Simulation and Analysis of Magnetic Reconnection in a Laboratory Plasma Astrophysics Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Simulation and Analysis of Magnetic Reconnection in a Laboratory Plasma Astrophysics Experiment Simulation and Analysis of Magnetic Reconnection in a Laboratory Plasma Astrophysics Experiment by Nicholas Arnold Echlin Murphy A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy) at the University of Wisconsin – Madison 2009 i Abstract Magnetic reconnection is an inherently multiscale process in which small-scale physics and large-scale dynamics both play important roles. To address the interplay between local and global effects, extended magnetohydrodynamic (MHD) simulations of the Magnetic Recon- nection Experiment (MRX) are presented using the NIMROD code. Both the “pull” and “push” modes of operation are simulated with and without two-fluid effects in the general- ized Ohm’s law. The pull reconnection rate is slowed by the presence of high downstream pressure. Because of the lesser volume available on the inboard side of the current sheet, density is depleted more quickly from the inboard upstream region than the outboard up- stream region during pull reconnection, resulting in a radially inward drift of the current sheet. A buildup of pressure on the inboard side of the current sheet during push recon- nection displaces the X-point towards the outboard side of the current sheet. Two-fluid simulations show good agreement with experimental observations of the quadrupole out- of-plane magnetic field associated with two-fluid reconnection. However, geometric effects are found to be more important in determining the reconnection rate than the inclusion of two-fluid effects. Communication between small and large scales is primarily due to pressure gradients that develop from a pileup of reconnection exhaust which then feed back on the reconnection process. Magnetic reconnection with asymmetry in the outflow direction occurs in many situ- ations in both nature and the laboratory. A control volume analysis is performed for the case of steady antiparallel magnetic reconnection with asymmetric downstream pressure to find approximate relations for conservation of mass, momentum, and energy in the resis- tive magnetohydrodynamic (MHD) framework. These relationships are used to derive the ii outflow velocity from each side. The reconnection rate is not greatly affected except when outflow from both sides of the current sheet is blocked. Instead of bidirectional Alfv´enic jets, reconnection with asymmetric downstream pressure can result in one Alfv´enic jet and one sub-Alfv´enic jet. A similar model is presented for reconnection in cylindrical geometry when the outflow is aligned with the radial direction. The predictions of these models are tested using resistive MHD simulations of driven asymmetric magnetic reconnection. iii To my friends Karin Lathin and Joseph Lindstrom, for everything they have done for others iv Dr. McCoy: “I knew it was wrong. I shouldn’t have done it!” Captain Kirk: “What’s that?” Dr. McCoy: “I should have never reconnected his mouth.” —Star Trek, Episode #56, “Spock’s Brain” “Resistance is futile.” —The Borg, kindly reminding us of the need to in- clude additional terms in our generalized Ohm’s law v Acknowledgements I would first like to thank Carl Sovinec and Ellen Zweibel for the support and assistance they have ceaselessly provided as my advisors. Without their guidance and patience, this thesis would not have been possible. What they have taught me will last throughout my entire career as a scientist. The faculty of the Department of Astronomy must also be acknowledged for giving me the education and training necessary to be a professional astronomer. I would like to thank Linda Sparke for her idea during my first year to consider working with “Ellen’s friends in engineering,” an idea that has turned out to be quite fruitful. Discussions with Alex Lazarian during classes and seminars have improved my understanding of astrophysical magnetic fields and turbulence, and have given me a new appreciation of dust. Much of my knowledge of how to do astrophysical research came from working with Joseph Cassinelli during my first year in Madison. I thank my thesis committee (Joseph Cassinelli, Sebastian Heinz, Carl Sovinec, Rich Townsend, and Ellen Zweibel) for valuable comments on this manuscript. I also acknowledge the help I have received from the plasma physics community in Madison, especially for making an astronomy graduate student feel welcome. In particular, I would like to thank Stewart Prager, Yi-Min Huang, Vladimir Mirnov, Chris Hegna, Fatima Ebrahimi, Adam Bayliss, and Ping Zhu. This simulations performed for this thesis used the NIMROD code, and I must thank all of those who have contributed to its development, in- cluding Carl Sovinec, Dalton Schnack, Dylan Brennan, Scott Kruger, Dan Barnes, Charlson vi Kim, Alan Glasser, and the rest of the NIMROD team. In the greater plasma physics com- munity, I must also thank Paul Cassak, Masaaki Yamada, Hantao Ji, Stefan Gerhardt, Yang Ren, Alexey Kuritsyn, Michiaki Inomoto, Seth Dorfman, Michael Brown, Chris Cothran, Michael Schaffer, Michael Shay, Brian Sullivan, Amitava Bhattacharjee, and Marc Swisdak. My thesis research was supported by the Center for Magnetic Self-Organization in Labo- ratory and Astrophysical Plasmas (CMSO). In addition to financial support, I found the CMSO to be a great community full of wonderful researchers dedicated to building bridges between laboratory and astrophysical plasma physics. This is a largely computational thesis, and hence I must state my appreciation for the system administration skills of Stephan Jansen, who has kept the astronomy depart- ment network running smoothly. The astronomy department staff throughout my tenure as a graduate student have been wonderful, including Steve Anderson, Angela Normington, Lynn Thiele, and John Varda. I also thank Jane Schwantz and Dale Schutte from plasma physics. I must also express appreciation for several faculty from the University of Michigan and elsewhere during my time as an undergraduate, especially John Monnier, Hugh Aller, Joel Bregman, Rachel Somerville, Joel Smoller, and Jack Baldwin. I thank Hugh Aller in particular for his Astronomy 160 class which convinced me to go into astronomy. I must also thank fellow students and post-docs for their contribution to the warm atmosphere of Wisconsin astronomy and physics, including (in the Department of Astron- omy) Kat Barger, Andrey Beresnyak, Tom Bethell, Ella Braden, Blakesley Burkhart, Laura Chomiuk, Steve Crawford, Claudia Cyganowski, Kate Dellenbusch, Katie Devine, John Ev- erett, Andy Fox, Emily Freeland, Sam Friedman, Aaron Geller, Natalie Gosnell, Kelley Hess, Alex Hill, Tabetha Hole, Ryan Keenan, Amanda Kepley, Min-Young Lee, Tommy Nelson, Lou Nigra, Matt Povich, Andrew Schechtman-Rook, Paul Sell, Elizabeth Stanway, vii Aaron Steffen, Jennifer Stone, Laura Trouille, Christer Watson, Kyle Westfall, Isak Wold, Corey Wood, and (in the Departments of Physics and Engineering Physics) Chris Carey, Jim Reynolds, Jacob King, John O’Bryan, Eric Howell, Bonita Burke, Mark Schlutt, Tom Bird, Matt Palotti, Daniel Lecoanet, Tim Tharp, and Hillary Stephens. I must also thank the many friends I have made outside of graduate school for helping to make my Madison experience memorable. From the Emma Goldman (now Audre Lorde) Co-op, I thank Joseph Lindstrom, Max Camp, Lauren Nielsen, Alex Hojem, Jana Grcevich, Summer Wilken, Cedric Lawson, Renee Gasch, Sylvia Jones, Kelly Rentscher, Brian Jordan, Mingwei Huang, Aaron Blecher, Ben Luedcke, Betsy Levine, Anne Seeber, Tom Ebersole, Sara Edquist, Lindsey Saunders, Nick Mader, Ali Muldrow, and many others. From Madison Community Co-op, I thank Stefanie Jones, Kathy Parker, Gabriel Heck, C. J. Carter, Lauren Allen, Rick White, Steve McClure, and Liz Shaffer-Wishner. From the Teaching Assistants’ Association, I thank Claiborne Hill, Samaa Abdurraqib, Aaron Bibb, Rob Henn, Chris Bolander, Mark Supanich, Jay Gates, Stephanie Eastwood, Paul Reckner, Adam Berliner, Jason Murcko, Aaron Bibb, Peter Brinson, Sherry Johnson, Tim Frandy, Julien Colvin (with whom I got my picture taken with George Takei!), and Boian Popunkiov. From the rest of the Madison community, I thank Lori Nitzel, Austin King, Maura McCormick, Kyle Novak, Kerean Grant Povich, Trevor Irwin, Jon Bohman, Sean Hedican, and Christina Vandenhouten. To the members of Alliance for Animals, thank you for hosting numerous vegan dinners, where I always ate more than I should have, but never enough! I would like to thank my family for their support, for putting up with me not calling home often enough, and for being there whenever I needed to visit or talk. Thank you Mom and Dad, Ron, Ellen, and Sue. And finally, I would like to thank my partner throughout most of graduate school, Sonja, for her patience, compassion, and understanding. viii Contents Abstract i 1 Introduction 1 1.1 Introduction.................................... 2 1.2 ModelsofMagneticReconnection . .... 5 1.2.1 TheSweet-ParkerModel . .. .. 7 1.2.2 ThePetschekModel ........................... 13 1.2.3 Enhanced Resistivity from Small-Scale Instabilities .......... 14 1.2.4 TurbulentReconnection . 16 1.2.5 Two-FluidReconnection . 17 1.2.6 AsymmetricReconnection . 21 1.3 The Interplay Between Small and Large Scales During Magnetic Reconnection 23 1.4 IntroductiontoNIMROD . .. .. 24 1.5 OverviewofThesis ................................ 27 References........................................ 28 2 Global Axisymmetric Simulations of Two-Fluid Reconnection in an Ex- perimentally Relevant Geometry 38 ix 2.1 Introduction...................................
Recommended publications
  • Evidence for Magnetic Reconnection Along the Dawn Flank
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Accelerated flows at Jupiter’s magnetopause: 10.1002/2016GL072187 Evidence for magnetic reconnection Special Section: along the dawn flank Early Results: Juno at Jupiter R. W. Ebert1 , F. Allegrini1,2 , F. Bagenal3 , S. J. Bolton1 , J. E. P. Connerney4, G. Clark5 , G. A. DiBraccio4,6 , D. J. Gershman4 , W. S. Kurth7 , S. Levin8 , P. Louarn9, B. H. Mauk5 , Key Points: 10,11,1 12,1 1 13 1,2 • Observations at Jupiter’s dawn D. J. McComas , M. Reno , J. R. Szalay , M. F. Thomsen , P. Valek , magnetopause by Juno revealed S. Weidner11, and R. J. Wilson3 accelerated ion flows and large magnetic shear angles at 1Southwest Research Institute, San Antonio, Texas, USA, 2Department of Physics and Astronomy, University of Texas at San several crossings Antonio, San Antonio, Texas, USA, 3Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, • Case studies of two magnetopause 4 5 crossings showed evidence of Colorado, USA, Goddard Space Flight Center, Greenbelt, Maryland, USA, The Johns Hopkins University Applied Physics 6 7 rotational discontinuities and an Laboratory, Laurel, Maryland, USA, Universities Space Research Association, Columbia, Maryland, USA, Department of open magnetopause Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA, 8Jet Propulsion Laboratory, Pasadena, California, USA, • Compelling evidence for magnetic 9Institut de Recherche en Astrophysique et Planétologie, Toulouse, France, 10Department of Astrophysical Sciences, ’ reconnection
    [Show full text]
  • Classical Models of Magnetic Reconnection
    CLASSICAL MODELS OF MAGNETIC RECONNECTION YUNQI SUN, 2019.4.26 TUTOR: XUENING BAI CONTENTS • Introductions to magnetic reconnection • Sweet-Parker Model: a classical perspective • Petschek’s Model: a faster reconnection • Summary INTRODUCTION: WHAT IS MAGNETIC RECONNECTION? • Magnetic reconnection is a physical process occurring in highly conducting plasmas in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. • A magnetic reconnection process in solar flares: https:// en.wikipedia.org/wiki/ File:SDO_Observes_a_Reconnection_Event.ogv • Tokamak experiments INTRODUCTION: WHAT IS MAGNETIC RECONNECTION? • Earth Magnetospheres • accretion disks • Plusars & Magnetars reconnection region&current sheet (ANATOLY SPITKOVSKY, 2006) INTRODUCTION: WHAT IS MAGNETIC RECONNECTION? • Characteristics • change the magnetic topology (further relaxation can release more energy) • generate an electric field which accelerates particles parallel to magnetic field • dissipate magnetic energy (direct heating) • accelerate plasma, i.e. convert magnetic energy into kinetic energy INTRODUCTION: A SHORT HISTORY • In 1946, Giovanelli suggested reconnection as a mechanism for particle acceleration in solar flares. • 1957-58, Sweet and Parker developed the first quantitive model, currently known as Sweet-Parker model. • 1961 Dungey investigated the interaction between a dipole (magnetosphere) and the surrounding (interplanetary) magnetic field which included reconnection. • 1964 Petschek proposed another model in order to overcome the slow reconnection rate of the Sweet-Parker model. • … SWEET-PARKERS MODEL: A CLASSICAL PERSPECTIVE incoming plasma • Magnetic reconnection with velocity vR happens when two plasma coming closer to each other, and the magnetic field lines are able to rearrange their outflow plasma structure, bringing the plasma inside the reconnection region reconnection region outside by the electric field.
    [Show full text]
  • Local Time Extent of Magnetopause Reconnection X-Lines Using Space-Ground Coordination
    Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-63 Manuscript under review for journal Ann. Geophys. Discussion started: 3 July 2018 c Author(s) 2018. CC BY 4.0 License. 1 Local time extent of magnetopause reconnection X-lines using space-ground coordination 2 3 Ying Zou12, Brian M. Walsh3, Yukitoshi Nishimura45, Vassilis Angelopoulos6, J. 4 Michael Ruohoniemi7, Kathryn A. McWilliams8, Nozomu Nishitani9 5 6 1. Department of Astronomy and Center for Space Physics, Boston University, Massachusetts, 7 USA 8 2. Cooperative Programs for the Advancement of Earth System Science, University Corporation 9 for Atmospheric Research, Boulder, Colorado, USA 10 3. Department of Mechanical Engineering and Center for Space Physics, Boston University, 11 Boston, Massachusetts, USA 12 4. Department of Electrical and Computer Engineering and Center for Space Sciences, Boston 13 University, Boston, Massachusetts, USA 14 5. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 15 California, USA 16 6. Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, 17 California, USA 18 7. The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, 19 Virginia, USA 20 8. Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, 21 Saskatchewan, Canada 22 9. Center for International Collaborative Research, Institute for Space-Earth Environmental 23 Research, Nagoya University, Nagoya, Japan 1 Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-63 Manuscript under review for journal Ann. Geophys. Discussion started: 3 July 2018 c Author(s) 2018. CC BY 4.0 License. 24 Corresponding author: Ying Zou 25 1. Department of Astronomy and Center for Space Physics, Boston University, Massachusetts, 26 USA 27 2.
    [Show full text]
  • Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence
    Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Loureiro, Nuno F., and Stanislav Boldyrev. “Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence.” Physical Review Letters 118, no. 24 (June 16, 2017). As Published http://dx.doi.org/10.1103/PhysRevLett.118.245101 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/110205 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. week ending PRL 118, 245101 (2017) PHYSICAL REVIEW LETTERS 16 JUNE 2017 Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence Nuno F. Loureiro1 and Stanislav Boldyrev2,3 1Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Department of Physics, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA 3Space Science Institute, Boulder, Colorado 80301, USA (Received 21 December 2016; revised manuscript received 17 April 2017; published 16 June 2017) The current understanding of magnetohydrodynamic (MHD) turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become current-sheetlike structures at small scales. We analyze the role of magnetic reconnection in these structures and conclude that reconnection becomes important at a scale −4=7 λ ∼ LSL , where SL is the outer-scale (L) Lundquist number and λ is the smallest of the field- perpendicular eddy dimensions.
    [Show full text]
  • Magnetosphere Coupling by Magnetic Reconnection
    Cold ions of ionospheric origin in Solar wind – magnetosphere coupling S. Toledo-Redondo1, M. André2, Yu. V. Khotyaintsev2, B. Lavraud3, A. Vaivads2, D. B. Graham2, W. Li2, D. Perrone1, S. Fuselier4,5, D. Gershman6, N. Aunai5, J. Dargent3,7, B. Giles6, O. LeContel7, P.-A. Lindqvist8, R. E. Ergun9, C. T. Russell10, and J. L. Burch4 (1) ESAC/ESA, Madrid, Spain (6) NASA Goddard Space Flight Center, Greenbelt, Maryland (2) Swedish Institute of Space Physics (IRF), Uppsala, Sweden (7) Laboratoire de Physique des Plasmas, Paris, France (3) Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France (8) Royal Institute of Technology (KTH), Stockholm, Sweden (4) Southwest Research Institute (SWRI), San Antonio, Texas (9) Laboratory of Atmospheric and Space Physics (LASP), Boulder, Colorado (5) University of Texas, San Antonio, Texas (10) University of California, Los Angeles, California. ESA UNCLASSIFIED - For Official Use ESA | 01/01/2016 | Slide 1 Introduction: magnetic reconnection in plasmas t<0 t=0 t>0 Magnetic reconnection in plasmas changes the topology of the magnetic fields, relaxing them and transferring the energy resulting into the particles (acceleration and heating). Interconnects different plasma regions, allowing the exchange of mass and energy between them. ESA UNCLASSIFIED - For Official Use ESA | 01/01/2016 | Slide 2 Magnetic reconnection simulation Full Particle-In-Cell simulation, Dargent+, JGR (2016) ESA UNCLASSIFIED - For Official Use ESA | 01/01/2016 | Slide 3 Ubiquity of magnetic reconnection Uzdensky+,
    [Show full text]
  • An Introduction to Magnetic Reconnection
    An Introduction to Magnetic Reconnection ! N. F. LOUREIRO Instituto de Plasmas e Fusão Nuclear, IST, Lisbon, Portugal Les Houches school on “The Future of Plasma Astrophysics”" 29th February 2013 Motivation Solar flares Earth’s magnetosphere Sawtooth in tokamaks Motivation: plenty of others! • Fusion reactors (tokamaks): tearing modes, disruptions, edge-localized modes • Laser-solid interactions (inertial confinement fusion) • Magnetic dynamo • Flares (accretion disks, magnetars, blazars, etc) • Etc. (actually, there’s no need for observational/experimental motivation: it’s interesting per se.) Recent review papers: Zweibel & Yamada ’09; Yamada et al., ’10; also books by Biskamp and Priest & Forbes. Doerk et al. ‘11 Reconnection in exotic HED environments: Uzdensky ‘11 even more motivation… “The prevalence of this research topic is a symptom not of repetition or redundancy in plasma science but of the underlying unity of the intellectual endeavor. As a physical process, magnetic reconnection plays a role in magnetic fusion, space and astrophysical plasmas, and in laboratory experiments. That is, investigations in these different contexts have converged on this common scientific question. If this multipronged attack continues, progress in this area will have a dramatic and broad impact on plasma science.”" (S. C. Cowley & J. Peoples, Jr., “Plasma Science: advancing knowledge in the national interest”, National Academy of Sciences decadal survey on plasma physics, 2010) RECONNECTION: ESSENTIAL INGREDIENTS Reconnection: basic idea Oppositely directed magnetic field lines brought together by plasma flows." Main features: - coupling between large and small scales (multiscale problem) - Magnetic energy is converted / dissipated (energy partition: what goes where?) - Reconnection rate ~ 0.01 – 0.1 L/VA (fast) - often reconnection events are preceded by long, quiescent periods (two-timescales, the trigger problem) Frozen flux constraint Magnetic flux through a surface S, defined by a closed contour C: Ψ = B dS · B S C How does Ψ change in time? 1.
    [Show full text]
  • Three-Dimensional Reconnection of Untwisted Magnetic Flux Tubes M
    The Astrophysical Journal, 595:1259–1276, 2003 October 1 E # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. THREE-DIMENSIONAL RECONNECTION OF UNTWISTED MAGNETIC FLUX TUBES M. G. Linton1 and E. R. Priest2 Received 2003 April 23; accepted 2003 June 9 ABSTRACT Understanding the reconnection of magnetic fields in flux tubes is of key importance for modeling solar activity and space weather. We are therefore studying this process via three-dimensional MHD simulations. We report here on a simulation of the collision of a pair of perpendicular, untwisted magnetic flux tubes. We find that the collision proceeds in four stages. First, on contact, the tubes flatten out into wide sheets. Second, they begin to reconnect and the tearing mode instability is excited in the reconnection region. Third, the nonlinear evolution of the tearing mode creates a pair of reconnected flux tubes. Finally, these flux tubes reconnect with each other to coalesce into a single flux tube. We then report on a pair of simulations exploring how this behavior changes when the speed of flux tube collision is increased and when the magnetic resistivity is increased. Subject headings: MHD — Sun: flares — Sun: magnetic fields On-line material: mpeg animations 1. INTRODUCTION proceeds in the same way, with the guide field playing only a The study of magnetic reconnection in fully three- passive role (Sonnerup 1974). On a larger scale, one can dimensional configurations is becoming ever more have several X-points generated at the interface between the important to the understanding of solar activity and space two fields, excited by the ‘‘ tearing ’’ mode instability (Furth, weather (e.g., Priest & Forbes 2000).
    [Show full text]
  • Juno Constraints on the Formation of Jupiter's Magnetospheric Cushion
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Juno Constraints on the Formation of Jupiter’s Magnetospheric Cushion Region Gershman, Daniel J ; DiBraccio, Gina A ; Connerney, John E P ; Bagenal, Fran ; Kurth, William S ; Hospodarsky, George B ; Spalsbury, Lori ; Clark, George ; Ebert, Robert W ; Wilson, Robert J ; Levin, Steve ; Bolton, Scott J Abstract: Observations by the Pioneer, Voyager, Ulysses, and Galileo spacecraft in Jupiter’s dayside magnetosphere revealed a cushion region, where the magnetic field became increasingly dipolar and the 10‐hr periodicity associated with rotation of the magnetodisc was no longer visible. Focused observations at the dawn terminator by the Juno spacecraft provide critical constraints on the formation physics of the dayside cushion. We observe a persistent 10‐hr periodicity at dawn with only minor distortions of the field near the magnetopause boundary, indicating the absence of a systematic dawn cushion region.These data suggest that the dayside cushion is not formed via mass loss associated with magnetic reconnection along a localized X line but rather may be due to the gradual compression of the dawnside magnetic field as it rotates toward local noon. DOI: https://doi.org/10.1029/2018gl079118 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-157109 Journal Article Published Version Originally published at: Gershman, Daniel J; DiBraccio, Gina A; Connerney, John E P; Bagenal, Fran; Kurth, William S; Hospo- darsky, George B; Spalsbury, Lori; Clark, George; Ebert, Robert W; Wilson, Robert J; Levin, Steve; Bolton, Scott J (2018).
    [Show full text]
  • Analysis of Deformation and Erosion During CME Evolution
    geosciences Article Analysis of Deformation and Erosion during CME Evolution Skralan Hosteaux 1, Emmanuel Chané 1 and Stefaan Poedts 1,2,* 1 Department of Mathematics, Centre for mathematical Plasma Astrophysics (CmPA), KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium; [email protected] (S.H.); [email protected] (E.C.) 2 Institute of Physics, University of Maria Curie-Skłodowska, ul. Radziszewskiego 10, PL-20-031 Lublin, Poland * Correspondence: [email protected] Abstract: Magnetised coronal mass ejections (CMEs) are quite substantially deformed during their journey form the Sun to the Earth. Moreover, the interaction of their internal magnetic field with the magnetic field of the ambient solar wind can cause deflection and erosion of their mass and magnetic flux. We here analyse axisymmetric (2.5D) MHD simulations of normal and inverse CME, i.e., with the opposite or same polarity as the background solar wind, and attempt to quantify the erosion and the different forces that operate on the CMEs during their evolution. By analysing the forces, it was found that an increase of the background wind density results in a stronger plasma pressure gradient in the sheath that decelerates the magnetic cloud more. This in turn leads to an increase of the magnetic pressure gradient between the centre of the magnetic cloud and the separatrix, causing a further deceleration. Regardless of polarity, the current sheet that forms in our model between the rear of the CME and the closed field lines of the helmet streamer, results in magnetic field lines being stripped from the magnetic cloud. It is also found that slow normal CMEs experience the same amount of erosion, regardless of the background wind density.
    [Show full text]
  • Mission Guide Magnetospheric Multiscale Mission
    National Aeronautics and Space Administration Mission Guide Magnetospheric Multiscale Mission Table of Contents 1. MMS Quick Facts 2. Introduction to MMS 3. Scientific Focus 4. The Magnetosphere 5. Current State of Knowledge 6. What's Important To Science 7. What's Important To the World At Large 8. Spacecraft and Instruments 9. MMS Feature Stories 10. Background Material a. NASA's Solar Terrestrial Probes b. MMS Glossary c. Acronyms and Abbreviations d. MMS Key Messages MMS Quick Facts Mission focus: The Magnetospheric Multiscale, or MMS, mission provides the first three-dimensional view of gigantic explosions in space that release energy and fast-moving particles, a process called magnetic reconnection. MMS uses four identical spacecraft to observe reconnection directly in the magnetic space environment, or magnetosphere, surrounding Earth. By studying reconnection in this nearby, natural laboratory, MMS helps us understand reconnection elsewhere as well, such as in the atmosphere of the sun and other stars, in the vicinity of black holes and neutron stars, and at the boundary between our solar system's heliosphere and interstellar space. Launch Vehicle: ATLAS V 421 Launch Vehicle Launch Site: Cape Canaveral Air Force Station, Florida Scheduled Launch Date: March 12, 2015 Dimensions: At launch, with a full load of propellant, each observatory weighs approximately 2,998 pounds (1360 kg). This is about the weight of a compact car. Each MMS observatory is in the shape of an octagon, roughly 11 feet across and 4 feet high. When stacked together in the launch vehicle, the four MMS observatories are over 16 feet tall. In space, with axial booms and wire booms extended, each observatory grows to be about 94 feet tall and 369 feet wide; a span that would stretch across most of Fenway Park.
    [Show full text]
  • Magnetic Reconnection
    Magnetic Reconnection Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics April 20, 2016 These lecture notes are based off of Priest & Forbes (2000), Birn & Priest (2007), Zweibel & Yamada (2009), and numerous other sources. Outline for magnetic reconnection I Basic physics of reconnection I Usual ingredients and open questions I Sweet-Parker vs. Petschek reconnection I Collisionless vs. plasmoid-unstable reconnection I Turbulence, 3D effects, asymmetry I Reconnection across the universe I Solar eruptions I Earth's magnetosphere I Laboratory plasmas I Interstellar medium Introduction I Magnetic reconnection is the breaking and rejoining of magnetic field lines in a highly conducting plasma I Reconnection converts magnetic energy into kinetic energy, thermal energy, and particle acceleration energy I Reconnection was proposed to explain fast energy release in solar flares (Giovanelli 1946), and was later applied to Earth's magnetosphere (Dungey 1961) I Physical processes often associated with reconnection include I Resistivity, viscosity, and thermal conduction I Hall effect I Particle drifts I Kinetic effects (including electron scale physics) I Particle acceleration I Waves, shocks, and instabilities I Turbulence I Relativity, radiative losses, or partial ionization (sometimes) Picturing 2D magnetic reconnection This is missing essential 3D effects! Usual ingredients of magnetic reconnection I Occurs in regions of strong magnetic shear I Direction of B changes significantly over a short distance I Release
    [Show full text]
  • The Onset of Magnetic Reconnection in the Magnetotail
    Earth Planets Space, 53, 645–653, 2001 The onset of magnetic reconnection in the magnetotail Michael Hesse1 and Karl Schindler2 1Electrodynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, U.S.A. 2Ruhr-Universitat¨ Bochum, Germany (Received September 27, 2000; Revised January 9, 2001; Accepted January 15, 2001) This paper addresses the onset of collisionless magnetic reconnection in the tail of the Earth’s magnetosphere. The two-and-a-half-dimensional version of a fully electromagnetic particle-in-cell code is used to describe the pre- and post-onset dynamics of reconnection in thin current sheets in the magnetotail. The ion/electron mass ratio is set to 100. The simulation starts out from an apparently stable equilibrium configuration. Applying an external electric field, meant to be caused by magnetic flux transfer to the tail, leads to the formation of a thin current sheet in the center of the plasma sheet. This confirms earlier results obtains with fluid and hybrid-methods. In the thin sheet quasi-static force-balance leads to a substantial decrease of the north-south component of the magnetic field in the center of the sheet. This in turn causes the electrons to become significantly nongyrotropic, such that a tearing mode starts growing. Regarding the nonideal process that supports the electric field in the diffusion region, the simulation results are shown to be consistent with the notion that electron pressure anisotropies associated with the nongyrotropy generate the required diffusive electric fields. The destabilizing role of electron nongyrotropy is confirmed by a simplified analysis of the energy principle for two-dimensional collisionless plasmas.
    [Show full text]