<<

Observational cosmology

R. A. Burenin IKI, Moscow

Baikal School 2014 Cosmic background

T = 2.725 К CMB anisotropy

− δT/T ∼ 10 5 collaboration, 2013 RELIKT-1 experiment

RELIKT-1 at PROGNOZ-9 IKI, USSR, 1983–1984

RELIKT-2 at IKI: CMB anisotropy

RELIKT-1 (IKI) 37 GHz CMB map

◦ 5.5 resolution Strukov et al., AstL, 1992 CMB anisotropy

Hot spots are there! Planck collaboration, 2013 CMB anisotropy

RELIKT-1 cold spot — questioned by COBE, but confirmed with WMAP

Sculachev, UFN, 2010 Cosmic Background Explorer (COBE)

NASA, 1989–1992 CMB anisotropy

7◦ res. COBE 30–90 GHz CMB map, 1992 Nobel Prize, 2006 CMB anisotropy

Planck collaboration, 2013 Balloon experiments

BOOMERanG:

1998, Caltech + La Sapienza 42 km alt., 2 weeks flight, 1.2-m, <1◦ ang. res., bolometers + MAXIMA and others CMB anisotropy power spectrum

BOOMERanG + MAXIMA:

e.g., Ωtot = 1.11 ± 0.07 Jaffe et al., 2001 CMB anisotropy power spectrum

The end of 2001:

Hu, Dodelson, ARA&A, 2002 Wilkinson Microwave Anisotropy Probe (WMAP)

NASA, 2001–2009 CMB anisotropy

WMAP, 2003–2011 CMB anisotropy

Planck collaboration, 2013 CMB anisotropy power spectrum

e.g., Ωk = −0.015 ± 0.020 3-year WMAP data, Spergel et al., 2006 CMB anisotropy power spectrum

7-year WMAP data, Larson et al., 2011

Limited by at l< 550 Athmospheric Transparancy in Microwave

— CMB may be observed in Rayleigh–Jeans part of the spectrum from Earth surface — better to do it in a dry place Atacama Cosmology Telescope

5190 m alt., 6-m mirror, 1′ res. South Pole Telescope

10-m, 1′ res. CMB anisotropy power spectrum

WMAP, SPT, ACT, Hinshaw et al., 2013 Planck

LFI: 30, 44, 70 GHz; HFI: 100, 143, 217, 353, 545, 857 GHz 25 times more sensitive, 3 times better angular resolution (5′), as compared to WMAP ESA, 2009–2013, main phase – 12 month, total HFI — 29 month, Dec. 2014 — final data release CMB + foregrounds

Planck collaboration, 2013 CMB anisotropy

Planck collaboration, 2013 Component separation power specrtum of CMB + foregrounds:

Planck collaboration, 2013 CMB anisotropy power spectrum

cosmic variance limited at l < 1500 Planck collaboration, 2013 CMB anisotropy power spectrum

2 2 Ωtot =1, ΩΛ =0.65, Ωbh =0.020, Ωmh =0.147, n =1

Hu, Dodelson, ARA&A, 2002 Secondary CMB anisotropies

+

• Reionization

• Gravitational lensing

• Sunyaev-Zeldovich effect

• . . . Planck 2013 results

ΛCDM as compared to WMAP: “concordant” → “discordant” cosmology Planck 2013 results

Tension in Ωm as compared to supernovae (disappeared). Planck 2013 results

Tension in H0 as compared to local measurements. Planck 2013 results

Tension in σ8 as compared to local measurements. Planck 2013 results CMB polarization

Hu, Dodelson, ARA&A, 2002 BICEP-2 experiment BICEP-2 experiment

— refractor telescope — 512 pol. sensitive TES bolometers at 250 mK BICEP-2 results

BICEP2 collaboration, 2014 (20 June) BICEP-2 results

BICEP2 collaboration, 2014 (20 June) Comments on BICEP-2 results

• Dust polarization signal? — Flauger et al., arXiv:1405.7351

• Planck data? — “. . . Planck’s sensitivity allows in principle to measure the tensor-to-scalar ratio at the high level of signal detected by BICEP2, though in practice this depends on controlling systematic effects and foregrounds. . . . ” — we should wait until Dec. 2014 Ongoing CMB experiments

• SPTpol — observing since 2012, B-modes from lensing: arXiv:1307.5830

• ACTPol — observing since 2013, first results on E-modes: arXiv:1405.5524

• Keck Array at South Pole (2011–2014)

• BICEP3 planned to start oberving in 2015 Future CMB experiments

from the talk by J. Delabrouille (COrE+) at Zeldovich-100 conference, June 2014, Moscow Cosmological parameters constraints

Komatsu et al., 2009 Cosmological parameters constraints

Planck + BAO:

Planck collaboration, 2013 The other cosmological data are also important. Baryon acoustic oscillations

Martinez, 2009 (from Gorbunov, Rubakov, 2010) Sloan Digital Sky Survey (SDSS)

2.5-m pri. (1-m sec.), 3◦ diameter FOV SDSS imaging camera SDSS sky coverage

imaging: 15000 sq. deg. — almost all Northern extragalactic sky SDSS spectrograph SDSS spectrograph SDSS spectrograph SDSS sky coverage

spectroscopy: 1,848,851 galaxy spectra, 308,377 quasar spectra Luminous red galaxies (LRG) survey

Baryon Oscillation Spectroscopic Survey (BOSS) LRG power spectrum

SDSS, BOSS, Anderson et al., 2012 LRG power spectrum

SDSS, BOSS, Anderson et al., 2014 LRG power spectrum

SDSS, BOSS, Anderson et al., 2014 Lyα forest

Varshalovitch et al., AstL, 2001 BAO in Lyα forest

90

80

70

H(z)/(1+z) (km/sec/Mpc) 60

50 0 1 2 z Delubac et al., AstL, 2014; Busca et al., 2013 Future BAO measurements eBOSS, 2014–2020: Future BAO measurements

Javalambre Physics of Accelerated Universe Survey (J-PAS) Future BAO measurements

Javalambre Physics of Accelerated Universe Survey (J-PAS)

telescope — 2.5-m M1 FOV — 3◦ diameter grasp = 27.5 m2 deg2, LRG redhifts up to z ≈ 1 + more science Telescopes with wide FOV

1-m Schmidt, Burakan, Armenia 1.6-m, 3◦ diameter FOV telescope max. grasp: ≈20 m2 deg2 at Sayan Observatory real: ≈7 m2 deg2 max. grasp: 14.2 m2 deg2 Supernovae type Ia a¨ > 0 — e.g., Riess et al., 1998 (Nobel Prize 2011): Supernovae type Ia

More recent data:

UNION2, Amanullah et al., 2010 — Dominated by systematic uncertainties. Absolute magnitudes of supernovae type Ia

HST, NGC5584: Absolute magnitudes of supernovae type Ia Absolute magnitudes of supernovae type Ia Hubble constant

SNe Ia at z < 0.1 with calibrated absolute magnitudes.

−1 −1 H0 = 73.8 ± 2.4 km s Mpc Riess et al., 2011 Large scale structure of the Universe

Millenium simulations z = 18.3, 5.7, 1.4, 0 (t = 0.21, 1, 4.7, 13.6 Gyear) Matter power spectrum from LRG redshift survey

but σ8 is not constrained Reid et al., 2009 The dark matter – galaxy bias Weak gravitational lensing, cosmic shear

A1689 CFHT MegaCam

3.6-m telescope, Mauna Kea, Hawaii

1 sq. deg. FOV 36 2048 x 4612 pixel CCDs CFHTLens

154 sq.deg., 0.8′′, ugriz:

Kilbinger et al., 2013 Future gravitational lensing measurements

Dark Energy Survey, 5000 sq.deg. Future gravitational lensing measurements

8-m Subaru telescope, Hyper Suprime-Cam (HSC)— 1.5◦ diameter FOV Future gravitational lensing measurements

Large Synoptic Survey Telescope (LSST)

8.4-m telescope, 9.6 sq. deg. FOV, <0.7′′ seeing, 2023 — ... Future gravitational lensing measurements

Euclid

1.2-m space telescope, 15000 sq. deg. survey, 2020 — 2026 Large scale structure

— density perturbations growth can be measured using galaxy clusters The number of collapsed objects

3 ′ ′ ′ δR(x) ≡ d x δ(x )WR(x − x ) Z The number of collapsed objects

2 2 σR ≡ hδR(x)i, σM = σR(R(M)) −1 dn ρm d ln σ = f(σ) dM M dM

≈5% accuracy

Tinker, Kravtsov, Klypin et al., 2008 Dependence on cosmological parameters

+ σ8 from the MF normalization What we need to measure cluster mass function?

We need:

• to detect clusters in a well defined survey

• to measure their masses Coma cluster Projection effects

— projection effects hamper cluster detection in optical X-ray emission of hot intracluster gas

T ∼ 3–10 keV, ≈ 90% baryon mass Galaxy cluster 1E 0657-558 (Bullet cluster)

— dark matter do exist! ROSAT — «roentgen satellite»

grazing incidence reflection optics, Wolter type telescopes:

Germany (+USA and GB), 1990–1999 Chandra observatory

NASA, 1999 – . . . XMM-Newton observatory

ESA, 1999 – ... Galaxy clusters in ROSAT images Cluster detection procedure

160d, Vikhlinin et al., 1998, ApJ, 502, 558

image → wavelet-decomposition → maximum likelihood fitting + Monte-Carlo simulations Optical observations

Russian-Turkish 1.5-m Telescope (RTT150) Russian-Turkish 1.5-m Telescope (RTT150)

• Produced at LOMO, St.-Petersburg, Russia • Installed at Bakyrlytepe, Turkey, first light in 2000 • Operated by KFU, IKI and TUG Russian-Turkish 1.5-m Telescope (RTT150)

TFOSC — TUBITAK Faint Object Spectrograph and Camera similar to, e.g., ALFOSC at NOT and others 6-m telescope of SAO RAN

Bolyshoy Telescop Azimutalyny, BTA 6-m telescope of SAO RAN

Bolyshoy Telescop Azimutalyny, BTA 6-m telescope of SAO RAN

SCORPIO spectrograph and camera:

Afanasiev & Moiseev, 2005 AZT-33IK 1.6-m telescope of Sayan Observatory

Sectrograph is now produced at SAO RAN (ordered by IKI RAN). Direct images

PSZ1 G098.24-41.15, z = 0.4362 Direct images

PSZ1 G100.18-29.68, z = 0.485 Direct images

PSZ1 G138.11+42.03, z =0.496 Direct images

PSZ1 G209.80+10.23, z =0.677 Photometric

δz/(1 + z) ≈ 0.03, calibrated using 400d survey data (Burenin et al., 2007) Redshift measurements

MgI NaD

Keck II, Magellan, ESO 3.6-m, NTT, FLWO 1.5-m, NOT, Danish 1.54-m + BTA and RTT150 400d galaxy cluster survey

Luminosity function:

Burenin, Vikhlinin, Hornstrup et al., 2007 How do we measure cluster masses?

Kravtsov, Vikhlinin, Nagai, 2006 Weak gravitational lensing

A1689 Mass scale calibration

δM/M ≈ 0.09 Chandra Cluster Cosmology Project — CCCP

z < 0.1 z > 0.45

86 nearby (RASS) and distant (400d) clusters Galaxy cluster mass function

Vikhlinin et al., 2009, ApJ, 672, 1060 Galaxy cluster mass function

New independent confirmation of the existance of .

Vikhlinin et al., 2009, ApJ, 672, 1060 Dark eneregy constraints

Vikhlinin et al., 2009, ApJ, 672, 1060 Dark eneregy constraints

Vikhlinin et al., 2009, ApJ, 672, 1060 Markov Chain Monte-Carlo (MCMC) e.g. Lewis & Bridle, 2002 Metropolis-Hastings algorythm. The every next point accepted with probability:

P (θn+1)q(θn+1, θn) α(θn, θn+1) = min 1,  P (θn)q(θn, θn+1)  where q(θn, θn+1) — arbitrary proposal distribution. It can be shown that P (θ) — equilibrium distribution of the chain.

The amount of calculations needed to explore P (θ) is approximately proportional to the number of parameters, not as a power of this number as for the calculations on a grid. How does it work? How does it work? How does it work? How does it work? How does it work? How does it work? How does it work? How does it work? How does it work? How does it work? How does it work? How does it work? Software

• CosmoMC — Cosmological MonteCarlo http://cosmologist.info/cosmomc/

• CAMB — Code for Anisotropies in the Microwave Background http://camb.info/

CCCP likelihoods and CosmoMC module: http://hea.iki.rssi.ru/400d/cosm/combined/

. . . everybody can do this. ΛCDM constraints

CMB+H0 CMB+BAO H0 CMB+H0 0 8 σ H CMB+CL CMB+CL

CMB+BAO CL

Ωm Ωm

CMB here is WMAP7+SPT, CL — CCCP clusters

Burenin, 2013 The effective number and total neutrino mass

Neff =4.07 ± 0.34, Σmν =0.50 ± 0.14 eV, — more then 3σ significant Burenin, 2013 Sunyaev Zeldovich effect

Sunyaev, Zeldovich, 1972 SPT SZ cluster survey

from talk by B. Benson at Kazan SRG meeting SPT SZ cluster survey

Hou et al., 2013 Planck catalogue of SZ sources

Total — 1227, confirmed — 861, known — 683, new — 178, candidates — 366 Planck collaboration, 2013 Redshift distrubution

SZ S/N>7 — 189 most massive clusters — appr. 3 times less than expected from CMB Planck collaboration, 2013 Ωm and σ8 constraints pre-Planck results:

Planck collaboration, 2013, arXiv:1303.5080 Burenin, 2013, arXiv:1301.4791 CL — CCCP, Vikhlinin et al., 2009 Main systematic uncertainty is cluster mass scale calibration. Σmν and Neff constraints

Gariazzo, Giunti & Laveder, 2013 Hamann, Hasenkamp, 2013 arXiv:1309.3192 arXiv:1308.3255

“νΛCDM: Neutrinos reconcile Planck with the Local Universe”, Wyman et al., 2013, arXiv:1307.7715

+ reconcile Planck with BICEP2 data — Dvorkin et al., 2014, Zhang et al., 2014 Σmν and Neff constraints

Planck collaboration, 2013, arXiv:1303.5076

Σmν ≈ 0.2 eV—?(Σmν > 0.05 — from atm. neutrino oscillations) Spectrum-roentgen-gamma (SRG)

All massive clusters in will be detected! Launch date — March 2016.