY PhD THESIS - ABSTRACT - Scientific advisor: PhD Student: Prof. Dr. CODREA VLAD JIPA CĂTĂLIN-CONSTANTIN 2012 CLUJ-NAPOCA SUMMARY Chapter 1 - Introduction ................................................................................................. 1 Chapter 2 - Geological setting ........................................................................................ 3 Chapter 3 - Evolution of the knowledge on the Uppermost Cretaceous vertebrates in Romania ............................................................................................................................ 8 Chapter 4 - Systematic paleontology ............................................................................ 12 Chapter 5 - Taphonomy ................................................................................................ 19 Chapter 6 - Paleoecology ............................................................................................... 22 Chapter 7 - Paleoebiogeography ................................................................................... 29 Chapter 8 - Conclusions ................................................................................................ 31 Selected references ......................................................................................................... 36 Upper Cretaceous
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]
  • A New Species of Lapparentophis from the Mid-Cretaceous Kem Kem Beds, Morocco, with Remarks on the Distribution of Lapparentophiid Snakes Romain Vullo
    A new species of Lapparentophis from the mid-Cretaceous Kem Kem beds, Morocco, with remarks on the distribution of lapparentophiid snakes Romain Vullo To cite this version: Romain Vullo. A new species of Lapparentophis from the mid-Cretaceous Kem Kem beds, Morocco, with remarks on the distribution of lapparentophiid snakes. Comptes Rendus Palevol, Elsevier Masson, 2019, 18 (7), pp.765-770. 10.1016/j.crpv.2019.08.004. insu-02317387 HAL Id: insu-02317387 https://hal-insu.archives-ouvertes.fr/insu-02317387 Submitted on 19 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License C. R. Palevol 18 (2019) 765–770 Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics, and Evolution (Vertebrate Palaeontology) A new species of Lapparentophis from the mid-Cretaceous Kem Kem beds, Morocco, with remarks on the distribution of lapparentophiid snakes Une nouvelle espèce de Lapparentophis du Crétacé moyen des Kem Kem, Maroc, et remarques sur la distribution des serpents lapparentophiidés Romain Vullo Université de Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France a b s t r a c t a r t i c l e i n f o Article history: Two isolated trunk vertebrae from the ?uppermost Albian–lower Cenomanian Kem Kem Received 27 February 2019 beds of Morocco are described and assigned to Lapparentophis, an early snake genus known Accepted after revision 29 August 2019 from coeval deposits in Algeria.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Leaming 300 North Zeeb Road, Ann Artx)r, Ml 48106-1346 USA U lM l 800-521-0600 UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE NEW RECORDS OF EARLY, MEDIAL, AND LATE CRETACEOUS LIZARDS AND THE EVOLUTION OF THE CRETACEOUS LIZARD FAUNA OF NORTH AMERICA A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY By RANDALL LAWRENCE NYDAM Norman, Oklahoma 2000 UMI Number 9962951 UMI UMI Microform9962951 Copyright 2000 by Bell & Howell Information and Leaming Company.
    [Show full text]
  • Unexpected New Lizard from the Late Cretaceous of Southern South America Sheds Light on Gondwanan Squamate Diversity
    Rev. Mus. Argentino Cienc. Nat., n.s. 23(1): 57-80, 2021 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Unexpected new lizard from the Late Cretaceous of southern South America sheds light on Gondwanan squamate diversity Agustín G. MARTINELLI1, Federico L. AGNOLÍN2,3 & Martín D. EZCURRA1 1Sección Paleontología de Vertebrados, CONICET–Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Avenida Ángel Gallardo 470, C1405DJR, CABA, Argentina. [email protected]. ar / [email protected]. 2Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, CONICET–Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, C1405DJR, CABA, Argentina. [email protected]. 3Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y Antropología. CEBBAD - Universidad Maimónides. Hidalgo 775, C1405BDB, CABA, Argentina. Abstract: The record of Cretaceous terrestrial lizards (Squamata) in South America is patchy, with seven species described from north-eastern and south-eastern Brazil, and few isolated records of iguanians and scincomorphans from the Argentinian Patagonia. Herein we describe a new genus and species of Cretaceous lizard, Paleochelco occultato gen. et sp. nov., based on a partial skull (MACN-Pv-N 120) discovered about three decades ago that was unnoticed in the Colección Paleovertebrados of the Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”. It comes from rocks of the Upper Cretaceous Bajo de la Carpa Formation (Neuquén Group) exposed at the Campus of the Universidad Nacional del Comahue, north of Neuquén City (Neuquén Province). The new taxon was included into a broad phylogenetic dataset of squamates and it was recovered around the base of Polyglyphanodontia in a constrained analysis using a total-evidence backbone.
    [Show full text]
  • Abstracts of the 6Th Meeting of the EAVP 2008
    6TH MEETING OF THE EUROPEAN ASSOCIATION OF VERTEBRATE PALAEONTOLOGISTS 30TH JUNE – 5TH JULY 2008 SPIŠSKÁ NOVÁ VES, SLOVAK REPUBLIC VOLUME OF ABSTRACTS 6TH MEETING OF THE EUROPEAN ASSOCIATION OF VERTEBRATE PALAEONTOLOGISTS SPIŠSKÁ NOVÁ VES, SLOVAK REPUBLIC 30TH JUNE – 5TH JULY 2008 VOLUME OF ABSTRACTS ORGANIZED BY THE MUSEUM OF SPIŠ IN SPIŠSKÁ NOVÁ VES SPIŠSKÁ NOVÁ VES, 2008 SUPPORTED BY DEPARTMENT OF GEOLOGY NATIONAL PARK SLOVAK TOWN UNION OF MUSEUMS AND PALAEONTOLOGY SLOVAK PARADISE GEOLOGICAL SOCIETY SPIŠSKÁ NOVÁ VES IN SLOVAKIA 6TH MEETING OF THE EUROPEAN ASSOCIATION OF VERTEBRATE PALAEONTOLOGISTS, SPIŠSKÁ NOVÁ VES 2008 EDITOR: ZUZANA KREMPASKÁ SCIENTIFIC SUPERVISOR: MARTIN SABOL THE ORGANIZING COMMITTEE: ZUZANA KREMPASKÁ RUŽENA GREGOROVÁ MARTIN SABOL The authors are responsible for the linguistic rendition of the papers. ACKNOWLEDGEMENT: The publication of this abstract volume was partly supported by the Ministry of Culture Slovak Republic Cover Photo: Medvedia jaskyňa (Bear Cave) by L. Cibula © MUSEUM OF SPIŠ, SPIŠSKÁ NOVÁ VES, SLOVAK REPUBLIC, 2008 ISBN: 978-80-85173-03-1 4 6TH MEETING OF THE EUROPEAN ASSOCIATION OF VERTEBRATE PALAEONTOLOGISTS, SPIŠSKÁ NOVÁ VES 2008 CONTENTS INTRODUCTION ...................................................................................................................................................................... 7 ABSTRACTS BARYSHNIKOV G.: Taxonomical Diversity of Pleistocene Bears in Northern Eurasia ..........................................................9 BAYGUSHEVA V. S. & TITOV V. V.:
    [Show full text]
  • The Tiny Cretaceous Stem-Bird Oculudentavis Revealed As a Bizarre Lizard
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243048; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The tiny Cretaceous stem-bird Oculudentavis revealed as a bizarre lizard Arnau Bolet1,2, Edward L. Stanley3, Juan D. Daza4*, J. Salvador Arias5, Andrej Čerňanský6, Marta Vidal-García7, Aaron M. Bauer8, Joseph J. Bevitt9, Adolf Peretti10, and Susan E. Evans11 Affiliations: 1 Institut Català de Paleontologia, Universitat Autònoma de Barcelona. Barcelona, Spain. 2 School of Earth Sciences, University of Bristol, Bristol, United Kingdom. 3 Department of Herpetology, Florida Museum of Natural History, Gainesville, Florida, United States. 4 Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, United States. 5 Fundación Miguel Lillo, CONICET, San Miguel de Tucumán, Argentina. 6 Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia. 7Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada. 8Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, Pennsylvania, United States. 9Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia. 10GRS Gemresearch Swisslab AG and Peretti Museum Foundation, Meggen, Switzerland. 11Department of Cell and Developmental Biology, University College London, London, United Kingdom. *For correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243048; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Description and Comparison
    A new durophagous scincomorphan lizard genus from the Late Cretaceous Iharkút locality (Hungary, Bakony Mts) László Makádia,b,c,* and Randall L. Nydamd a Geological and Geophysical Collections, Geological and Geophysical Institute of Hungary, Budapest, Hungary b Department of Paleontology and Geology, Hungarian Natural History Museum, Budapest, Hungary c Department of Paleontology, Eötvös University, Budapest, Hungary d Department of Anatomy, Midwestern University, Glendale, Arizona, USA * Corresponding author, email: [email protected], phone: +36-1-251-0999/373 Abstract The Upper Cretaceous (Santonian) Iharkút terrestrial vertebrate locality in Hungary has already yielded scincomorphan taxa such as the polyglyphanodontines Bicuspidon and Distortodon, and the chamopsiid Pelsochamops. Besides these, more lacertilian material is available, including a single right mandible, different from both the above mentioned genera from Iharkút, and from other previously known taxa. This specimen is described here as Chromatogenys tiliquoides gen. nov. sp. nov. The open Meckelian canal, the wide subdental shelf with deep sulcus dentalis, and the pleurodont teeth support referral of the specimen to Scincomorpha. Within that, Chromatogenys differs from groups known from Iharkút, such as polyglyphanodontines and chamopsiids, and is also distinct from other contemporary scincomorphs from Europe, North America and Asia. It exhibits a combination of mixed characters, some of which are shared by scincids, cordylids and contogeniids. Chromatogenys might be a representative of a new family within Scincomorpha but currently should be 1 considered of uncertain familiar relationships (familia incertae sedis) until more material is found. Chromatogenys had a durophagous dentition similar to extant skinks such as Tiliqua, and most probably had similar diet composed of molluscs, eggs, insects, small vertebrates and fruits.
    [Show full text]
  • A Stem Acrodontan Lizard in the Cretaceous of Brazil Revises Early Lizard Evolution in Gondwana
    ARTICLE Received 5 Apr 2015 | Accepted 23 Jul 2015 | Published 26 Aug 2015 DOI: 10.1038/ncomms9149 OPEN A stem acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana Tiago R. Simo˜es1, Everton Wilner2, Michael W. Caldwell1,3, Luiz C. Weinschu¨tz2 & Alexander W.A. Kellner4 Iguanians are one of the most diverse groups of extant lizards (41,700 species) with acrodontan iguanians dominating in the Old World, and non-acrodontans in the New World. A new lizard species presented herein is the first acrodontan from South America, indicating acrodontans radiated throughout Gondwana much earlier than previously thought, and that some of the first South American lizards were more closely related to their counterparts in Africa and Asia than to the modern fauna of South America. This suggests both groups of iguanians achieved a worldwide distribution before the final breakup of Pangaea. At some point, non-acrodontans replaced acrodontans and became the only iguanians in the Amer- icas, contrary to what happened on most of the Old World. This discovery also expands the diversity of Cretaceous lizards in South America, which with recent findings, suggests sphenodontians were not the dominant lepidosaurs in that continent as previously hypothesized. 1 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G2E9. 2 Centro Paleontolo´gico da UnC (CENPALEO), Universidade do Contestado, Mafra, Santa Catarina, Brazil CEP 89300-000. 3 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada T6G2E9. 4 Laboratory of Systematics and Taphonomy of Fossil Vertebrates, Departamento de Geologia e Paleontologia, Museu Nacional/ Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, Sa˜o Cristo´va˜o, Rio de Janeiro, Brazil CEP 20940-040.
    [Show full text]